A Novel Web Publishing System Architecture
for Statistics Data Using Open
Source Technology

Md Mostafizur Rahman(m), Hans Dicken, and Dirk Huke

German Centre for Research on Higher Education and Science Studies (DZHW),
Hannover, Germany
mostafiz. de@gmail. com
https: //www. dzhw. eu

Abstract. Web applications have become the primary source of information
and transactions over the internet. The number of statistical research organiza-
tions, with focused interests in publishing result data on the web, is increasing
rapidly in recent years. Statistical report publishing is typically requested to
publish reports using different documentation formats. In this research, we
examine different web publishing frameworks and effects of saturation trends
that appear during implementation. The existing publishing solutions sometimes
may or may not cover these requirements. We introduce a simple architectural
model that describes the basic steps and overall model to publish statistical
reports coming from tabular data sources on the web. Finally, we describe the
implementation of such a model and indicate what technologies can be used to
enforce it in order to increase productivity and work quality when comparing it
with other solutions.

Keywords: Web publishing - Statistics data - XML - Java - Open source
technology

1 Introduction

The World Wide Web (WWW) is one of the greatest technologies to have ever come
into present existence. In the early 90s, it served as a medium of communication with
static content, and later became the medium of rendering web-based software appli-
cations as a user requirement.

Publishing refers to the production and distribution of media products. Media
content is in the form of images, text, video and audio. A medium is used in storage,
transmission or reproduction of this content. Such as, print media (analog) and Internet
(digital media). Digital publishing on the Internet has numerous advantages (cost,
topicality, availability, added value) [1]. Nowadays, publishing organizations has been
dramatically changed in order to digitize the production and distribution of information
on the web. In addition, depending on the requirement, information published on the
web has different prospective. Contrarily, the question of how multiple uses of content
within a publishing framework can be possible is often asked. For these multi-use

© Springer International Publishing AG 2017
T.-T. Wu et al. (Eds.): SETE 2016, LNCS 10108, pp. 259-269, 2017.
DOI: 10.1007/978-3-319-52836-6_26

260 M.M. Rahman et al.

purposes, a markup language is required, which separates content from a concrete
representation, then converts it to any destination document format.

The presentation of content requires the selection of a suitable presentation format.
In this regard, there are numerous formats for different media types. HTML is a
standardized language of the W3C (World Wide Web Consortium) [2]. The Portable
Document Format (PDF) is a data exchange format created by Adobe Systems
[AdobJa]. It is suitable for a template-faithful transformation of print files and a dis-
tribution of electronic documents on the internet [3]. A Microsoft Excel spreadsheet
(XLS) is a proprietary file format that manages data in a tabular form. Furthermore, an
XLS document can be handled by many different applications. One example is Open
Office, a free Office product, which is available for use on different operating systems.
XLSX is another file extension, similar to the XML spreadsheet file format used by
Microsoft Excel. Microsoft introduced this XML standard excel file format for
Microsoft Office 2007 and upper as an open file format to transfer data between
applications and other working areas [4].

This research work is organized as, first, we address the basic functionality at the
heart of the publishing system. In the second layer, we study findability via the fol-
lowing question: In a web populated with a number of existing solutions, how can we
identify the right one, the framework that provides the right service for our unique
publishing system? To answer this question, we address the existing solution limita-
tions, depending upon the general project requirements. In the third layer, we propose a
platform architecture that leverages these graphs encapsulated by real life experience.
We demonstrate how this helps to publish reports in a straightforward way, by building
a user-friendly web-based publishing system. Our primary goal is to propose pub-
lishing system architecture for statistical data, using open source technologies that
facilitate their integration into composite applications. Finally, to test our architectural
model, we apply them to a real life statistical project (FOSTAT) [5]. After imple-
mentation, we are able to study the qualitative benefits of applying this proposed
model. Then, to better understand how the architecture can facilitate the development
of a real-world application, we illustrate its benefits with respect to this prototype.

2 Research Motivation

When developing a publishing system, the most important point needing consideration
is the accommodation of collaborative development. A good framework allows col-
laborative development along with the smooth integration between independent
development components. The idea to develop a more robust model for web publishing
emerged when I started to work in DZHW (German Centre for Research on Higher
Education and Science Studies) on one project (FOSTAT) [5], which leveraged to
publish statistical research data on the web. The FOSTAT project is working to publish
statistical report data for the Federal Ministry of Education and Research (Germany).
One of the main requirements was to develop a web-based publishing system to publish
different presentation formats by using the same data, and while following the open
source technologies. The idea to bring a new architecture to this manner has hitherto
been applied to web-based statistical report publishing.

