
Chapter 5
Mechanical Behavior of Nanowires
with High-Order Surface Stress Effects

Min-Sen Chiu and Tungyang Chen

Abstract Surface in solids could behave differently from their bulk part, especially
when the size of the solid is on the nanoscale. It has been widely accepted that
the continuum mechanics framework along with a suitable implementation of the
surface effect, referred to as surface stress model, could serve as a useful tool in
the analysis of mechanical behavior of nanosized solids and structures. Here we
review the surface stress model briefly and outline recent progress in application to
mechanics of nanosolids or nanocomposites. A refined model, termed high-order
surface stress model proposed by the authors few years ago, was recapitulated here,
particularly for two-dimensional configurations. The distinction between the two
frameworks is highlighted from the viewpoint of a simple geometric exposition
of mechanics of thin plate and shell. We demonstrate that, by comparison with
experimental data, the incorporation of high-order surface stress could be critical
in certain situations to capture the trend observed by the experimental observation.
Some illustrations are directed to the mechanics of nanowires, including bending
and bulking behavior. Future potential subjects along the trend are suggested.

5.1 Introduction

For nanostructures or nanoscaled solids, due to their large specific surface-to-
volume ratio, surface effects play an important role on the size-dependent physical
properties. The subject of surface elasticity, incorporating surface stress effects,
has received considerable attention in the last decade. This effect is particularly
important for nanosized solids and composites in that they possess large specific
surface area. The concept of surface tension in fluids dates back to more than about
two centuries ago by the celebrated Young-Laplace (YL) equation (Young 1805;
Laplace 1806). Surface tension in fluids is defined as a force per unit length along
the perimeter of the interface. Surface stress in solids seems to be first introduced
by Gibbs (1928), which is defined through the change in excess free energy when
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the interface is deformed at constant referential area. In contrast to fluids, surface
stress may not be isotropic and may depend on the crystallographic parameters
of the solids jointed at the interface. This stress is caused by the differences in
configuration and in coordination numbers between atoms at the surface and in
the bulk. In addition to surface of the domain boundary, surface effects also exist
in interfaces between different regions, such as inclusions and the surrounding
matrix. Interface stress is also playing the same role as that of surface stress.
Using an atomistic calculation analysis, Zhou and Huang (2004) demonstrated that
a solid surface can be either elastically softer or stiffer than their bulk counterparts.
This surface effect phenomenon has been studied in different disciplines, ranging
from material science, physical chemistry, to continuum mechanics (e.g., Nix and
Gao 1998; Miller and Shenoy 2000; Thomson et al. 1986; Spaepen 2000; Duan
et al. 2005a, b, c; Chen and Dvorak 2006). The aim of this chapter is to give an
introductory exposition of the subject and to summarize our recent proposition for
the high-order surface stress model, with potential applications in various problems
of nanosized solid and composites.

Specifically, we see in this chapter how the high-order surface stress model will
influence the solutions significantly for certain boundary value problems. The size-
dependent mechanical behavior of nanowires (NWs) will be demonstrated. The
difference between the calculations based on the high-order surface stress model
and the Gurtin-Murdoch model can be seen remarkably, especially when the scale
is in a few nanometers. This framework provides a simple continuum mechanics
approach, in place of atomistic analysis or experiments, to analyze the mechanical
behavior of nanostructures in a refined manner.

5.2 Surface Stresses in Mathematical Descriptions

It is generally thought that the surface stress tensor, � s
˛ˇ , is connected to the

deformation-dependent surface energy by the relation � s
˛ˇ D �0ı˛ˇ C @G=@"s

˛ˇ

(Shuttleworth 1950; Cammarata 1994). �0 and "s
˛ˇ denote the constant residual

surface tension and the strain tensor for surfaces, respectively, and ı˛ˇ is the
Kronecker delta for surfaces. The Greek indices take on values of interfacial
components, taking the numbers of 1–2, while the Latin index numbers indicated
later will range from 1 to 3. The index 3 will designate the normal direction
of the interface. The interface stresses can be written as a linear constitutive
law, � s

˛ˇ D �0ı˛ˇ C L˛ˇ�ı"
s
�ı (Miller and Shenoy 2000), in which L˛ˇ�ı stands

for the surface stiffness tensor. Considering isotropic surface property, the linear
relationship between surface stress tensor � s

˛ˇ and surface strain field can be
written in the form (Gurtin and Murdoch 1975, 1978; Assadi et al. 2010) � s

