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Abstract. This work proposes a similarity measure between secondary
structures of proteins capable of fusing cell membranes and its imple-
mentation in a classification system. For the evaluation of the metric we
used secondary structures estimated from amino acid sequences of Class
I and Class II viral fusogens (VFs), as well as VFs precursor proteins.
We evaluated three different classifiers based on k-Nearest Neighbors,
Support Vector Machines and One-Class Support Vector Machines in
different configurations. This is a first approach to the similarity mea-
sure with satisfactory results. It is possible that this method could allow
the identification of unknown membrane fusion proteins in other biolog-
ical models than the proposed in this work.
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1 Introduction

Fusion between cells is needed in many cellular events. Some of the most studied
events are myoblasts fusion during muscle formation [1], fusion of gametes dur-
ing fertilization [2] and fusion between extracellular vesicles (EVs) and target
cells [3]. Cellular membranes cannot fuse spontaneously, this process is catalyzed
by proteins named fusogens [4]. However, it is still unknown which proteins carry
out the fusion mechanism during these events.

One of the best understood fusion mechanisms is the fusion between the
membrane of an enveloped virus and the membrane of the target cell. The viral
fusion proteins, or viral fusogens, can be grouped in at least three classes accord-
ing to their structure and mechanism of action. Most of the known viral fusogens
belong to Class I and II, that is why these classes are the better characterized.
At secondary structure level, Class I viral fusogens present mostly α-helix struc-
ture, while Class II are organized mainly in β-sheet [5]. One of the few known
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cellular membrane fusion proteins is EFF protein from C. elegans. This pro-
tein is structurally homologous to Class II viral fusogens, also preserving the
β-sheet secondary structure organization. In spite of this homology, the amino
acid sequence highly differs from Class II viral fusogens sequences [6].

In this work, we intend to develop a similarity measure able to discriminate
proteins with fusion capacity in different biological models, based on the proteins
secondary structure.

In Sect. 2 we describe the previous attempts to find similarity between sec-
ondary structure sequences and its applications, including pattern recognition
methods. In Sect. 3 the secondary structure alignment algorithm is explained, as
well as the advantages of implementing it to our problem. The description of the
data available and the experimental results are in Sect. 4. Section 5 concludes
and presents some possible directions of work.

2 Background

The search for protein secondary structures alignment gathered strength with
the appearance of reliable tools for secondary structure prediction from amino
acid sequences such as described by Cuff et al. [7] and Mc Guffin et al. [8].
These tools return, for each amino acid position, an H (α-helix), E (β-sheet), or
C (random coil) character corresponding to the most probable structure in that
position, considering the propensities of individual amino acids (Fig. 1).

Most of the literature relative to secondary structure alignment is based on
the method proposed by Przytycka et al. [9] called SSEA (Secondary Structure
Element Alignment). In this method, the secondary structure of each protein is
represented as a summarized and ordered sequence of characters H, E and C

Fig. 1. Context of secondary structure prediction. Gene expression is the process by
which information contained in a genome is used to direct protein synthesis. The protein
folds into a functional tridimensional molecule at two levels: secondary and tertiary
structure.
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(Fig. 2). The consecutive repeated characters are collapsed in an element, and
the length of the element is stored. SSEA algorithm is analogous to the global
alignment algorithm based on dynamic programming proposed by Needleman
and Wunsch [10], but using a different score assignment system. When aligning
two secondary structures X and Y , a score is calculated for each pair of elements
x and y. Each score S(x, y) is defined in Eq. 1, where L(x) and L(y) are the
length of the element x and y, respectively. The score is used to fill an alignment
matrix as described by Needleman-Wunsch. Besides the score system, the other
parameter in an alignment is the gap penalty. A gap comprises an insertion or
deletion in a sequence, usually occurring from a single mutational event. SSEA
method do not analyze explicitly the role of gap penalty in the alignment.

S(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min(L(x), L(y)) if x = y
1
2 min(L(x), L(y)) if (x = {H,E} and y = C) or

(x = C and y = {H,E})
0 if (x = H and y = E) or

(x = E and y = H)

(1)

Fig. 2. Secondary Structure Element Alignment (SSEA) concepts. A secondary struc-
ture sequence is obtained from an amino acid sequence using Psipred [8]. The consec-
utive repeated characters are collapsed into elements. Each element is associated with
the length of the collapsed characters. The group of ordered elements is a secondary
structure element sequence. The sum of lengths of the elements equals the length of
the sequence.