A Novel Web Publishing System Architecture for Statistics Data 261

2.1 Requirement of Publishing System

The functional requirements are derived from the application business process, which
consists of several contiguous tasks that are performed by an actor to create a desired
result.

Access to the application system: Users access the application system via an
internet-connected personal computer and a web browser installed on it.

Selection and display of a table in a defined data format: Users have the option to
select a table displaying, the home page of the application forms via the UL
Import of databases in the system: Administrators can import databases with
appropriate functions in the system.

Data format:

— HTML, for presentation in the browser.

— PDF, to view in the Adobe Application Compatible

— XLS, to display the Microsoft Excel application

— XLSX, to display the Open XML spreadsheet file format
— XML, represent the XML format in the browser

— XSL-FO, display the XML Formatting Object format

To resolve this research problem via providing a way to integrate design science
and object oriented principles. To address this problem, we consider our research
approach as “Design Science” [6]. This approach is widely used in many research
disciplines, especially in engineering and computer science, but also in information
systems [7, 8]. Java Server Faces (JSF) framework was chosen to solve this research
question - which is a Java standard and satisfy the MVC pattern.

3 Related Work

Several papers and news articles relevant to the web publishing framework were
studied during the course of development of publishing architecture. There are number
of business intelligence (BI) and reporting tools available in the marketplace. The
Eclipse Business Intelligence and Reporting Tools (BIRT) and the Jasper soft Com-
munity Edition are mostly using open source tools to generate the report in a variety of
document formats [9—12]. Well, there is inauspicious news against these tools [13].
Withal, this is out of the scope to consider these reporting tools in this research work
because; the dissertation focuses on the publishing.

3.1 Apache Cocoon

The Cocoon is a top-level project of the Apache Software Foundation (ASF) [14].
Apache Cocoon is an XML publishing framework based on the servlet API model. It
was built around Separation of Concerns (SoC) and component based development
(COP), providing pipeline SAX processing [15, 16].

262 M.M. Rahman et al.

Apache Cocoon uses an integrated configuration mechanism called the site-map, as
a declarative XML document describing a set of pipelines that will be invoked,
depending upon a URI (Uniform Resource Indicator) pattern match. An XML docu-
ment is pushed through a pipeline that exists in several transformation steps. The
pipeline consists of three main components, beginning with a generator, zero or more
transformers, and a serializer [17, 18].

A sitemap is shown schematically in Fig. 1. Here, a matcher defines each pipeline.
Within the illustrated pipeline, data is generated from an XML document using XSLT
and an HTML document. The supported output formats include PDF, XML, VRML,
etc., which can be controlled by changing transformation rules. The latest stable release
of Apache Cocoon is version 2.2.0, released in May of 2008, which is a spring-based
framework. Cocoon 1 version 2.2, however, has the advantageous compatibility with
Apache Maven 2, which allows for much more efficient building management, as well
as perfect integration with the spring framework [19]. Apache Cocoon uses the
Apache FOP API to leverage the PDF output format. However, the last stable release of
Cocoon framework supports the older version 1.0 of FOP [20], while the recent version
of Apache FOP is 1.1. The lack of documented serializer, there is a considerable gap of
information explaining the methods for creating Microsoft Excel (.xls) and Open XML
spreadsheet (.xlsx) file formats.

(=] (o]
T T
1 H H
| ' i

Http Request '

i

'

T 1

1 1

Translate Request To Pipeline
T
H

Select Pipeline

Fig. 1. Cocoon pipeline with Sitemap

3.2 Oracle XSQL Framework

The Oracle XSQL page publishing framework is a publishing platform capable of
publishing XML documents in any format using SQL, XML and XSLT. The
Java-based XSQL servlet is the controller port that provides a declarative interface to
publish web content dynamically with relational data. However, the biggest limitation
of this publishing framework, it is a proprietor base initiative, not a completely open
source commencement [21]. It has only little available documentation and a bit cum-
bersome to implement it. In addition, the XSQL servlet can connect to any
JDBC-supported database. However, the object-relational functionality only works
when using an Oracle database coupled with the Oracle JDBC driver [21].