˛ˇ D
�0ı˛ˇC�

�s � �0
� �

us
˛;ˇ C us

ˇ;˛

�
C �

�s C �0
�

us
�;� ı˛ˇC�0us

˛;ˇ . In the exposition, us
˛

are the displacement components of the surface, while �s and �s are surface Lame
constants. The effect of residual tension �0 is not associated with the deformation
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and is sometimes ignored in some relevant studies. For example, Sharma et al.
(2003) investigated the elastic state of eigenstrained spherical inhomogeneities
with surface effects and interpreted the concentration factor as a function of
surface properties and void radius. Sharma and Ganti (2004) presented closed-
form expressions of the modified Eshelby’s tensor for spherical and cylindrical
inclusions incorporating surface effects. Nix and Gao (1998) employed a simple
spring model to calculate the excess free energy of interface atoms. They pointed
out that this microscopic model is in complete accord with the classical macroscopic
interpretation for interface stresses (i.e., � s

˛ˇ D �0ı˛ˇ C @G=@"s
˛ˇ). Gurtin and

Murdoch (1975), in their 1975 paper, derived a mathematical framework for an
interface between two different solids with interface stresses using the classical
membrane theory (see also Gurtin and Murdoch 1978; Landau and Lifshitz 1987;
Povstenko 1993; Gurtin et al. 1998; Chen et al. 2006; Ru 2010 for subsequent
developments). In the formulation, a surface is assumed to ideally adhere to its
counterpart bulk and modeled as a layer of vanishing thickness. This condition
was referred to as the generalized Young-Laplace (generalized YL) equation in
distinction with its counterpart in fluids. Chen et al. (2006) presented a simple
geometrical exposition for the generalized YL equations, which provide a better
description on the underlying physical meaning of the YL equation in solids. This
approach is based on the notion that the interface stresses can be modeled as in-
plane stresses along the tangential planes of the curved surface and the stress vectors
on the top and lower faces of the curved surfaces are contributed from its three-
dimensional bulk neighborhood. The generalized YL equations were also derived
with generally curvilinear coordinates (Weng and Chen 2010), which are better
suited for descriptions of some nanostructures, such as nanotubes, in which the grids
are not orthonormal.

The modeling of surface/interface stress can be simulated by introducing a
vanishingly thin interphase layer between two different regions with relatively high
stiffness compared with the adjacent phases. A general rigorous approach is to
resolve the elasticity solution for a three-phase configuration and then deduce to
a two-phase one through a deliberated asymptotic process. A schematic illustration
of the approach is demonstrated in Fig. 5.1. This approach allows us to effectively
replace the effect of the thin interphase by equivalent interface conditions without
having to resolve the fields within the interphase. Benveniste and Miloh (2001)
examined the effects of imperfect soft and stiff interfaces in two-dimensional
elasticity. Based on an asymptotic analysis, they showed that, depending on the
softness or stiffness of the interphase layer with respect to the neighboring media,
there exist seven regimes of interface conditions.

Other derivations can be found in Benveniste (2006a, b) for a three-dimensional
thin interphase with anisotropic properties in elasticity as well as higher-order
effects in conduction phenomenon. However, all these developments, based on
rigorous asymptotic analysis, are indeed mathematically complicated. In summary,
the conventional surface stress model is generally referred to as “generalized Young-
Laplace (YL) equation,” “Gurtin-Murdoch model,” or “an O(hN) interface model
with N D 1” (Benveniste 2006a, b), i.e., “first-order interface condition” where h is
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Fig. 5.1 Surface stress along the interface can be modeled by a thin interphase degenerated into
an infinitesimal thickness

the thickness of the interphase layer. Interface or surface stresses incorporating high-
order effects may be designated as “an O(hN) interface model with N > 2” in which
N is an integer. Other relevant researches in this category include Shuttleworth
(1950), Bövik (1994), Benveniste and Baum (2007), Ting (2007), and Benveniste
and Berdichevsky (2010).