The final similarity score in a Needleman-Wunsch alignment corresponds to
the last cell score in an alignment matrix and is normalized by the mean of the
length of the two sequences. This final score (d(X,Y )) is between 0 and 1, the
higher the score, the higher the similarity between those two proteins according
to the secondary structure. Przytycka et al. proposed and applied this metric to
generate a taxonomic tree through a clustering algorithm. The generated tree
was compared with trees generated with methods that involve more information,
and the taxonomic organization was in agreement. Almost at the same time, Xu
et al. [11] used a similar measure to identify two enzymes in Archaea. They
also do alignments using a dynamic programming algorithm, but do not collapse
consecutive characters.
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McGuffin et al. [12] proposed that the prediction of proteins secondary struc-
ture and the alignment of its elements allows to detect distant homologs in a
better way than methods based on amino acid sequence. Different amino acid
sequences may adopt similar tridimensional structures. The capacity to iden-
tify distant homologs from the alignment of secondary structure elements was
also evaluated by Zhang et al. [13]. The identification of distant homology was
accomplished through a method based on Support Vector Machines (SVM), and
different metrics were compared. The classification from secondary structure
alignments obtained one of the highest accuracy values. Si et al. [14] applied
the method to identify proteins with a highly conserved tridimensional domain,
called TIM-barrel (triose-phosphate isomerase) allowing to identify this domain
in Bacillus subtilis proteome with 99% of accuracy using SVM. SSEA method
was also applied successfully by Ni and Zou [15] to the prediction of outer mem-
brane proteins from bacteria. They developed a kernel function based on the
metric proposed in SSEA, capable of classifying outer membrane proteins using
a method based on SVM with a 97.7% accuracy.

3 Proposed System

3.1 Development of a Similarity Measure

Our bioinformatics search is based on viral fusogens, since these are the only
known fusion machineries capable of catalyzing the fusion of membranes outside
cells. Because of the amount of information available, we focus on Classes I and
II. Owing to the high divergence at sequence level in viral fusogens, algorithms
that find similarity between amino acid sequences are frequently not enough to
identify similar proteins. To solve this, we evaluate a metric capable of discrim-
inating secondary structure signals between viral fusogens. Our task is to tune
up this technique so we can evaluate it later with proteins from other biological
models, as the ones described previously.

Viral fusogens are synthesized as inactive precursors (VFPs), that under
certain conditions are cleaved, releasing a transmembrane protein with fusion
capacity. We refer to the ectodomain as the fusogen (VF) (Fig. 3). Consider-
ing the necessity to search fusogens in proteins synthesized as precursors, our
algorithm is intended to correctly align VFs with other VFs, but also with VFPs.

Our protein similarity measure is developed based on SSEA but modifies the
alignment algorithm and score normalization, and explores the gap penalty inci-
dence. When aligning the secondary structure of a VF and a VFP the algorithm
will not consider the local alignment between the VF and the VFP fusogenic
region, since Needleman-Wunsch algorithm computes a global alignment. For
this reason, we propose to apply a local alignment algorithm, analogous to Smith-
Waterman algorithm [16], which allows the correct alignment between fusogens
and proteins that contain a fusogen. Thus, we perform secondary structure rep-
resentations alignments (VFs and VFPs) in pairs, applying SSEA method, sub-
stituting the alignment algorithm with Smith-Waterman algorithm. Although
the local alignment approach was described by Fontana et al. [17] it was not
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applied to a specific problem, the tool is no longer publicly available and we did
not find any articles that apply this modification.

Fig. 3. Viral fusion proteins processing. In this example HIV is presented for its sim-
plicity. Env gene is synthesized as a non-functional precursor protein (VFP) containing
a surface protein (SU) and a transmembrane protein (TM). Both proteins are cleaved
at the cleavage site (CS) to form an active fusion protein. The released TM is a Class I
viral fusion protein. The transmembrane domain separates the protein into an intravi-
ral domain and an ectodomain (VF). The latter carries out the fusogenic activity of
the virus.

