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Abstract. The purpose of this work is to learn specific distance func-
tions to be applied for multi-target regression problems using nearest
neighbors. The idea of preserving the order relation between input and
output vectors considering their corresponding distances is used along a
maximal margin criterion to formulate a specific metric learning problem.
Extensive experiments and the corresponding discussion try to put for-
ward the advantages of the proposed algorithm that can be considered as
a generalization of previously proposed approaches. Preliminary results
suggest that this line of work can lead to very competitive algorithms
with convenient properties.

1 Introduction

Typical problems in pattern recognition and machine learning deal with pre-
dictors for a single discrete label or continuous value depending on whether we
are dealing with classification or regression. The natural (and most common)
extension to formulate the problem of predicting multiple labels/values consists
of considering it as an appropriate group of independent predictors. But this
approach is prone to obviate correlations among output values which may be of
capital importance in many challenging and recent application domains. These
methods have been coined with different names as multi-target, multi-variate
or multi-response regression [2]. When the different output values are organized
using more complex structures as strings or trees we talk about Structured Pre-
dictors [1,15]. Among domain applications considered we have ecological mod-
elling [11], gas tank control [8], remote sensing [22] and signal processing [6].

Particular methods for multi-target regression can be categorized either as
problem transformation methods (when the original problem is transformed into
one or several independent single-output problems), or algorithm adaptation
methods (when a particular learning strategy is adapted to deal with multiple

F.J. Ferri—This work has been partially funded by FEDER and Spanish MEC
through project TIN2014-59641-C2-1-P.

c© Springer International Publishing AG 2017
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interdependent outputs). The latter methods are usually considered as more
challenging as an appropriate and interpretable model is obtained usually as a
subproduct for the prediction problem [2].

The purpose of this work is to improve previous approaches for muti-target
regression by introducing metric learning [12] in the context of nearest neighbor
methods [15]. In particular, an input-output homogeneity criterion is introduced
to learn a particular distance that consistently leads to improvements accord-
ing to the empirical validation carried out. In the next section, the proposed
methodology is put in the context of distance based muti-target regression while
Sect. 3 contains the proposal itself. The empirical section follows with details
and results obtained and a final section with conclusions and further work closes
the present paper.

2 General Notation and State of the Art

Let x = [x1, . . . , xp] ∈ R
p, y = [y1, . . . , yq] ∈ R

q, be two random input and
output vectors, respectively. Each training instance is written as

(
x j ,y j

)
∈ R

p×
R

q, and the corresponding multi-target regression problem consists of estimating
a unique predictor h : R

p → R
q in such a way that the expected deviation

between true and predicted outputs is minimized for all possible inputs.
The most straightforward approach consists of obtaining a univariate predic-

tor for each one of the output variables in an independent way using any of the
available methods for single-target prediction [2] which constitutes the simplest
of the so-called problem transformation (also known as local) methods that con-
sist of transforming the given multi-target prediction problem into one or more
single-target ones [16,21].

The alternative approach to tackle multi-target prediction is through algo-
rithm adaptation (also known as global) methods [2] which consist of adapting
any previous strategy to deal directly with multiple targets. Global methods are
interesting because they focus on explicitly capturing all interdependencies and
internal relationships among targets. According to [2], these methods can be cat-
egorized as statistical, support-vector, kernel, trees or rule based, respectively.
Apart from these, other strategies can be used. This is the case of one of the
best known and used nonparametric methods in classification and estimation:
the Nearest Neighbor (NN) family of rules [3]. Using NN for classification and
estimation leads to interesting benefits as they behave quite smoothly accross a
wide range of applications. These methods are known to approach an optimal
behavior regardless of the distance used as the number of samples grows. But
nevertheless, distance becomes of capital importance in the finite case.

The K-NN for Structured Predicitions (KNN-SP) method [15] has been pro-
posed for different kind of predicition problems and for multi-target regression in
particular. Using the size of the neighborhood, K, as a parameter, the KNN-SP
method starts by selecting the K nearest neghbors for a given query point accord-
ing to a fixed distance (usually a weighted version of the Euclidean distance).
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The final prediction is constructed as the (weighted) average of the correspond-
ing K target values. These weights are set according to the (Euclidean) distance
in the target space [15]. Even though the KNN-SP is very straightforward com-
pared to other approaches, the empirical results show that it is very competitive
compared to other methods which constitute the state of the art. Moreover,
neighborhood size is the only parameter to tune.

3 Distance Metric Learning for Multi-target Prediction
(DMLMTP)

Nearest Neighbor methods have been very widely used, specially for classifica-
tion. Even though it was introduced very early [18], Distance Metric Learning
(DML) has been recently deeply studied as a very convenient way to improve
the behavior of distance-based methods [12]. Many powerful methods have been
proposed to look for the best distance (in the input space) one may have for a
particular problem.