In the following, we introduce some analysis and other aspects of applications
related to one-dimensional mechanics problems within the generalized YL model.
Nanowires are typical and important nanostructures in sensors, actuators, opto-
electronics, and nanoelectromechanical systems (Wang 2009). The size-dependent
overall mechanical behavior of NWs has been experimentally observed (Song et
al. 2005; Jing et al. 2006; Ni and Li 2006; Ji et al. 2007; Young et al. 2007;
Zhu et al. 2009) and theoretically demonstrated based on the Gurtin-Murdoch
model (Wang and Feng 2007; He and Lilley 2008a, b; Wang and Feng 2009a, b;
Abbasion et al. 2009; Wang and Feng 2010; Jiang and Yan 2010; Farshi et al.
2010; Wang and Yang 2011; Wang and Wang 2011; Yan and Jiang 2011a, b; He
and Lilley 2012; Samaei et al. 2012; Zhang et al. 2013; Gao 2015). Considering
the first-order interface condition, the stress jump

�
� ij across an interface surface

is associated with the curvature tensor �˛ˇ of the surface by the relationship
4�ijninj D � s

˛ˇ�˛ˇ (i,j D 1 , 2 , 3; ˛ , ˇ D 1 , 2) in which ni is the unit vector
normal to the interface surface and � s

˛ˇ is the interface (surface) stress tensor. In one-

dimensional problems, the surface constitutive relation � s
˛ˇ D �0

˛ˇ CS˛ˇ�ı"
s
˛ˇ can be

simplified as � s D �0 C Es"
s within the framework of Gurtin-Murdoch model, where

� s is the surface stress, "s is the surface strain, Es is the effective surface Young’s
modulus, and �0 is the constant residual surface tension. For the developments in
this line, Wang and Feng (2007) examined the natural frequency of microbeams
with surface effect. Wang and Feng (2009a) derived the analytical relation for the
axial buckling force of a nanowire under consideration of surface elasticity and
residual surface tension effects. The dependence of the surface effects on the overall
Young’s modulus of bending nanowires in static and resonance has been studied
by He and Lilley (2008a, b) for three different boundary conditions. In addition
to Euler-Bernoulli beam theory, Timoshenko beam model has also been utilized to
investigate the surface effects on the buckling (Wang and Feng 2009b) and free
vibration behavior of a nanowire (Wang and Feng 2009b; Abbasion et al. 2009).
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Recently, Jiang and Yan (2010) derived explicit solutions for studying the combined
effects of shear deformation, surface elasticity, and residual surface tension on
the effective stiffness via Timoshenko beam theory as well. It was found that the
derivations in some of the above-mentioned one-dimensional researches agree with
the experimental measurements well (Lachut and Sader 2007).

5.3 High-Order Surface Stresses in Two-Dimensional
Configuration

A refined surface stress model, referred to as high-order surface stress model, was
recently proposed by the authors (Chen and Chiu 2011). A schematic diagram for
the difference between the higher-order interface stress model and the conventional
surface stress model is illustrated in Fig. 5.2. For convenience, the concept is
illustrated for a two-dimensional configuration. For the conventional surface stress
model, only the in-plane surface/interface stress � s

˛ is considered in the force
balance consideration. While for the high-order surface stress model, in addition
to in-plane surface/interface stress � s

˛ , the surface moment ms
˛ is considered at the

same time. The surface moment can be viewed as the effect of nonuniformity of the
in-plane surface/interface stress across the thickness h1 of the interphase (Fig. 5.2).
The approach to introduce � s

˛ and ms
˛ into the continuum framework is somewhat

akin to the classical theories of beams, thin plates, and shells. As shown in Fig. 5.2,

Fig. 5.2 A schematic illustration of two different surface stress models in two-dimensional
configurations: high-order surface stress model and Gurtin-Murdoch model
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the stresses �˛ along the in-plane direction (˛-direction) of the layer are replaced
by statically equivalent stress resultants and stress moments through the relations
� s

˛ D R h1=2

�h1=2
�˛˛ d� , ms

˛ D R h1=2

�h1=2
�˛˛� d� , and then they are interpreted as surface

stress � s
˛ and surface moment ms

˛ , respectively. Of course, when only the in-place
surface stress is considered and the effect of ms

˛ is omitted from the beginning, this
will reduce to the conventional surface stress model based on the membrane theory
(generalized YL equation) (Chen et al. 2006).

For the kinematic deformation of the infinitesimally thin layer, based on the
Kirchhoff-Love theory of thin shell, the relations were constructed as � s

˛ D Es"
0
˛ ,

ms
˛ D �Ds�

0
˛ . We mention that "0

˛ and �0
˛ are, respectively, the strain and the change

in curvature on the middle surface of the thin layer. Es is the surface Young’s
modulus, defined as Es D Ech1/(1 � �c

2) here. It is equivalent to the material
parameters �s C 2�s defined in Chen et al. (2007a, b). Note that h1, Ec, and �c are the
thickness, Young’s modulus, and Poisson’s ratio of the thin layer, respectively. On
the other hand, Ds is the flexure rigidity of the thin surface/interface layer, defined
as Ds D Ech3

1=12=
�
1 � �c

2
�
.

