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Abstract. Performing predictions using a non-linear support vector
machine (SVM) can be too expensive in some large-scale scenarios. In
the non-linear case, the complexity of storing and using the classifier is
determined by the number of support vectors, which is often a significant
fraction of the training data. This is a major limitation in applications
where the model needs to be evaluated many times to accomplish a task,
such as those arising in computer vision and web search ranking.

We propose an efficient algorithm to compute sparse approximations
of a non-linear SVM, i.e., to reduce the number of support vectors in
the model. The algorithm is based on the solution of a Lasso problem
in the feature space induced by the kernel. Importantly, this formulation
does not require access to the entire training set, can be solved very effi-
ciently and involves significantly less parameter tuning than alternative
approaches. We present experiments on well-known datasets to demon-
strate our claims and make our implementation publicly available.
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1 Introduction

Non-linear support vector machines (SVMs) are a powerful family of classifiers.
However, while in recent years one has seen considerable advancements on scaling
kernel SVMs to large-scale problems [1,9], the lack of sparsity in the obtained
models, i.e., the often large number of support vectors, remains an issue in
contexts where the run time complexity of the classifier is a critical factor [6,13].
This is the case in applications such as object detection in images or web search
ranking, which require repeated and fast evaluations of the model. As the sparsity
of a non-linear kernel SVM cannot be known a-priori, it is crucial to devise
efficient methods to impose sparsity in the model or to sparsify an existing
classifier while preserving as much of its generalization capability as possible.

Recent attempts to achieve this goal include post-processing approaches that
reduce the number of support vectors in a given SVM or change the basis used
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to express the classifier [3,12,15], and direct methods that modify the SVM
objective or introduce heuristics during the optimization to maximize spar-
sity [2,6,7,11,14]. In a recent breakthrough, [3] proposed a simple technique
to reduce the number of support vectors in a given SVM showing that it was
asymptotically optimal and outperformed many competing approaches in prac-
tice. Unfortunately, most of these techniques either depend on several parameter
and heuristic choices to yield a good performance or demand significant compu-
tational resources. In this paper, we argue how these problems can be effectively
circumvented by sparsifying an SVM solving a simple Lasso problem [4] in the
kernel space. Interestingly, this criterion was already mentioned in [12], but was
not accompanied by an efficient algorithm neither systematically assessed in
practice. By exploiting recent advancements in optimization [4,5,9], we devise
an algorithm that is significantly cheaper than [3] in terms of optimization and
parameter selection but is competitive in terms of the accuracy/sparsity tradeoff.

2 Problem Statement and Related Work

Given data {(xi, yi)}m
i=1 with xi ∈ X and yi ∈ {±1}, SVMs learn a predictor of

the form fw,b(x) = sign(wT φ(x) + b) where φ(x) is a feature vector representa-
tion of the input pattern x and w ∈ H, b ∈ R are the model parameters. To allow
more flexible decision boundaries, φ(x) often implements a non-linear mapping
φ : X → H of the input space into a Hilbert space H, related to X by means of
a kernel function k : X × X → R. The kernel allows to compute dot products
in H directly from X, using the property φ(xi)T φ(xj) = k(xi,xj), ∀xi,xj ∈ X.
The values of w, b are determined by solving a problem of the form

minw,b
1
2‖w‖2H + C

∑m

i=1
�
(
yi(wT φ(xi) + b)

)p
, (1)

where p ∈ {1, 2} and �(z) = (1 − z)+ is called the hinge-loss. It is well-known
that the solution w∗ to (1) can be written as a linear combination of the training
patterns in the feature space H. This leads to the “kernelized” decision function

fw,b(x) = sign
(
w∗T φ(x) + b∗) = sign

(∑n

i=1
yiβ

∗
i k(xi,x) + b∗

)
, (2)

whose run time complexity is determined by the number nsv of examples such
that β∗

i �= 0. These examples are called the support vectors (SVs) of the model.
In contrast to the linear case (φ(x) = x), kernel SVMs need to explicitly store
and access the SVs to perform predictions. Unfortunately, it is well known that
in general, nsv grows as a linear function of the number of training points [6,13]
(at least all the misclassified points are SVs) and therefore nsv is often too large
in practice, leading to classifiers expensive to store and evaluate. Since nsv is
the number of non-zero entries in the coefficient vector β∗, this problem if often
referred in the literature as the lack of sparsity of non-linear SVMs.