In SSEA method the final score corresponds to the last cell score in the matrix
of a Needleman-Wunsch global alignment. Since we work with a local alignment
algorithm, our final score is the maximum score obtained in the dynamic pro-
gramming matrix as described by Smith-Waterman.

The VFs sequences length is variable between the two classes, and also inside
each class. The same happens with the VFPs sequences length, so we would not
expect to find a relation between the length of VFs and the respective VFPs.
For this reason we could expect that the normalization method applied in SSEA
would fail, since the alignment final score is divided between the mean of the
pair of proteins sequences length. Thus, we propose another modification to the
metric, where the final score is normalized by the mean of the aligned regions
length for each pair of proteins.

3.2 Classification

Similarly to viral fusogens, we consider that protein candidates for fusion capac-
ity in other biological models may exist as a part of a precursor. For this reason,
besides evaluating the metric when classifying a group of Class I and Class II
VFs, we will also evaluate the metric when classifying a group of Class I and
Class II VFPs.

Another approach consists of training a One-class SVM (OC-SVM) classifier
with Class I VFs and classifying a group of VFs or VFPs as Class I (positive
class) or Class II (negative class). This is a first approximation to evaluate the
method in order to consider its application for classifying proteins from other
biological models as proteins with fusogenic capacity (positive class) and no
fusogenic capacity (negative class).
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4 Data Description and Experimental Results

4.1 Data Pre-processing

We obtained the amino acid sequences for the VFPs available in the public
database UniProt [18]. We selected those proteins labeled as Class I viral fusion
protein or Class II viral fusion protein. We obtained 27846 Class I and 1800
Class II sequences, with variable lengths from 446 to 1376 amino acids. We
extracted the VF from each protein using the annotations available in UniProt.
The lengths varied from 136 to 584 amino acids. From here on, we worked with
the VFP and the VF in parallel.

Knowing the redundancy of sequences in UniProt, as a previous step for sec-
ondary structure prediction, the sequences were clustered with 99% identity with
CD-HIT tool [19]. Thus, we obtained 1769 representative sequences of Class I
viral fusogens, and 1103 Class II fusogens. We selected randomly 100 Class I
VFs and 100 Class II VFs. We also selected randomly another 100 Class I VFs,
100 Class II VFs, and their corresponding 100 Class I VFPs and 100 Class II
VFPs.

For these 600 sequences the secondary structure predictions were calculated
with Psipred, using the HHSuite package [20]. This method considers a multiple
sequence alignment for each amino acid sequence to improve the accuracy, as
evolution provides a closer description of structural tendencies. Finally, we com-
puted similarity matrices for the proposed metric. We analyzed the similarity
matrices obtained for a constant gap penalty with values between 0 and −5,
and chose to work with a penalty value of −1. This value maximizes the score
when comparing sequences of the same class, and minimizes it when comparing
different classes.

Training and Classification. SVM method has been widely used in biological
sequences analysis. This method uses kernel functions, mapping the problem into
a high-dimensional space. This feature allows the construction of a hyperplane
that has the highest separation between two classes in the transformed space.

A distance between protein sequences was obtained from the computed sim-
ilarity with the kernel [15]:

k(x, y) = exp(γ d(X,Y )). (2)

We worked with LIBSVM package [21] for Python. LIBSVM can generate a
classifier from the precalculated kernel and estimate the performance.

VFs Classification Training with Two Classes. We trained a SVM clas-
sifier with a set of Class I and Class II VFs. The classification was performed
with another set of Class I and Class II VFs. The performance of the classi-
fier depends on parameters C and γ. The parameter C affects the flexibility of
the classification, allowing some errors, but also penalizing. The parameter γ

establishes how far the influence of a sample can reach. The best combination
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of C and γ was selected using a grid search with 10-fold cross-validation, with C
values between 2−15 and 215, and γ values between 5 × 10−4 and 5 × 102 with
uniform intervals.

We selected as optimal parameters C = 2−15 and γ = 5.4 × 10−1. For these
parameters, the classification accuracy for Class I and Class II fusogens was
99.0%.