When the thin layer has a high stiffness compared to its neighboring phases,
the effective behavior of the layer can be viewed as a stiff interface. When the
stiffness of the thin layer is with magnitudes of high orders O(h�N), various kinds
of interface conditions can be developed. In addition to the continuity condition for

the displacements, u.i/
˛

ˇ̌
ˇ
	

D u.m/
˛

ˇ̌
ˇ
	

and u.f /
�

ˇ̌
ˇ
	

D u.m/
�

ˇ̌
ˇ
	

, the jump conditions in

traction would characterize different degrees of stiff interfaces. These include four
types of interface conditions (Benveniste and Miloh 2001; Chen and Chiu 2011).

I. Perfectly bonded interfaces

�
��˛

�
	

D �
���

�
	

D 0: (5.1)

II. Membrane type interface (the generalized YL equation)

�
��˛

�
	

D �
�

@� s
˛

@s

	

	

;
�
���

�
	

D �
�

� s
˛
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: (5.2)

III. Inextensible membrane type

"0
˛ D @u0

˛

@s � u0
�

R

ˇ̌
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D 0;
�
��˛

�
	

� @
@s

˚
R

�
���

�
	


 D 0:

(5.3)

IV. Inextensible classical shell type

"0
˛ D @u0

˛

@s � u0
�

R

ˇ̌
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D 0;

�
��˛
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˚
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We mention that Type I is the classical perfectly bonded condition and Type II
is the conventional surface stress model, or the so-called Gurtin-Murdoch model.
Types III and IV represent the stiff interface deduced from the high-order surface
stress. It is noted that the inextensible condition "0

˛ D 0 exists in both Type III and
IV. These four kinds of interface conditions demonstrate the mathematical behavior
of thin interphase layer between two neighboring media

Benveniste and Miloh (2001) derived the generalized interface conditions using
an asymptotic expansion method. With the rigorous approach, Types I–IV here and
the rigid type interface condition are termed stiff interfaces. In addition, they also
derived two different types of soft interfaces.

5.3.1 Boundary Value Problem: A Circular Inclusion
in an Infinite Matrix

We now illustrate the high-order surface effect by considering the boundary
value problem of a circular inclusion in an infinite matrix under a transverse
shear deformation applied at the remote boundary. The effect of high-order sur-
face stresses is compared with that of simple surface stress model to exemplify
the significance of high-order effects in certain situations. We will also see
that the surface stress model and the high-order surface stress model both will
have size-dependent behavior, depending on the geometric size of the inclusion.
In Fig. 5.3, we suppose that the radius of the circular fiber is denoted by a. The
effects of various types of interface conditions described in Eqs. (5.1)–(5.4) will be
considered along the interface between the fiber and the matrix. It was noted that for
high-order interface stresses, namely, Types III and IV, the “inextensible” interface
condition needs to prevail (Chen and Chiu 2011). Thus, only the asymmetric
deformation mode will be considered to examine the effect of high-order interface

matrix

a
r

O
θ

surface layer

Fig. 5.3 Schematic illustration of a composite medium composed of the matrix containing circular
cavity with radius a under the surface effects resulting from thin surface layer
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stresses. The circular cylindrical coordinate is adapted within the mathematical
continuum framework. The coordinate variables in Eqs. (5.1)–(5.4) are replaced
with ˛ D 
 and � D r. Also, in the substitutions of @s D r@
 and 1/R D � 1/r, we
can obtain the corresponding interface conditions in circular cylindrical coordinate
for the present boundary value problem.