A Novel Web Publishing System Architecture for Statistics Data 263

3.3 Maverick Framework

Maverick is an MVC framework for web publishing using Java technology. This
framework focuses solely on MVC logic to allow for generating presentations using a
variety of templates and transformation technologies [22]. The most recent update of
the Maverick framework was released in 2006. The documentation of this framework is
very poor, that makes it difficult to find all the features relative to the frameworks
specific requirements.

3.4 Apache AxKit

Another Apache initiative was Apache AxKit, which is also an XML Application
Server for data publishing. AxKit provides XML document conversion on-the-fly to
any format such as HTML, WAP or text [23]. However, this framework is retired in
August 2009.

Most of the framework described in this section has some limitations when con-
sidering for statistical report publishing. Despite of these, our initiative is novel that can
manage both general and domain-specific statistics report publishing.

4 Technology and Software Selection

To tests our architecture how compatible it is for statistical report publishing, we select
different technologies and software to demonstrate the implementation of the prototype.
We use XML as middleware a medium-neutral data format that is not tied to a specific
purpose or special software due to its separation of content and layout. After generating
XML document, it is used as an input for the report publishing. JAXB (Java Archi-
tecture for XML Binding) API is used to generate the XML document [24]. JAXB is a
Java mapping standard that defines how Java objects are converted from and into
XML. For the persistence layer, an Object Relational Mapping (ORM) persistence
framework was chosen. To achieve this functionality, we used the Hibernate persis-
tence tool. Hibernate is an open source high performance object relational mapping
(ORM) tool and the query service provider. After considering these aspects, the freely
available RDBMS PostgreSQL database server version 9.4.4 version chosen for our
application prototype. Higher versions are also usable. However, the concept of per-
sistence offers a switch to any other RDBMS with very little effort.

To develop the prototype, we select the Apache Tomcat server, version 7.0,54.
Note, however, our prototype application can be run using any of the 7.x subversions
of this software. For the middle and front layers of the application, we chose JSF
framework version 2.0. JSF is distributed as an open source under the Oracle Standard
Web Framework software license.

264 M.M. Rahman et al.

5 Architecture of the Prototype

To manage the complexity of a software application, the application architecture should
be structured with loosely coupled subsystems. This means that each subsystem defines
clear responsibilities, minimizing the dependencies between these subsystems. Our
architecture is divided into multiple logical layers: a presentation layer, application
layer and persistence layer. Figure 2: shows different layer structures and demonstrates
the relationships and interactions between applications components contained within
those layers. Each individual layer has no knowledge the internal structure of the other
layers, but provides services that are used exclusively by the neighboring layers. The
use of these services is carried out via a Java class, which is located in the respective
underlying layers and provides a narrow interface with fewer methods.

Reporting Engine

Client-Side
Presentation

Layer
Controller
[XML Generator]
(2)

Web Transformer (7)

XML

Fig. 2. The application architecture of the prototype

The application architecture of the prototype is presented. As the first step of the
process, the Presentation layer asks for a request to the Reporting Engine. Then, within
the Reporting Engine, the Controller takes this request and calls upon the respective
Java Business Logic. The resulting Java object is annotated as an XML tree structure
by JAXB API Using Hibernate API, the Java object is mapped to the corresponding
database table. The database (PostgreSQL) is connected with a JDBC driver. The XML
document, or response, goes to the Web Transformer engine. This XML document is
used as the input. Afterwards, the XSLT parses this XML document along with the
respective XSL style sheet. Finally, the desired output result is displayed to the user.

Figure 5: PDF and XSL-FO Report Publishing Architecture, Apache FOP parser to
generate the final PDF document sent to the user. Figure 4: HTML Report Publishing
Architecture, the HTML Transformer parser which processes the data and presents it in
the final HTML document for user view. Figure 3: Excel (.xls, .xIsx) Report Publishing
Architecture, with the help of the Apache POI API, to generate the final Excel

A Novel Web Publishing System Architecture for Statistics Data 265

Request Response Request Response
t HTMIL Report Publishing Architecture

Excel Report Publishing Architecture

—

i
]

xxxxx

] [mom] [' ===

Fig. 3. Excel (xls, .xIsx) report publishing Fig. 4. HTML report publishing architecture
architecture

Response
Request

PDF and XSL-FO Report Publishing Architecture T I
L %
ServerPages Search Result XSLFO
] e
- XSL-FO |—

Create Element
(with attribute)

