Skip to main content

Mechanical Behavior of Nanowires with High-Order Surface Stress Effects

  • Chapter
  • First Online:
Micromechanics and Nanomechanics of Composite Solids
  • 2258 Accesses

Abstract

Surface in solids could behave differently from their bulk part, especially when the size of the solid is on the nanoscale. It has been widely accepted that the continuum mechanics framework along with a suitable implementation of the surface effect, referred to as surface stress model, could serve as a useful tool in the analysis of mechanical behavior of nanosized solids and structures. Here we review the surface stress model briefly and outline recent progress in application to mechanics of nanosolids or nanocomposites. A refined model, termed high-order surface stress model proposed by the authors few years ago, was recapitulated here, particularly for two-dimensional configurations. The distinction between the two frameworks is highlighted from the viewpoint of a simple geometric exposition of mechanics of thin plate and shell. We demonstrate that, by comparison with experimental data, the incorporation of high-order surface stress could be critical in certain situations to capture the trend observed by the experimental observation. Some illustrations are directed to the mechanics of nanowires, including bending and bulking behavior. Future potential subjects along the trend are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasion, S., Rafsanjani, A., Avazmohammadi, R., Farshidianfar, A.: Free vibration of microscaled Timoshenko beams. Appl. Phys. Lett. 95, 143122 (2009)

    Article  Google Scholar 

  • Andreussi, F., Gurtin, M.E.: On the wrinkling of a free surface. J. Appl. Phys. 48, 3798 (1977)

    Article  Google Scholar 

  • Assadi, A., Farshi, B., Alinia-Ziazi, A.: Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107, 124310 (2010)

    Article  Google Scholar 

  • Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Article  Google Scholar 

  • Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids. 54, 708–734 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Benveniste, Y.: An interface model of a three-dimensional curved interphase in conduction phenomena. Proc. R. Soc. A. 462, 1593–1617 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Benveniste, Y., Baum, G.: An interface model of a graded three-dimensional anisotropic curved interphase. Proc. R. Soc. A. 463, 419–434 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Benveniste, Y., Berdichevsky, O.: On two models of arbitrarily curved three-dimensional thin interphases in elasticity. Int. J. Solids Struct. 47, 1899–1915 (2010)

    Article  MATH  Google Scholar 

  • Bövik, P.: On the modeling of thin interface layers in elastic and acoustic scattering problems. Q. J. Mech. Appl. Math. 47, 17–42 (1994)

    Article  MATH  Google Scholar 

  • Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M.: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature. 393, 146–149 (1998)

    Article  Google Scholar 

  • Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  • Chakraborty, A.: The effect of surface stress on the propagation of Lamb waves. Ultrasonics. 50, 645–649 (2010)

    Article  Google Scholar 

  • Chen, T.: Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles. Mech. Mater. 14, 257–268 (1993)

    Article  Google Scholar 

  • Chen, T., Dvorak, G.J.: Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Appl. Phys. Lett. 88, 211912 (2006)

    Article  Google Scholar 

  • Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interface in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  • Chen, T., Dvorak, G.J., Yu, C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188, 39–54 (2007a)

    Article  MATH  Google Scholar 

  • Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007b)

    Article  MATH  Google Scholar 

  • Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  MATH  Google Scholar 

  • Chen, A.L., Wang, Y.S.: Size-effect on band structures of nanoscale phononic crystals. Physica E. 44, 317–321 (2011)

    Article  Google Scholar 

  • Chen, T., Chiu, M.S.: Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mech. Mater. 43, 212–221 (2011)

    Article  Google Scholar 

  • Chiu, M.S., Chen, T.: Effects of high-order surface stress on static bending behavior of nanowires. Physica E. 44, 714–718 (2011a)

    Article  Google Scholar 

  • Chiu, M.S., Chen, T.: Higher-order surface stress effects on buckling of nanowires under uniaxial compression. Procedia Eng. 10, 397–402 (2011b)

    Article  Google Scholar 

  • Chiu, M.S., Chen, T.: Effects of high-order surface stress on buckling and resonance behavior of nanowires. Acta Mech. 223, 1473–1484 (2012a)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu, M.S., Chen, T.: Timoshenko beam model for buckling of nanowires with high-order surface stresses effects. Adv. Mater. Res. 528, 281–284 (2012b)

    Article  Google Scholar 

  • Chiu, M.S., Chen, T.: Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Physica E. 54, 149–156 (2013)

    Article  Google Scholar 

  • Dai, S., Park, H.S.: Surface effects on the piezoelectricity of ZnO nanowires. J. Mech. Phys. Solids. 61, 385–397 (2013)