As an illustration for high-order interface stress effects, the configuration of a
circular cavity in an unbounded isotropic matrix subjected to a remote transverse
shear �m

x

ˇ̌
r!1 D ��m

y

ˇ̌
r!1 D �0 was studied by Chen and Chiu (2011). The

stress concentration factor around the cavity surface was examined. The concen-
tration factor is defined as the ratio of hoop stress on the cavity surface versus the
applied stress �0 for the four different types of interfaces. The results were derived
in explicit closed forms as

Type I W �


�0

ˇ
ˇ̌
r!a

D �4 cos 2
; (5.5)

Type II W �


�0

ˇ̌
ˇ
r!a

D � 4km C .Es=a/ .k � m/

km C .Es=2a/ .2k C m/
cos 2
; (5.6)

Type III W �


�0

ˇ̌
ˇ
r!a

D �2 .k � m/

2k C m
cos 2
; (5.7)

Type IV W �


�0

ˇ̌
ˇ
r!a

D �2m .k � m/ C 12
�
Ds=a3

�
.k � m/

m .2k C m/ C 6 .Ds=a3/ .k C 2m/
cos 2
: (5.8)

We mention that the stress concentration factor for Type I is exactly the result
of perfectly bonded interface given in Timoshenko and Goodier (1970) and that
of Type II is identical with the surface stress model previously derived by Chen
et al. (2007a). When letting Es/a ! 0 in (5.6), Eq. (5.6) for Type II will reduce
to the classical elasticity solution with a concentration factor of �4. On the other
hand, when Es/a is a relatively large quantity compared with the orders of k and m,
then the concentration factor of Eq. (5.6) will approach to Eq. (5.7) for Type III. In
addition, in Eq. (5.8), when one has Ds/a3 ! 0, the concentration factor will reduce
to that of Eq. (5.7) for Type III. Also, when Ds/a3 is a large quantity compared with
other terms in the numerator and denominator of Eq. (5.8), the expression of Eq.
(5.8) will reduce to the result of an infinite medium containing a rigid inclusion.
We mention that these four types of interface conditions characterize the degree of
“stiffness” from the ideal situation (Type I) to the nearly rigid interface (Type IV) in
a successive manner (Chen and Chiu 2011).

The stress concentration factor for stress components � r and � r
 of an infinite
medium containing a circular cavity under different types of interface conditions
can also be derived as
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Type I W �r

�0

ˇ̌
ˇ
r!a

D 0; (5.9)

Type II W �r

�0

ˇ̌
ˇ
r!a

D � .Es=a/ .k C m/

km C .Es=2a/ .2k C m/
cos 2
; (5.10)

Type III W �r

�0

ˇ̌
ˇ
r!a

D �2 .k C m/

2k C m
cos 2
; (5.11)

Type IV W �r

�0

ˇ̌
ˇ
r!a

D �2m .k C m/ C 12
�
Ds=a3

�
.k C m/

m .2k C m/ C 6 .Ds=a3/ .k C 2m/
cos 2
; (5.12)

rigid inclusion W �r

�0

ˇ̌
ˇ
r!a

D 2 .k C m/

k C 2m
cos 2
; (5.13)

for the radial stress � r and

Type I W �r


�0

ˇ̌
ˇ
r!a

D 0; (5.14)

Type II W �r


�0

ˇ̌
ˇ
r!a

D � 2 .Es=a/ .k C m/

km C .Es=2a/ .2k C m/
sin 2
; (5.15)

Type III W �r


�0

ˇ̌
ˇ
r!a

D �4 .k C m/

2k C m
sin 2
; (5.16)

Type IV W �r


�0

ˇ̌
ˇ
r!a

D �4m .k C m/ C 12
�
Ds=a3

�
.k C m/

m .2k C m/ C 6 .Ds=a3/ .k C 2m/
sin 2
; (5.17)

rigid inclusion W �r


�0

ˇ̌
ˇ
r!a

D �2 .k C m/

k C 2m
sin 2
; (5.18)

for the shear stress � r
 . As in the hoop stress �
 , we see that Eqs. (5.9)–(5.13) for � r

and Eqs. (5.14)–(5.18) for � r
 also show that these four types of interface conditions
characterize the degree of “stiffness” from the ideal situation (Type I) to the nearly
rigid interface (Type IV) in a successive manner. Note that here km and mm have
been written simply by k and m for simplicity.

5.4 High-Order Surface Stresses in Nanowires

In this section, we present the high-order surface stress effect on the mechanical
behavior of nanowires. Specifically, the high-order surface stress model developed
in Sect. 5.3 was implemented for the static bending and buckling behavior of NWs.
In line with the previous related references (Wang and Feng 2007; He and Lilley
2008a, b; Wang and Feng 2009a, b), the effect of surface elasticity as well as the
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Fig. 5.4 Cross sections of
circular and rectangular
nanowires with a surface
layer and bending in the x - y
plane with equivalent
distributed transverse load
q(x) resulting from surface
moments as well as in-plane
surface stresses
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effect of residual surface tension will be examined. We compare the present results
with previous studies based on the Gurtin-Murdoch model and with the existing
experimental data. It is demonstrated that the high-order surface stress effect can be
significantly pronounced when the dimension is in a few nanometers.