Methods to address this problem can be categorized in two main families:
post-processing or reduction methods, which, starting with a non-sparse classi-
fier, find a more efficient predictor preserving as much of the original predictive
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accuracy as possible, and direct methods that modify the training criterion (1)
or introduce heuristics during its optimization to promote sparsity. The first
category include methods selecting a subset of the original support vectors to
recompute the classifier [12,15], techniques to substitute the original support vec-
tors by arbitrary points of the input space [10] and methods tailored to a specific
class of SVM [8]. The second category includes offline [6,7,11], as well as online
learning algorithms [2,14]. Unfortunately, most of these techniques either incur
in a significant computational cost or depend on several heuristic choices to yield
a good performance. Recently, a simple, yet asymptotically optimal reduction
method named issvm has been presented in [3], comparing favorably with the
state of the art in terms of the accuracy/sparsity tradeoff. The method is based
on the observation that the hinge loss of a predictor fw,b can be approximately
preserved using a number of support vectors proportional to ‖w‖�2 by applying
sub-gradient descent to the minimization of the following objective function

gISSVM(w̃) = max
i:hi>0

(
hi − yi

(
w̃Tx + b

))
, (3)

where hi = max(1, yi(wTx + b)). Using this method to sparsify an SVM fw,b

guarantees a reduction of nsv to at most O(‖w‖�2) support vectors. However,
since different levels of sparsification may be required in practice, the algorithm
is equipped with an additional projection step. In the course of the optimiza-
tion, the approximation w̃ is projected into the �2-ball of radius δ, where δ is a
parameter controlling the level of sparsification. Unfortunately, the inclusion of
this projection step and the weak convergence properties of sub-gradient descent
makes the algorithm quite sensitive to parameter tuning.

3 Sparse SVM Approximations via Kernelized Lasso

Suppose we want to sparsify an SVM with parameters w∗, b∗, kernel k(·, ·) and
support set S = {(x(i), y(i))}nsv

i=1. Let φ : X → H be the feature map implemented
by the kernel and φ(S) the matrix whose i-th column is given by φ(x(i)). With
this notation, w∗ can be written as w∗ = φ(S)α∗ with α∗ ∈ R

nsv1. In this paper,
we look for approximations of the form u = φ(S)α with sparse u. Support vectors
such that u(i) = 0 are pruned from the approximation.

Our approximation criterion is based on two observations. The first is that
the objective function (3) can be bounded by a differentiable function which
is more convenient for optimization. Importantly, this function also bounds the
expected loss of accuracy incurred by the approximation. Indeed, the following
result (whose proof we omit for space constraints) holds:

1 Note that we have just re-indexed the support vectors in (2) to make the model inde-
pendent of the entire training set and defined αj = yjβj for notational convenience.
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Proposition 1. Consider an SVM implementing the decision function
fw,b(x) = sign(wT φ(x) + b) and an alternative decision function fu,b(x) =
sign(uT φ(x)+b), with u ∈ H. Let �(z) be the hinge loss. Then, ∃M > 0 such that

(i) gISSVM(u) ≤ M ‖u − w‖H , (ii) E (� (yfu(x)) − � (yfw(x))) ≤ M ‖u − w‖H .

The result above suggests that we can substitute w ∈ H in the original SVM
by some u ∈ H such that ‖u − w∗‖2 is small. However, the obtained surrogate
does need to be sparse. Indeed, minimizing ‖u − w∗‖2 in H trivially yields the
original predictor w∗ which is generally dense. We thus need to restrict the
search to a family of sparser models. Our second observation is that a well-
known, computationally attractive and principled way to induce sparsity is �1-
norm regularization, i.e., constraining u to lie in a ball around 0 with respect to
the norm ‖u‖�1 =

∑
i |ui|. Thus, we approach the task of sparsifying the SVM

by solving a problem of the form

min
α∈Rnsv

1
2‖φ(S)α − w∗‖2 s.t. ‖α‖�1 ≤ δ, (4)

where δ is a regularization parameter controlling the level of sparsification. The
obtained problem can be easily recognized as a kernelized Lasso with response
variable w∗ and design matrix φ(S). By observing that