    Article  Google Scholar 

  • Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nano-inhomogeneities. Proc. R. Soc. A. 461, 3335–3353 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids. 53, 1574–1596 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  • Duan, H.L., Wang, J., Huang, Z.P., Zhong, Y.: Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. Proc. R. Soc. A. 461, 1055–1080 (2005c)

    Article  MathSciNet  MATH  Google Scholar 

  • Farshi, B., Assadi, A., Alinia-ziazi, A.: Frequency analysis of nanotubes with consideration of surface effects. Appl. Phys. Lett. 96, 093105 (2010)

    Article  Google Scholar 

  • Gao, X.L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbs, J.W.: The Collected Works of J. W. Gibbs, vol. 1. Longman, New York (1928)

    Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Effect of surface stress on wave propagation in solids. J. Appl. Phys. 47, 4414 (1976)

    Article  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  • Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A. 78, 1093–1109 (1998)

    Article  Google Scholar 

  • Hadjesfandiari, A.R.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781–2791 (2013)

    Article  Google Scholar 

  • He, Q.C., Benveniste, Y.: Exactly solvable spherically anisotropic thermoelastic microstructures. J. Mech. Phys. Solids. 52, 2661–2682 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008a)

    Article  Google Scholar 

  • He, J., Lilley, C.M.: Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl. Phys. Lett. 93, 263108 (2008b)

    Article  Google Scholar 

  • He, Q., Lilley, C.M.: Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions. Appl. Phys. Lett. 112, 074322 (2012)

    Google Scholar 

  • Hill, R.: Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour. J. Mech. Phys. Solids 12, 199–212 (1964)

    Google Scholar 

  • Huang, R.: Electrically induced surface instability of a conductive thin film on a dielectric substrate. Appl. Phys. Lett. 87, 151911 (2005)

    Article  Google Scholar 

  • Huck, W.T.S., Bowden, N., Onck, P., Pardoen, T., Hutchinson, J.W., Whitesides, G.M.: Ordering of spontaneously formed buckles on planar surfaces. Langmuir. 16, 3497–3501 (2000)

    Article  Google Scholar 

  • Ji, L.W., Young, S.J., Fang, T.H., Liu, C.H.: Buckling characterization of vertical ZnO nanowires using nanoindentation. Appl. Phys. Lett. 90, 033109 (2007)

    Article  Google Scholar 

  • Jiang, L.Y., Yan, Z.: Timoshenko beam model for static bending of nanowires with surface effects. Physica E. 42, 2274–2279 (2010)

    Article  Google Scholar 

  • Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, X.J., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B. 73, 235409 (2006)

    Article  Google Scholar 

  • Kornev, K.G., Srolovitz, D.J.: Surface stress-driven instabilities of a free film. Appl. Phys. Lett. 85, 2487–2489 (2004)

    Article  Google Scholar 

  • Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  • Kwon, S.J., Lee, H.H.: Theoretical analysis of two-dimensional buckling patterns of thin metal-polymer bilayer on the substrate. J. Appl. Phys. 98, 063526 (2005)

    Article  Google Scholar 

  • Lachut, M.J., Sader, J.E.: Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007)

    Article  Google Scholar 

  • Laplace, P.S.: Traite de mechanique celeste; supplements au Livre X. Euvres Complete Vol. 4. Gauthier-Villars, Paris (1806)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanic, 2nd edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Li, Y., Fang, B., Zhang, J., Song, J.: Surface effects on the wrinkling of piezoelectric films on compliant substrates. J. Appl. Phys. 110, 114303 (2011)

    Article  Google Scholar 

  • Li, Y.D., Lee, K.Y.: Size-dependent behavior of Love wave propagation in a nanocoating. Mod. Phys. Lett. B. 24, 3015–3023 (2010)

    Article  MATH  Google Scholar 

  • Liu, W., Chen, J.W., Liu, Y.Q., Su, X.Y.: Effect of interface/surface stress on the elastic wave band structure of two-dimensional phononic crystals. Phys. Lett. A. 376, 605–609 (2012)

    Article  Google Scholar 

  • Liu, H., Liu, H., Yang, J.: Surface effects on the propagation of shear horizontal waves in thin films with nano-scalethickness. Physica E. 49, 13–17 (2013)

    Article  Google Scholar 

  • Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 11, 139–147 (2000)

    Article  Google Scholar 

  • Murdoch, A.I.: The propagation of surface waves in bodies with material boundaries. J. Mech. Phys. Solids. 24, 137–146 (1976)

    Article  MATH  Google Scholar 

  • Ni, H., Li, X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology. 17, 3591–3597 (2006)

    Article  Google Scholar 

  • Nix, W.D., Gao, H.: An atomistic interpretation of interface stress. Scr. Mater. 39, 1653–1661 (1998)