5.4.1 Mechanical Behavior of NWs Based on Euler-Bernoulli
Beam Theory

In the consideration of residual surface tension �0, the linear relations between
the surface stress and strain and between the surface moment and curvature can
be expressed as � s

˛ D �0 C Es"
0
˛ and ms

˛ D �Ds�
0
˛ . We mention that Es is

the surface Young’s modulus with the dimensions of N/m and Ds is the surface
bending stiffness with the dimensions of Nm. Two different cross-sectional shapes,
rectangular and circular cross sections, of NWs were considered (Fig. 5.4). The
effect of surface stress, based on the Gurtin-Murdoch model, was simulated by an
equivalent distributed transverse force q(x) that acts on the NW in bending (Wang
and Feng 2007).

Here, the stress jump for high-order surface stress effect also results in a dis-
tributed transverse force (Chiu and Chen 2011a). But the surface stress and surface
moment will contribute to different terms in the governing differential equation.
For bending NWs in the y direction under small deformation with v being the NW
transverse displacement (Fig. 5.4), the distributed transverse load for NWs with the
high-order surface stress effect could be derived as q.x/ D Hv00 � Kv.4/(Chiu and
Chen 2011a), where v00 D d2v=dx2 and v.4/ D d4v=dx4. The definitions of H and
K can be found in Equation (9) of Chiu and Chen (2011a). For a deformed NW
subjected to a compressive force P acting in the longitudinal x direction (Fig. 5.4),
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the jump condition resulting from high-order surface stress effect will also give
rise to a distributed transverse load q(x) along the NW longitudinal direction. The
governing equations based on the high-order surface stress model can be derived as

�
.EI/� C K

� d4v

dx4
� H0

d2v

dx2
D 0 (5.19)

for static bending (Chiu and Chen 2011a) and

�
.EI/� C K

� d4v

dx4
C .P � H0/

d2v

dx2
D 0: (5.20)

for buckling (Chiu and Chen 2012a). We mention that when neglecting the high-
order effect (i.e., K D 0), the governing equations in Eqs. (5.19) and (5.20) can
be reduced to the corresponding case of static bending (He and Lilley 2008a) and
buckling (Wang and Feng 2009a) based on the Gurtin-Murdoch model. Also, when
neglecting the surface stress effects (i.e., K D H0 D 0), the results will recover the
governing equation of classical beam-column theory (Timoshenko and Gere 1961).

5.4.2 Mechanical Behavior of NWs Based on Timoshenko
Beam Theory

In this section, we will examine the Timoshenko beam (TB) theory incorporating
the high-order surface stress effect, in which the shearing deformation could be
taken into account. Based on Timoshenko beam theory, the researchers showed
that the effect of surface stress within the Gurtin-Murdoch model on the static
bending (Jiang and Yan 2010) and buckling (Wang and Feng 2009b) behavior of
NWs. Continuing their investigations, the size-dependent buckling (Chiu and Chen
2012b) and static bending (Chiu and Chen 2013) behaviors for NWs based on the
high-order surface stress model have been studied. For demonstrations, we record
the nondimensional critical compression force (Chiu and Chen 2012b)

Pcr

P0
cr

D ƒ

�
1 C 6Es

Eh
C 2Es

Ew
C 24Ds

Eh3

	
C 24

��2

�0

Eh

�
L

h

	2

; (5.21)

for rectangular sections,

Pcr

P0
cr

D ƒ

�
1 C 8Es

Ed
C 128Ds

�Ed3

	
C 128

��3

�0

Ed

�
L

d

	2

; (5.22)

for circular sections, and the size-dependent effective Young’s modulus Eeff, based
on TB theory was found as
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Eeff D ƒ
�
.EI/� C K

�

I
C H0L2

��2I
: (5.23)

Here the definition of the nondimensional parameter ƒ is (Chiu and Chen 2012b)

ƒ � ˛sGA

˛sGA C � .�2=L2/
�
.EI/� C K

� ; (5.24)

where G is the shear modulus, A is the cross-sectional area of NWs, and � is a
constant depending on the boundary conditions. It is noted that when neglecting
shear deformation (G ! 1) and thus the parameter ƒ ! 1, Eqs. (5.21)–(5.23) will
recover the corresponding results of NWs accounting for the high-order surface
stress effects based on Euler-Bernoulli beam (EB) theory.