‖w∗ − φ(S)α‖2 = wT
∗ w∗− 2αT

∗ φ(S)T φ(S)α + αT φ(S)T φ(S)α

= wT
∗ w∗ − 2αT

∗ Kα + αTKα = wT
∗ w∗ − 2cT α + αTKα,

(5)

where c = Kα∗, it is easy to see that solving (4) only requires access to the
kernel matrix (or the kernel function):

min
α∈Rnsv

g(α) = 1
2αTKα − cT α s.t. ‖α‖�1 ≤ r. (6)

This type of approach has been considered, up to some minor differences,
by Schölkopf et al. in [12]. However, to the best of our knowledge, it has been
largely left out of the recent literature on sparse approximation of kernel mod-
els. One possible reason for this is the fact that the original proposal had a
high computational cost, making it unattractive for large models. We reconsider
this technique arguing that recent advancements in Lasso optimization make it
possible to solve the problem efficiently using high-performance algorithms with
strong theoretical guarantees [4]. Importantly, we show in Sect. 5 that this effi-
ciency is not obtained at the expense of accuracy, and indeed the method can
match or even surpass the performance of the current state-of-the-art methods.

Algorithm. To solve the kernelized Lasso problem, we adopt a variant of the
Frank-Wolfe (FW) method [5], an iterative greedy algorithm to minimize a con-
vex differentiable function g(α) over a closed convex set Σ, specially tailored to
handle large-scale instances of (6). This method does not require to compute the
matrix K beforehand, is very efficient in practice and enjoys important conver-
gence guarantees [5,9], some of which are summarized in Theorem 1. Given an
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Algorithm 1. SASSO: Sparsification of SVMs via Kernel Lasso.

1 α(0) ← 0, g(0) = c.
2 for k = 1, 2, . . . do

3 Find a descent direction: j
(k)
∗ ← arg maxj∈J |g(k)

j |, t
(k)
∗ ← t sign

(
g
(k)
j∗

)
.

4 Choose a step-size λ(k), e.g. by a line-search between α(k) and u(k).

5 Update the solution: α(k+1) ← (1 − λ(k))α(k) + λ(k)t
(k)
∗ e

j
(k)
∗

.

6 Update the gradient: g
(k+1)
j ← (1 − λ(k))g

(k+1)
j + λ(k)t

(k)
∗ K

jj
(k)
∗

∀j ∈ [nsv].

7 end

iterate α(k), a step of FW consists in finding a descent direction as

u(k) ∈ argmin
u∈ Σ

(u − α(k))T ∇g(α(k)), (7)

and updating the current iterate as α(k+1) = (1 − λ(k))α(k) + λ(k)u(k). The
step-size λ(k) can be determined by an exact line-search (which can be done
analytically for quadratic objectives) or setting it as λ(k) = 1/(k + 2) as in [5].

In the case of problem (6), where Σ corresponds to the �1-ball of radius
t in R

nsv (with vertices V = {±tei : i = 1, 2, . . . , nsv}) and the gradient is
∇g(α) = Kα − c, it is easy to see that the solution of (7) is equivalent to

j∗ = arg max
j∈[nsv]

∣∣φ(sj)T φ(S)α + cj

∣∣ = arg max
j∈[nsv]

∣∣∣
∑

i:αi �=0
αiKij + cj

∣∣∣ . (8)

The adaptation of the FW algorithm to problem (6) is summarized in Algo-
rithm1 and is referred to as SASSO in the rest of this paper.