    Article  Google Scholar 

  • Ou, Z.Y., Lee, D.W.: Effects of interface energy on scattering of plane elastic wave by a nano-sized coated fiber. J. Sound Vib. 331, 5623–5643 (2012)

    Article  Google Scholar 

  • Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids. 41, 1499–1514 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Quang, H.L., He, Q.C.: Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. J. Mech. Phys. Solids. 55, 1889–1921 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Quang, H.L., He, Q.C.: Estimation of the effective thermoelastic moduli of fibrous nanocomposites with cylindrically anisotropic phases. Arch. Appl. Mech. 79, 225–248 (2009)

    Article  MATH  Google Scholar 

  • Ru, C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China. 53, 536–544 (2010)

    Google Scholar 

  • Ru, Y., Wang, G.F., Su, L.C., Wang, T.J.: Scattering of vertical shear waves by a cluster of nanosized cylindrical holes with surface effect. Acta Mech. 224, 935–944 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Samaei, A.T., Bakhtiari, M., Wang, G.F.: Timoshenko beam model for buckling of piezoelectric nanowires with surface effects. Nanoscale Res. Lett. 7, 201 (2012)

    Article  Google Scholar 

  • Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  • Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  MATH  Google Scholar 

  • Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. A. 63, 444–457 (1950)

    Article  Google Scholar 

  • Song, J., Wang, X., Riedo, E., Wang, Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954–1958 (2005)

    Article  Google Scholar 

  • Spaepen, F.: Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000)

    Article  Google Scholar 

  • Ting, T.C.T.: Mechanics of a thin anisotropic elastic layer and a layer that is bonded to an anisotropic elastic body or bodies. Proc. R. Soc. A. 463, 2223–2239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, New York (1961)

    Google Scholar 

  • Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  • Thomson, R., Chuang, T.J., Lin, I.H.: The role of surface stress in fracture. Acat Metall. 34, 1133–1143 (1986)

    Article  Google Scholar 

  • Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng.: Rep. 64, 33–71 (2009)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009a)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D: Appl. Phys. 42, 155411 (2009b)

    Article  Google Scholar 

  • Wang, G.F., Feng, X.Q.: Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhys. Lett. 91, 56007 (2010)

    Article  Google Scholar 

  • Wang, D.H., Wang, G.F.: Surface effects on the vibration and buckling of double-nanobeam-systems. J. Nanomater. 2011, 518706 (2011)

    Google Scholar 

  • Wang, G.F., Yang, F.: Postbuckling analysis of nanowires with surface effects. J. Appl. Phys. 109, 063535 (2011)

    Article  Google Scholar 

  • Weng, C.N., Chen, T.: General interface conditions in surface elasticity of nanoscaled solids in general curvilinear coordinates. J. Mech. 26, 81–86 (2010). doi:10.1017/S1727719100003749

    Article  Google Scholar 

  • Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222, 59–67 (2011)

    Article  MATH  Google Scholar 

  • Xiao, J.H., Xu, Y.L., Zhang, F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology. 22, 245703 (2011a)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. J. Phys. D: Appl. Phys. 44, 075404 (2011b)

    Article  Google Scholar 

  • Yan, Z., Jiang, L.Y.: Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints. Proc. R. Soc. A. 468, 3458–3475 (2012)

    Article  MathSciNet  Google Scholar 

  • Young, T.: Phil.: an essay on the cohesion of fluid. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  • Young, S.J., Ji, L.W., Chang, S.J., Fang, T.H., Hsueh, T.J., Meen, T.H., Chen, I.C.: Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO: Ga/glass templates. Nanotechnology. 18, 225603 (2007)

    Article  Google Scholar 

  • Zhang, Y., Zhuo, L.J., Zhao, H.S.: Determining the effects of surface elasticity and surface stress by measuring the shifts of resonant frequencies. Proc. R. Soc. A. 469, 20130449 (2013)

    Article  MATH  Google Scholar 

  • Zhen, N., Wang, Y.S., Zhang, C.Z.: Surface/interface effect on band structures of nanosized phononic crystals. Mech. Res. Commun. 46, 81–89 (2012)

    Article  Google Scholar 

  • Zhou, L.G., Huang, H.C.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84, 1940–1942 (2004)

    Article  Google Scholar 

  • Zhu, Y., Xu, F., Qin, Q., Fung, W.Y., Lu, W.: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 9, 3934–3939 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan, under grant MOST 104-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tungyang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Chiu, MS., Chen, T. (2018). Mechanical Behavior of Nanowires with High-Order Surface Stress Effects. In: Meguid, S., Weng, G. (eds) Micromechanics and Nanomechanics of Composite Solids. Springer, Cham. https://doi.org/10.1007/978-3-319-52794-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52794-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52793-2

  • Online ISBN: 978-3-319-52794-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics