
Abnormal Behavior Detection in Crowded
Scenes Based on Optical Flow Connected

Components

Oscar E. Rojas(B) and Clesio Luis Tozzi

School of Electrical and Computer Engineering, UNICAMP, Av. Albert Einstein,
400, Campinas, SP, Brazil

oscar.rojas87@gmail.com, clesio@dca.fee.unicamp.br

Abstract. This paper presents a new approach for automatic abnormal
behavior detection in crowded scenes. Background subtraction algorithm,
optical flow and connected component analysis are used to define the
optical flow connected components (OFCC). An unsupervised normal
behavior model is computed using the main magnitude and direction
of each OFCC. Experimental results on the standards UCSD and UMN
anomaly detection and localization benchmarks demonstrate the method
performance compared to other approaches considering detection rate
and processing time.
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1 Introduction

Abnormal behavior analysis on crowded scenes is an important and growing
research field. Video cameras, given their ease installation and low cost, have
been widely used for monitoring internal and external areas such as buildings,
parks, stadiums etc. With the world’s population increasing, the presence of
people in common areas has been increasing too. Algorithms for pose detection
and action recognition for single or, in some cases, very low density groups of
people are extensively treated in the pattern recognition community. Neverthe-
less, abnormal behavior detection and localization in crowded scenes remains an
open problem due to high levels of occlusion and the impractical approach of
individual segmentation.

The concept of abnormal behavior is always associated with the scene con-
text, a behavior considered as normal in a scene may be considered abnormal in
other. These specific conditions increase the difficulties for automatic analysis
and require specific modeling of the abnormal behavior for each particular scene.

In order to build such models many algorithms have been proposed. In [6]
optical flow is used to compute interaction forces between adjacent pixels and a
model, known as Social Force Model, is created based in a bag of words approach
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for classify frames either normal or abnormal. In [5] dynamic textures (DT) are
used to model the appearance and dynamics of normal behavior, samples with
a low probabilistic values in the model are labeled as abnormal. In [7] entropy
and energetic concepts are used as features to model the probability of finding
abnormal behavior in the scene. Natural language processing is used in [10] as
classification algorithm for features based on viscous fluid field concepts.

Many algorithms employs machine learning techniques as classification tool.
Support Vector Machine (SVM) are used in [8,11] for classify histograms of the
orientation of optical flow. Multilayer Perceptron Neural Networks is used in
[13]. k-Nearest Neighbors is used in [1] for classify outlier observed trajectories
as abnormal behavior. Finally, Fuzzy C-Means are used in [2,3] to derive an
unsupervised model for the crowd’s trajectory patters.

In general, to construct the feature vector used in many of the algorithms
described above, a several set of parameters must be correctly set in order to
achieve the performance reported by the authors. Some of the state-of-the-art
methods are based in complex probabilistic models which leads high processing
time. Despite the processing time per frame is reported only for a very few
papers, it is in general high. For example, in [5] the authors reported a test time
of 25 s per frame for 160× 240 pixel images and in [12] the reported test time
per frame is 5 s in videos with 320× 240 pixel resolution.

The main contribution for this paper is present a simple but efficient
method that reduce the processing time per frames in near real time allowing
practical use.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed approach. Section 3 presents the experimental results. Section 4 presents
the conclusions.

2 Proposed Method

The general pipeline for the proposed approach is shown in Fig. 1. The five
initial modules (1 to 5 in Fig. 1) aims to compute the model features and are
the same for the training and test phases. These initial modules are described
in Sect. 2.1. In the training phase, represented by module 6, frames with normal

Fig. 1. General pipeline for the proposed method.
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behavior are used to update the model as described in Sect. 2.2. In the test
phase, represented by module 7, each new sample is compared with the model
and classified as normal or abnormal as described in Sect. 2.3. A false positive
reduction methodology, represented by module 8, is also described in Sect. 2.3.

2.1 OFCCs Computation

In the training phase a sequences of N frames are used to build a normal behavior
model. The algorithm presented in [9] is used to compute the background model
and a foreground mask Ifm of each frame is obtained.

In order to reduce the noise and de computational load a connected compo-
nents labeling algorithm is used to obtain the blobs (b1, b2, . . . , bn) where n is
the total number of blobs in the foreground mask Ifm. In parallel to foreground
extraction the dense optical flow of each frame is computed using [14]. The opti-
cal flow vectors are used to obtain the magnitude m(x, y) and direction θ(x, y)
values of each (x, y) point in the input image.

An Optical Flow Connected Component OFCCi can be defined as the set
of values [m(x, y), θ(x, y)] for all (x, y) points belonging to the i-th blob, as
expressed in Eq. 1.

OFCCi = [m(x, y), θ(x, y)] ∀ (x, y) ∈ bi. (1)

The main direction θi of the i-th OFCC is computed as follows. A histogram
of the direction values of OFCCi is obtained with a fixed bin width of Δθ = 45◦.
The angle associated with the highest bin is used as the main direction θi of
OFCCi.

The main magnitude mi of OFCCi is obtained as the statistical mean of the
magnitudes values in OFCCi as shown in Eq. 2.

mi =
1
S

S∑

k=1

m(x, y) | m(x, y) ∈ OFCCi (2)

where S is the total number of magnitude values in OFCCi. Finally, the main
direction θi and the main magnitude mi values of each OFCCi are used to
construct the normal behavior model.