A possible way to improve the results obtained by KNN-SP is by adapting
the input space distance to the particular problem according to the final goal in
the same way that it has been used for classification.

Many different criteria and approaches have been proposed to learn distances
for classification but all of them share the same rationale: a distance is good if
it keeps same-class points close and puts points from other classes far away.
Many recent approaches implement this rationale as constraints relating pairs
or triplets of training points. In the case of pairs, one must select pairs of points
that need to be kept close (similar points) or far away (dissimilar points). In the
case of triplets, one must select some triplets, (x i ,x j ,x �), where x i and x j are
similar and should be kept close, and x i and x � are dissimilar and should be
taken farther.

In contrast to classification problems, it is far from obvious that similar ideas
are to be useful in regression problems without introducing more information
about both input and output spaces. In the present work, a first attempt to
learn an input distance for multi-target regression is proposed by introducing
an homogeneity criterion between input and output spaces using triplets. In
particular, we propose to select the same kind of triplets as in classification
problems and use a different criterion for similarity. Instead of using labels,
similarity between points will be established according to their outputs in such
a way that the relative ordering introduced by distances in input and output
spaces are preserved.

We formulate an optimization problem to learn an input distance for multi-
target regression by following an approach similar to the one in [17] and also
in [13,26]. The goal is to obtain a Mahalanobis-like distance, parametrized by
a matrix, W , which maximizes a margin criterion. As usual, this problem is
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converted into minimizing a regularizer for W (its Frobenius norm) subject to
several (soft) constraints using triplets. In our particular case we have

min
W,ρ,ξij�

1
2
‖W‖F − ρ +

1
ν|TK |

∑

i,j,�∈TK

ξij�

s.t. d2W (x i ,x �) − d2W (x i ,x j ) ≥ ρ − ξij�,

ξij� ≥ 0, ∀ i, j, � ∈ TK

where d2W (x i ,x j ) = (x i −x j )T W (x i −x j ) is the (squared) distance in the input
space and the set of triplets is defined as

TK = {(x i ,x j ,x �) : x j ,x � ∈ NK(x i ) and d(yi ,y�) − d(yi ,yj ) ≥ 0}

where NK(x ) is the considered neighborhood around x .
Note that the formulation of the optimization problem is the same used

for other metric learning and support vector learning approaches and the main
change is in the way the particular restrictions have been selected.

In the formulation above, we must introduce an extra constraint to make
the matrix W positive semi-definite. This makes the problem considerably more
difficult but there are a number of ways in which this can be tackled [13,26].
Nevertheless, in this preliminary work we will simplify the above formulation fur-
ther. On one hand, we consider only a diagonal matrix, W = w = [w1, . . . , wp],
and on the other hand, we will introduce the corresponding restrictions, wi ≥ 0,
i = 1, . . . , q into the above optimization. The corresponding dual problem can
be written in terms of two new sets of variables as

min
αi,λj

1
2

(
αT Hα + 2αT φλ + λT λ

)

s.t.
|TK |∑

i=1

αi = 1

0 ≤ αi ≤ 1
ν|TK | i = 1, . . . , TK

λj � 0 j = 1, . . . , q

φ ∈ R
|TK |×q is a matrix with a row, (x i−x �)◦(x i−x �)−(x i−x j)◦(x i−x j),

for each considered triplet where ◦ is the Hadamard or entrywise vector product.
The kernel matrix is H = φφT and the weight vector is obtained as w = αT φ+λ.

An adhoc solver using an adapted SMO approach [10,14] has been imple-
mented specifically for this work. This solver is able to arrive to relatively good
results in reasonable times for all databases considered in the empirical work
carried out as will be shown in the next section.

4 Experiments

In this section, we describe the experimental setup and discuss the main results
of the proposed DMLMTP algorithm. In the first place, we present technical
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Table 1. Datasets used in the experimentation and corresponding details. Datasets
partitioned in train and test subsets are indicated by the corresponding two sizes in
the second column.

Datasets Instances Attributes Targets

Waterquality [5] 1060 16 14

EDM [9] 154 16 2

Solar Flare 1 [23] 323 10 3

Solar Flare 2 [23] 1066 10 3

jura [19] 359 15 3

enb [19] 768 8 2

slump [19] 103 7 3

andro [19] 49 30 6

osales [24] 639 413 12

scpf [25] 1137 23 3

atp1d [19] 201/136 411 6

atp7d [19] 188/108 411 6

rf1 [19] 4108/5017 64 8

rf2 [19] 4108/5017 576 8

OES97 [19] 334 263 16

OES10 [19] 410 298 16

details related to the datasets, parameter setup and implementations. Next, we
present comparative results when using the learned distance compared to the
Euclidean one when predicting multivariate outputs with the KNN-SP approach
over fifteen datasets publicly available for multi target prediction.