5.5 Results and Discussion

5.5.1 The Stress Concentration Factor for a Circular Cavity
in an Infinite Matrix

In numerical illustrations, we present analytic solutions for the stress concentration
factor in Sect. 5.3. Figure 5.5 shows the maximum value of stress concentration
factor for hoop stress �
 for different types of interfaces versus the radius a of cavity.
Note that the scale of y-axis in the curves of Type I and Type II is different from that
of Type III, Type IV, and rigid inclusion. The matrix material is assumed aluminums
with the isotropic bulk modulus K D 75.2GPa and shear modulus � D 34.7GPa
(Duan et al. 2005b). Note that the relations between elastic constants (K, �) and
Hill’s moduli (k, m) are k D K C �/3 and m D � (Hill 1964).

In Figs. 5.6 and 5.7, we also present the maximum value of stress concentration
factor for radial stress � r and shear stress � r
 shown in Sect. 5.3 versus the radius a
of cavities under different types of interfaces. For the numerical calculations in Figs.
5.5, 5.6, and 5.7, the surface material properties for Type II interface conditions
on the basis of Gurtin-Murdoch model are considered in two kinds of different
free surface properties, Es D � 8.9465 N/m for surface A and Es D 6.091 N/m for
surface B (Chen et al. 2007a).

For the material parameter Ds of Type IV interface condition which accounts for
the high-order surface stress effect, as explained in Chen and Chiu (2011), moderate
and reasonable estimated values ranging from 102 � (10�18Nm) to 104 � (10�18Nm)
are adapted for the numerical illustrations.

In Fig. 5.5, we have checked that the numerical results for Type II are the same
as that of Chen et al. (2007a), which utilized the Gurtin-Murdoch model based on
the variational method to solve this problem. Obviously, we see that the maximum
value is size dependent for Type II and Type IV, but not for Type I and Type III. It is



5 Mechanical Behavior of Nanowires with High-Order Surface Stress Effects 169

Fig. 5.5 Maximum value of
stress concentration factor for
hoop stress �
 in different
types of interfaces versus the
radius a of cavities
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interesting to note that the size-dependent behavior for cavity with larger diameter
(say a > 15 nm) would be still pronounced with the incorporation of high-order
surface stress effect (Type IV), while the Type II interface condition has become
nearly no size effect.

5.5.2 Mechanical Behavior of NWs

Figure 5.8 shows the size-dependent effective Young’s modulus Eeff numerically.
The calculation is based on EB theory incorporating the high-order surface stress
effects within the buckling analysis (Chiu and Chen 2012a). We see that the
numerical prediction by the theoretical calculation based on the Gurtin-Murdoch
model will not be able to capture the general trend of the experimental data,
especially when d � 40 nm. In contrast, the high-order surface stress model will
produce a good agreement with the experimental data. This comparison with the
experimental data suggests that the effect of surface moments could be crucial in the
modeling for mechanical behavior of NWs. In Fig. 5.8, the experimental sample was
silicon NWs with fixed-fixed end conditions (Zhu et al. 2009). The surface Young’s
modulus and residual surface tension were adapted as EsD�10.655N/m and
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Fig. 5.6 Maximum value of
stress concentration factor for
stress component � r in
different types of interfaces
versus the radius a of cavity
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�0D0.6056N/m, respectively (Miller and Shenoy 2000). The high-order material
parameter Ds was selected as DsD�7 � 104 � (10�18Nm), which has been examined
by Chiu and Chen (2012a).

In Fig. 5.9, we demonstrate that the shear deformation of larger NWs, accounting
for the framework of TB theory, should not be underestimated. Under the consider-
ation of high-order surface stresses, the size-dependent effective Young’s modulus
Eeff was theoretically resolved on the basis of static bending analysis (Chiu and
Chen 2013). Figure 5.9 presents the numerical solutions of Eeff versus the diameter
d for circular NWs. The experimental data in Fig. 5.9 was adapted from Jing et
al. (2006), in which fixed-fixed silver NWs were used for observation. We see that
when the diameter increases, the solutions considering the shearing effect based
on TB theory within the high-order surface stress model will predict more accurate
results in comparison with the experimental data than those by EB theory, especially
when d�70 nm. We mention that the material parameter of high-order effect is used
as DsD5 � 104 � (10�18Nm), which was numerically examined by Chiu and Chen
(2013).
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Fig. 5.7 Maximum value of
stress concentration factor for
stress component � r
 in
different types of interfaces
versus the radius a of cavity