Create DOM
Document
XMLFile
Create HQL
Create Root Query
Element
- XSLTStylesheet

lJAxBConvemr | | Hibernate (ORM) | | Xmi2fo_PDF xs! |

XSL-FO
Processor

Fig. 5. PDF and XSL-FO report publishing architecture

document. In the Java class, HSSF method is used to generate .xIs format and XSSF
method is used to generate .xIsx format Excel report. This architecture is designed to
publish an Excel format report. The first request to create a DOM document is received
via a JAXB converter. The resulting Hibernate query is used to create the XML
document, including the element and attribute and their respective values. XSL file is
used as the XSL declaration. These two files are then used as input for the Excel parser
Java Class with the help of Apache POI API, to generate the final Excel document. In
this Java class, HSSF method is used to generate .xIs format and XSSF method is used
to generate .xIsx format Excel report.

6 Evaluation

The publishing architecture was evaluated, with a reference of standard web application
requirements, to test the social acceptability, maintenance, scalability and operational
feasibility of the prototype. Measurements were considered based on functional
requirements of statistical report publishers. The significant differences in the mea-
surements favoring this architecture will portray the advantages of report publishing.

Comparison between the existing solution and our proposed architecture is based
upon the requirements of a report publishing system, as well as the list of parameters
necessary to develop a common web-based publishing application. Figure 6 shows the
comparison between different system architecture.

266 M.M. Rahman et al.
No. Parameter Specification Our System Apache Cocoon [Oracle XSQL| MAVERICK |Apache AxKi
Separation of Concern YES YES YES Lack of Info
1 Design Pattern Inversion of Control YES NO YES Lack of Info
MVC (Model 2) YES YES YES Lack of Info
HTML YES YES YES NO
2 Document Format PDF YES YES YES YES
MS EXCEL (.xls & .xlsx) YES No Block Serializer YES NO
3, Unified API Apache FOP 1.1 /2.0 YES NO (FOP 1.0) YES Lack of Info | Retired 2009
4 Form Design Ul Component JSF (Java Standard) Cocoon Forms YES ISP, Velocity
5 |Database Persistence ORM Support YES YES Only Oracle NOT WELL
6 | Data Representation XML Technologies YES YES YES YES
U Documentation User Guide YES NOT Healthy YES NOT WELL
8 Stable Release Version Untill today 2008 Cocoon 2.2.0 2009 2006
9 Technology Open Source YES YES NO YES
Fig. 6. Functionality comparison between different system architecture
6.1 Design Pattern

In the proposed architecture, we have considered the Model-View-Controller
(MVC) design principal. Most of the other frameworks discussed previously follow
the same MVC design. In addition, the Apache Cocoon framework follows the
Separation Of Concerns (SoC) principal, while our architecture considers both the
Separation Of Concerns (SoC) and Inversion of Control (IoC) 6design patterns.
Notably, we used JSF framework, which supports both design patterns.

6.2 Document Publishing Format

A statistical report is required to publish in various publication formats, such as PDF,
Excel, HTML, and other possible file formats. To publish these formats, the publishing
architecture needs to allow the respective parser API. Our publishing architecture
applies the separation of the Concern (SoC) principle, where individual format archi-
tecture is used to generate an individual document format. The prototype shows the
individual format model that gives the flexibility to introduce numerous document
formats. Sequentially, Oracle XSQL page publishing architecture also supports dif-
ferent documentation formats, while Apache Cocoon framework does not carry the
serializer to support Excel 2007 or Open XML spreadsheet formats, and Maverick
framework also has lack of declaration to support the Excel format output.

6.3 API Upgradetion

When designing system architecture, flexibility of API upgradetion is an important
concern. Regarding this, the proposed architecture is designed with a sub-function
strategy, meaning the individual output format is a sub-function with the respective
API. Using this process, it is very easy to upgrade the API version to get the latest API
facility. For example, when considering the PDF output format, Apache FOP parse the
data with the help of XSL Formatting Object. The Cocoon framework uses
Apache FOP version 1.0 while the latest version is FOP 2.0. In our system, the

A Novel Web Publishing System Architecture for Statistics Data 267

individual sub-function is independent of the others, making it very easy to update the
latest version of the API. The Oracle XSQL framework also has this flexibility.