In the experiments we distinguish between the number of neighbors used
to learn the distance using DMLMTP, K, and the number of neighbors used
to obtain the final prediction using the KNN-SP approach, kp. The value of
K should be small to keep the number of triplets small for efficiency reasons.
For all experiments reported in this paper, the number of nearest neighbors for
training in DMLMTP was set to K = 2, . . . , 6 while the neighborhood sizes for
prediction have been taken as odd values from 3 to 35. The final prediction is
done computing the average of the target values of these kp nearest neighbors.

In the experiments, 5-fold cross-validation has been used on each dataset
except for 4 of them that have been split into train and test subsets for efficiency
and compatibility reasons. Table 1 summarizes the main details [2,21]. The cross
validation procedure has been integrated into MULAN software package [20].

As in other similar works, we use the average Relative Root Mean Squared
Error (aRRMSE) given a test set, Dtest, and a predictor, h, which is given as

aRRMSE(h;Dtest) =
1
q

q∑

i = 1

√√
√
√

∑
(x ,y)∈Dtest

(ŷi − yi)
2

∑
(x ,y)∈Dtest

(yi − yi)
2 (1)
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Fig. 1. aRMSE values corresponding to different neighborhood sizes, kp, using
Euclidean (KNN-SP) and learned (DMLMTP) distances. The best neighborhood size
used by DMLMTP is indicated along the name of each database.

where y is the mean value of the target variable y , and ŷ = h(x ). We use the
Wilcoxon signed rank test and the Friedman procedure with different post-hoc
tests to compare algorithms over multiple datasets [4,7].

Figure 1 contains the aRRMSE versus the neighborhood size, kp for 9 datasets
out of the 16 considered. Only the best neighborhood size used for training, K
is shown. Moreover, the best results in the curves are marked with a circle and
a diamond, respectively. These best results are shown for all the datasets in
Table 2.

Contrary to our expectations, the best performance for DMLMTP over large
datasets is obtained with small K. This could be strongly related to the growth
in the number of triplets that violate the considered constraints.

The last columns in Table 2 contain the absolute difference between aRRMSE
for KNN-SP and DMLMTP, its sign and the average ranking with regard to
absolute differences. The DMLMTP method is better with a significance level of
5% according to the Wilcoxon test that leads to a p-value of 6.1035e-5. For all
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Table 2. aRRMSE obtained for DMLMTP and KNN-SP algorithms on each dataset
along with comparison details.

Dataset DMLMTP KNN-SP abs sgn Ri

sf1 0.971 0.973 0.002 + 2.5

sf2 0.976 0.977 0.001 + 1.5

wq 0.947 0.948 0.001 + 1.5

edm 0.823 0.836 0.013 + 6

oes97 0.704 0.716 0.012 + 5

oes10 0.574 0.605 0.031 + 7

atp1d 0.415 0.451 0.036 + 8

atp7d 0.515 0.605 0.090 + 13

rf1 0.238 0.290 0.052 + 10

osales 1.012 1.012 0 -

scpf 0.956 0.958 0.002 + 2.5

jura 0.674 0.725 0.051 + 9

enb 0.134 0.283 0.149 + 15

slump 0.682 0.760 0.078 + 12

andro 0.799 0.931 0.132 + 14

rf2 0.460 0.516 0.056 + 11

datasets, DMLMTP has equal or better performance than (Euclidean) KNN-SP
and the difference increases for datasets of higher dimensionality. This situation
could be related to the learned input transformation that generates some values
equal to zero and ignores some irrelevant attributes. In fact, if we compute the
sparsity index of the corresponding transformation vector, as the relative number
of zeros with regard to dimensionality, we obtain for our algorithm values below
0.5 except for datasets osales, rf1 and scpf.

5 Concluding Remarks and Further Work

An attempt to improve nearest neighbor based multi-target prediction has been
done by introducing an specific distance metric learning algorithm. The mixing
of these strategies has lead to very competitive results in the preliminary exper-
imentation carried out. In a wide range of situations and for large variations of
the corresponding parameters, the proposal behaves smoothly over the datasets
considered paving the way to develop more specialized algorithms. Future work is
being planned in several directions. On one hand, different optimization schemes
can be adopted both to improve efficiency and performance. On the other hand,
different formulations can be adopted by establishing more accurate constraints
able to properly capture all kinds of dependencies among input and output vec-
tors in challenging multi output regression problems.
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