2.2 Normal Behavior Model

In this algorithm the behavioral model is composed of m matrices
(A1, A2, . . . , Am) where m is computed as

m =
360
Δθ

(3)

and represents the number of possible values that θi can adopt. For instance, if
Δθ = 45◦ then m = 8 matrices will be defined.
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For each frame in the training video a set of n OFCCs are obtained as
described in the previous section. After compute the θi and mi values of each
OFCCi the corresponding A matrix number η is obtained as,

η =
θi

Δθ
(4)

Then, the values of the Aη matrix are updated using the next condition

Aη(x, y) =

{
mi, if mi > Aη(x, y)
Aη(x, y), otherwise

,∀ (x, y) ∈ bi. (5)

At the end of the training phase each matrix Aη will store the maximum
principal magnitude mi in the full training video at each point (x, y) at the
direction η ∗ Δθ.

Figure 2 shows an example of a normal behavior model with η = (1, 2, . . . , 8)
matrices for Δθ = 45◦. A color map was applied to each matrix Aη for better
visualization.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. The magnitude model for eight directions (η = 8). Each image shows the
pixel highest magnitude for direction angles between (a) (0◦–45◦], (b) (45◦–90◦],
(c) (90◦–135◦], (d) (135◦–180◦], (e) (180◦–225◦], (f) (225◦–270◦], (g) (270◦–315◦] and
(h) (315◦–360◦]. (Color figure online)

2.3 Abnormality Detection

After all the training frames have been processed and the model is completed,
test videos with both normal and abnormal behaviors can be analyzed.

The set of OFCCs and their main directions θis are obtained as described in
Sect. 2.1 for each video frame. To determine if the OFCCi is abnormal or not its
main direction θi is used to find the corresponding Aη matrix with η computed
using Eq. 4. Next the maximum value âη in Aη within the same region defined
by the blob bi is founded according to
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âη = max(Aη(x, y)) | (x, y) ∈ bi. (6)

Then, the comparison between each m(x, y) value in OFCCi and âη is done
as follows. If m(x, y) is grater than âη then the pixel (x, y) is marked as abnormal,
otherwise its marked as normal.

After compare all the magnitude values in OFCCi an abnormal binary mask
image Iab(x, y) with the same size as the input frames, can be use to store the
abnormal marked pixels as Iab(x, y) = 1 and the normal ones as Iab(x, y) = 0.

In order to improve the algorithm performance a FIFO type list with fixed
size M is defined and filled up with the latest M binary images Iab(x, y). To
consider an OFCC as abnormal it must appear at least a number W of times in
the list. The list size M and the number W are user controlled parameters and
can be used for sensitivity adjustment, since a higher value of W means a higher
alarm delay time.

3 Results and Comparisons

The proposed algorithm was implemented in Qt/C++ using OpenCV on a
2.7 GHz Intel Core i7 PC with 16 GB of RAM. The method was tested in two
popular datasets: UMN1 and UCSD2. Figure 3 shows a frame for each of the
scenarios in the UMN dataset and the abnormality detected by the proposed
approach. The frame size in all UMN videos is 320× 240 pixels. The frame size
in the UCSDPed1 videos is 238× 158 and for UCSDPed2 is 360× 240 pixels.

Fig. 3. Examples of normal (top) and abnormal (bottom) situations in UMN dataset.

Figure 4 shows three examples frames with abnormal behavior for each of the
two scenarios in the UCSD dataset.

The proposed method was compared with similar state-of-the-art algo-
rithms including Mixture Dynamic Texture (MDT) [5], Mixture of Optical Flow
1 http://mha.cs.umn.edu/proj events.shtml.
2 http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm.

http://mha.cs.umn.edu/proj_events.shtml
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Example of abnormal behavior detected in the UCSD dataset. UCSDped1 (top)
and UCSDped2 (below).

(MPPCA) [4], Social Force [6], Social Force with MPPCA [4] and the Hierarchi-
cal Activity Approach [12]. Figure 5 shows the Receiver Operation Characteristic
(ROC) curves for the proposed method and the comparative algorithms, taken
from [12]. Table 1 shows the Area Under the ROC curve (AUC) for the five com-
parative methods and the proposed one. Finally, Fig. 6 shows the processing time
per frame for some state-of-the-art algorithms and the proposed in this paper.

The ground truth provided by the UCSD dataset, and used for performance
evaluation in all the comparison methods, labels people in wheelchair as abnor-
mal behavior, even when their speed is lower than the speed of walking people.
This leads to additional False Negative detected frames because, in the presented
algorithm, this situation is not considered as abnormal. A second situation when
the output of the presented algorithm differs from the ground truth is when

Fig. 5. Quantitative comparison of abnormal behavior detection in (a) UCSDped1 and
(b) UCSDped2 against state-of-the-art algorithms.
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somebody, in the test phase, walks in a region where no people walked in
the training phase. Examples of this type of abnormal detection are shown in
Fig. 4(a), (b), (e) and (f). Frames that present only this kind of abnormality are
ignored in the comparison results.

Table 1. Comparison of the Area Under Curve of the proposed method compared with
the others algorithms.

Algorithm Area Under Curve (AUC)

UCSDped1 UCSDped2

MPPCA [4] 0.59 0.693

Social force [6] 0.675 0.556

Social force+ MPPCA [4] 0.668 0.613

MDT [5] 0.818 0.829

Hierarchical activity [12] 0.854 0.882

Proposed method 0.852 0.958

Fig. 6. Comparison of consumed time per frame with others state-of-the-art algorithms.
The showed time is for the test phase in UCSDped1.

4 Conclusions

This paper presents a new method for abnormal behavior detection. It’s based on
optical flow and connected component analysis. From the experimental results
it can be concluded that, when compared to other state of the art methods,
the proposed method presents better performance in abnormal detection in the
UCSDped2 dataset and is very close to the best one in the UCSDped1 but, as
shown in Fig. 6 it presents the lowest processing time, near to real-time processing
which allows practical use in modern computers.
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