To obtain a second evaluation of the proposed metric, we classified the set
of VFs using k-NN as the classification method, for 1, 3 and 7 NNs. The classi-
fication accuracy was 98.5%, 98.5% and 97.5% respectively (Table 1).

Table 1. Accuracies obtained for VFs and VFPs classification.

Classification 1-NN 3-NN 7-NN SVM OC-SVM

VFs 98.5 98.5 97.5 99.0 92.0

VFPs 98.5 97.5 95.5 90.5 69.5

VFs Classification Training with a Positive Class. SVM classifiers are
based in training with samples belonging to two classes (e.g. positive and nega-
tive). However, in some situations there are only positive samples for training.
This is the case of the problem suggested in this work, as we have a set of train-
ing proteins known to be fusogenic, and we intend to select fusogen candidates
from a diverse set of proteins. Given the characteristics of the candidate proteins
set and the virtually infinite variability a protein can present, it is not possible
to create a representative negative samples. Schölkopf et al. [22] described the
one-class classification method that allows to train a model with just positive
samples.

For this reason, we trained an OC-SVM classifier with Class I VFs as positive
samples. We evaluated the classification of a Class I VFs set (distinct from the
training set) and a Class II VFs set. For this part, we also used LIBSVM package.
The same kernel was applied to the data, and the best combination of parameters
was chosen. In this case, parameter ν substitutes parameter C. The meaning of
parameter ν is analogous to C meaning, but the values should be between 0 and
1. Similarly to previous part, the best combination of parameters ν and γ were
selected using a grid search with 10-fold cross-validation, with ν values between
0.05 and 1, and γ values between 5 × 10−4 and 5 × 102 with uniform intervals.

We selected as optimal parameters ν = 0.05 and γ = 5.4 × 10−1. For these
parameters, the classification accuracy for Class I and Class II VFs was 92.0%
(Table 1).

VFPs Classification Training with Two Classes. In order to evaluate the
modified algorithm performance for local alignments, the SVM classifier was
evaluated classifying a group of VFPs. It was trained with the same two classes
used previously. The classification accuracy for Class I and Class II VFPs was
90.5%. The k-NN classification accuracy for 1, 3 and 7 NNs was 98.5%, 97.5%
and 95.5% respectively (Table 1).
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VFPs Classification Training with a Positive Class. The classification of
Class I and Class II VFPs when training only with Class I VFs resulted in an
accuracy of 69.5% (Table 1).

5 Conclusions and Future Work

The developed metric, based on SSEA allowed the satisfactory classification of
VFs using the three proposed methods (k-NN, SVM y OC-SVM). The classi-
fication of VFPs using k-NN gave a similar accuracy as the obtained for VFs
classification. We also obtained an acceptable accuracy when classifying VFPs
using a SVM model. However, the performance is reduced considerably when
classifying VFPs using an OC-SVM model. It is clear that a reduction of the
accuracy is expected since this is the most challenging case where the classifier
is trained with VFs and tested with VFPs, and the reduction for the two classes
SVM is already greatly reduced. However, the reduction is too abrupt, and fur-
ther analysis of the dissimilarities between classes would help to understand the
reasons of this reduction. In spite of the SVM and OC-SVM classification results,
the metric by itself appears to accomplish the objective according to the results
obtained for 1-NN classification.

This work was performed on a reduced set, selected randomly from an original
set of VFs and VFPs obtained from UniProt. We discarded a significant subset
of sequences from the original set as those sequences did not have annotations
for the cleavage of VFPs. The first step when reviewing the metric should be to
expand the set.

On the other hand, we propose to work in detail on the influence of gap
penalties in the metric. Evaluations not presented in this work showed that gap
penalty value does not have influence on the performance of k-NN classifiers,
but does have influence on SVM and OC-SVM classifiers. In this work, we used
a constant gap system, so the gap penalty value is always the same. It would be
interesting to evaluate the performance of the metric when working with a linear
gap system (dependent on the length of the gap) or with affine gap penalty, in
which the gap opening is penalized differently than gap extension.

The set-up of this method could make possible the identification of unknown
viral fusogens from the genome or proteome of enveloped viruses. It could also be
used to identify proteins with fusogenic capacity in different biological models.
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