6.4 Form Design

In this architecture, we used JSF to design the form. The JSF UI component provides
very simple functionality to design a form while the Apache Cocoon Form design
concept is much more difficult. For example, suppose you want to design 10 forms.
When using the Cocoon platform, you have to define 10 form definitions, plus 10
JXTemplates with controller logic, as well as the pipeline definitions in the sitemap
[.xmap] file. This process raises the productivity scalability issue. On the other hand,
when using JSF, the process of form design has been simplified to negate the added
step in the process. The Oracle XSQL framework also supports JSF to design user
interface.

6.5 Database Persistence

Persistence delivers the ability of an object to remain alive throughout the lifetime of
the OS (Operating System) process in which it resides. In our proposed architecture, we
considered Hibernate as an object relational mapping (ORM) tool. However,
Oracle XSQL only supports the Oracle database system to give the ORM flexibility.
This is a big limitation for the Oracle XSQL publishing framework.

6.6 Documentation (User Guide)

A User Guide is an important way to understand all steps of the system. We preferred
standard framework and APIs to design the architecture. Our considered framework
and APIs are Java and W3S standard, which are well documented within their
respected areas. In contrast, Apache Cocoon and Oracle XSQL systems documentation
are not healthy enough to understand their functionality easily. The last stable Apache
Cocoon release 2.2.0 came out in 2008, whereas the latest version of Oracle XSQL6
was introduced in 2009. Consequently, the Maverick systems documentation is very
poor in the sense of availability, especially since the latest release occurred in 2006 and
the Apache AxKit was retired in 2009.

6.7 Open Source Technology

Many authors have referred to the advantages of using open source software [25-27].
The first perceived advantage of open source software is a low cost and in gratis
availability. With us, all publishing frameworks that we considered are open source
initiatives except the Oracle XSQL Publishing framework. It is a collaboration system
following the parameters of the Oracle database, therefore preventing the framework
from being a truly open-sourced tool.

268 M.M. Rahman et al.

7 Conclusion

As presented through this work, we studied various demands towards statistical report
publishing on the web. We proposed an architectural direction to most efficiently meet
these demands. We also built a prototype implementation of a real life project
(FOSTAT) in order to report our resulting solutions. The prototype has all the essential
characteristics and satisfies demands by the arrangement. The parameters resulted
in a reduced learning curve, which were discussed in the evaluation section, proving
that this architectural model is most suitable for a developer desiring to implement
a web based statistical report publishing system with much flexibility. In addition,
when compare to existing solutions, this publishing architecture is a clear winner
in all aspects.

Acknowledgements. 1 gratefully acknowledge the financial support towards my thesis from the
German Center for Research on Higher Education and Science Studies (DZHW GmbH) [www.
dzhw.eu] under the grant FOSTAT Project, Funded by The Federal Ministry of Education and
Research (BMBF), Germany.

References

1. Renear, A.H., Palmer, C.L.: Strategic reading, ontologies, and the future of scientific
publishing. Science 325(5942), 828-832 (2009)

2. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez gene: gene-centered information at
NCBI. Nucleic Acids Res. 33(suppl 1), D54-D58 (2005)

3. Massand, D.: System and method for reflowing content in a structured portable document
format (pdf) file. US Patent App. 12/413,486, 27 March 2009

4. Neyeloft, J.L., Fuchs, S.C., Moreira, L.B.: Meta-analyses and forest plots using a microsoft
excel spreadsheet: step-by-step guide focusing on descriptive data analysis. BMC Res. Notes
5(1), 52 (2012)

5. Dicken, H.: Data Warehouses fiir die Forschungsstatistik. In: HIS (2006)

6. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45-77 (2007)

7. Salminen, A., Jauhiainen, E., Nurmeksela, R.: A life cycle model of XML documents.
J. Assoc. Inf. Sci. Technol. 65(12), 2564-2580 (2014)

8. Zhang, F., Zhang, R.: The research and application of JasperReports in project management
system. In: 2009 IEEE International Workshop on Open-Source Software for Scientific
Computation (OSSC), pp. 56-59. IEEE (2009)

9. Layka, V., Judd, C.M., Nusairat, J.F., Shingler, J.: Beginning Groovy, Grails and Griffon.
Springer, Berlin (2013)

10. Sapre, B.S., Ulhe, P.R., Meshram, B.: Report generation system using JasperReports and
SQL stored procedure. Int. J. Eng. Res. Appl. (IJERA) 2, 984-988

11. Chlouba, T., Kminek, D.: Building open-source based architecture of enterprise applications
for business intelligence