≈0
max

r

r a

θs
s

0 2 4 6 8 10 12 14 16 18 20

a (nm)

0
0.5
1

1.5
2

2.5
3

3.5

4

1.4
1.5
1.6
1.7
1.8
1.9
2

2.1
2.2
2.3
2.4

Type II (surface A)

Type II (surface B)

Type III

Type I

Type IV
(D=105)

(D=103)

(D=102)
Type IV

Type IV

rigid inclusion

Fig. 5.8 The size-dependent
effective Young’s moduli
based on the high-order
surface stress model and
Gurtin-Murdoch model with
respect to the diameter d of
circular NWs
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Fig. 5.9 The difference among three continuum frameworks for the predictions on size depen-
dence of effective Young’s modulus. Note that TB theory signifies Timoshenko beam theory and
EB theory denotes Euler-Bernoulli beam theory

5.6 Conclusions

In this chapter, we have introduced the high-order surface stress model for two-
dimensional configurations. Analogous to the classical thin shell theory, this con-
tinuum theoretical framework incorporates the in-plane stresses as well as surface
moments. The surface moments result in high-order surface effects. We mention that
present approach to construct the high-order interface/surface conditions through
the classical continuum mechanics and graphical interpretation is mathematically
simple. The formulation allows that the in-plane surface stresses could be varying
across the thin layer thickness and thus, effectively, it is equivalent to consider
an average strain as well as curvature along the interface. In two dimensions, the
behavior of interfaces can be grouped into four different types based on the degree
of stiffness for the thin layer. We illustrate graphically how these four types of
interfaces will influence the stress concentration factor in a successive manner for
the boundary value problem of an infinite matrix containing a circular cavity.

In addition, the mechanical behaviors of NWs have been studied based on
the high-order surface stress model. Both Timoshenko beam theory and Euler-
Bernoulli beam theory have been adopted to incorporate the high-order surface
stress effects. We compare the difference between the classical solutions (without
surface effects), the calculations based on the high-order surface stress model and
conventional surface stress model (Gurtin-Murdoch model). The size-dependent
effective Young’s modulus of NWs has also been derived. From the investigation
of the theoretical calculations and the existing experimental data for the effective
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Young’s modulus, the effects of higher-order interface stresses between two differ-
ent materials could be important, especially when the characteristic length is in a few
nanometers. Our theoretical framework based on classical continuum mechanics
might provide a more direct and simple approach to simulate the mechanical
behavior of nanostructures.

We mention that some further studies might be envisaged for engineering appli-
cations. The thermal stress effects could be important and sensitive for nanoscaled
components and structures. The issue of thermal effects on nanocomposites (Chen
1993; He and Benveniste 2004; Quang and He 2007; Chen et al. 2007b; Quang and
He 2009) could be considered using the high-order interface stress model. Another
possible extension of the present research can be directed to the subject of mechanics
of wrinkling. Andreussi and Gurtin (1977) studied the wrinkling of a free surface
and showed that a compressive residual surface tension or negative surface stiffness
will result in this behavior. Kornev and Srolovitz (2004) discussed surface stress-
driven wrinkling of a free film based on thermodynamics. The ordered patterns of
wrinkling in metal thin films deposited on elastomeric polymer can be observed due
to thermal effects (Bowden et al. 1998; Huck et al. 2000; Kwon and Lee 2005).
Huang (2005) also investigated the wrinkling of a conductive thin film subjected to
electric field.

Finally, we note that the high-order interface/surface stress model could be used
to examine other related subjects, which have been investigated based on the Gurtin-
Murdoch model, such as piezoelectric effects on nanosized structures (Chen 2008;
Wang and Feng 2010; Li et al. 2011; Xiao et al. 2011; Yan and Jiang 2011a, b;
Samaei et al. 2012; Yan and Jiang 2012; Hadjesfandiari 2013; Dai and Park 2013;
Xiao et al. 2013), wave propagation in nanoscaled system (Gurtin and Murdoch
1976; Murdoch 1976; Chakraborty 2010; Li and Lee 2010; Ou and Lee 2012; Liu et
al. 2013; Ru et al. 2013), and photonic band structures (Kushwaha et al. 1993; Chen
and Wang 2011; Zhen et al. 2012; Liu et al. 2012).
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