12. Innovent Solutions: Open Source Reporting Review-BIRT, Jaspersoft, Pentaho (2015).
http://www.innoventsolutions.com/open-source-reporting-review-birt-jasper-pentaho.html.
Accessed 20 May 2016

http://www.dzhw.eu
http://www.dzhw.eu
http://www.innoventsolutions.com/open-source-reporting-review-birt-jasper-pentaho.html

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

A Novel Web Publishing System Architecture for Statistics Data 269

Gonzalez, E.J., Hamilton, A., Moreno, L., Mendez, J., Marichal, G., Sigut, J., Sigut, M.,
Felipe, J., et al.: Intelligent agents and apache cocoon for a CV generation system. In:
IEEE/ACS International Conference on Computer Systems and Applications, AICCSA
2007, pp. 9-15. IEEE (2007)

Mazzocchi, S.: Adding XML capabilities with Cocoon. In: ApacheCon Europe (2000)
Introduction apache Cocoon. https://cocoon.apache.org/2.1/introduction.html. Accessed 20
May 2016

Noels, S.: Standards applied: using apache Cocoon and forrest. In: XML Europe (2003)
Singh, A.: Web based system architecture

Mohammed, S., Orabi, A., Fiaidhi, J., Passi, K.: Developing a Web 2.0 restful Cocoon web
services for telemedical education. In: International Symposium on Applications and the
Internet, SAINT 2008, pp. 309-312. IEEE (2008)

Apache Cocoon 2.2.0 released. http://cocoon.apache.org/1445_1_1.html. Accessed 20
May 2016

Eisenblatter, K., Deckarm, H., Scherer, R.: Context-sensitive information spaces for
construction site applications. In: eWork and eBusiness in Architecture, Engineering and
Construction, ECPPM 2006: European Conference on Product and Process Modelling 2006,
Valencia, Spain, 13-15 September 2006, p. 421. CRC Press (2006)

XML developers kit programmers guide. http://docs.oracle.com/cd/B19306_01/appdev.102/
b14252/adx_j_xsqlpub.htm. Accessed 20 May 2016

Melis, E., Siekmann, J.: ActiveMath: an intelligent tutoring system for mathematics. In:
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS
(LNAI), vol. 3070, pp. 91-101. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24844-
6_12

Traffic Accounting System Foundation: Apache AxKit. http://www.axkit.org/. Accessed 20
May 2016

Acampora, G., Loia, V.: A proposal of ubiquitous fuzzy computing for ambient intelligence.
Inf. Sci. 178(3), 631-646 (2008)

Lapa, J., Bernardino, J., Figueiredo, A.: A comparative analysis of open source business
intelligence platforms. In: Proceedings of International Conference on Information Systems
and Design of Communication, pp. 86-92. ACM (2014)

Bitzer, J., Schroder, P.J.: The economics of open source software development: an
introduction. Econ. Open Source Softw. Dev. 1-13 (2006)

Sauer, R.M.: Why develop open-source software? The role of non-pecuniary benefits,
monetary rewards, and open-source licence type. Oxford Rev. Econ. Policy 23(4), 605-619
(2007)

https://cocoon.apache.org/2.1/introduction.html
http://cocoon.apache.org/1445_1_1.html
http://docs.oracle.com/cd/B19306_01/appdev.102/b14252/adx_j_xsqlpub.htm
http://docs.oracle.com/cd/B19306_01/appdev.102/b14252/adx_j_xsqlpub.htm
http://dx.doi.org/10.1007/978-3-540-24844-6_12
http://dx.doi.org/10.1007/978-3-540-24844-6_12
http://www.axkit.org/

	A Novel Web Publishing System Architecture for Statistics Data Using Open Source Technology
	Abstract
	1 Introduction
	2 Research Motivation
	2.1 Requirement of Publishing System

	3 Related Work
	3.1 Apache Cocoon
	3.2 Oracle XSQL Framework
	3.3 Maverick Framework
	3.4 Apache AxKit

	4 Technology and Software Selection
	5 Architecture of the Prototype
	6 Evaluation
	6.1 Design Pattern
	6.2 Document Publishing Format
	6.3 API Upgradetion
	6.4 Form Design
	6.5 Database Persistence
	6.6 Documentation (User Guide)
	6.7 Open Source Technology

	7 Conclusion
	Acknowledgements
	References