Theorem 1. Consider problem (6) with r ∈ (0, ‖α∗‖�1). Algorithm1 is
monotone and globally convergent. In addition, there exists C > 0 such that

‖w∗ − φ(S)α(k)‖2 − ‖w∗ − φ(S)α(k+1)‖2 ≤ C/(k + 2). (9)

Tuning of b. We have assumed above that the bias b of the SVM can be
preserved in the approximation. A slight boost in accuracy can be obtained by
computing a value of b which accounts for the change in the composition of
the support set. For the sake of simplicity, we adopt here a method based on a
validation set, i.e., we define a range of possible values for b and then choose the
value minimizing the misclassification loss on that set. It can be shown that it is
safe (in terms of accuracy) to restrict the search to the interval [bmin, bmax] where

bmin = infx∈S:wTx>0 − wTx , bmax = supx∈S:wTx<0 − wTx.
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4 Experimental Results

We present experiments on four datasets recently used in [2,3] to assess SVM
sparsification methods: Adult (a8a), IJCNN, TIMIT and MNIST. Table 1 sum-
marizes the number of training points m and test points t for each dataset. The
SVMs to sparsify were trained using SMO with a RBF kernel and parameters set
up as in [2,3]. As discussed in Sect. 2, we compare the performance of our algo-
rithm with that of the ISSVM algorithm, which has a publicly available C++
implementation [3]. Our algorithms have been also coded in C++. We executed
the experiments on a 2 GHz Intel Xeon E5405 CPU with 20 GB of main memory
running CentOS, without exploiting multithreading or parallelism in computa-
tions. The code, the data and instructions to reproduce the experiments of this
paper are publicly available at https://github.com/maliq/FW-SASSO.

We test two versions of our method, the standard one in Algorithm1, and
an aggressive variant employing a fully corrective FW solver (where an internal
optimization over the current active set is carried out at each iteration, see
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Fig. 1. Test accuracy (y axis) versus sparsity (number of support vectors, x axis). From
top-left to bottom-right: Adult, IJCNN, TIMIT and MNIST datasets.

https://github.com/maliq/FW-SASSO
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Table 1. Time required to build the sparsity/accuracy path. We report the total time
incurred in parameter selection (training with different parameters and evaluation in
the validation set) and the average training time to build a path.

Dataset Method Average train time (secs) Total time (secs) train & val.

Adult Sasso Basic 2.08E+02 2.66E+02

m = 22696 Sasso Agg. 1.99E+02 2.51E+02

t = 9865 ISSVM Basic 2.78E+03 1.97E+04

ISSVM Agg. 1.33E+03 4.71E+04

IJCNN Sasso Basic 8.20E+01 2.74E+02

m = 35000 Sasso Agg. 4.34E+01 1.57E+02

t = 91701 ISSVM Basic 4.23E+03 3.47E+04

ISSVM Agg. 5.35E+03 1.98E+05

TIMIT Sasso Basic 1.57E+02 6.22E+02

m = 66831 Sasso Agg. 1.46E+02 5.24E+02

t = 22257 ISSVM Basic 1.02E+04 7.68E+04

ISSVM Agg. 6.99E+03 2.49E+05

MNIST Sasso Basic 4.03E+01 4.16E+02

m = 60000 Sasso Agg. 3.96E+01 3.93E+02

t = 10000 ISSVM Basic 3.53E+04 3.83E+04

ISSVM Agg. 2.77E+04 9.74E+05

e.g. [5]). The baseline comes also in two versions. The “basic” version has two
parameters, namely �2-norm and η: the first controls the level of sparsity, and
the second is the learning rate used for training. The “aggressive” version has
an additional tolerance parameter ε (see [3] for details). To choose values for
these parameters, we reproduced the methodology employed in [3], i.e., for the
learning rate we tried values η = 4−4, . . . , 42 and for ε (in the aggressive variant)
we tried values ε = 2−4, . . . , 1. For each level of sparsity, we choose a value based
on a validation set. This procedure was repeated over 10 test/validation splits.

Following previous work [2,3], we assess the algorithms on the entire spar-
sity/accuracy path, i.e., we produce solutions with decreasing levels of sparsity
(increasing number of support vectors) and evaluate their performance on the
test set. For ISSVM, this is achieved using different values of the �2-norm para-
meter. During the execution of these experiments, we observed that it is quite
difficult to determine an appropriate range of values for this parameter. Our
criterion was to set this range manually till obtaining the range of sparsities
reported in the figures of [3]. For SASSO, the level of sparsity is controlled by
parameter δ in (4). The maximum value for δ is easily determined as the �1-norm
of the input SVM and the minimum value as 10−4 times the former. To make
comparison fair, we compute 10 points of the path for all the methods.
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Results in Fig. 1 show that the sparsity/accuracy tradeoff path obtained by
SASSO matches that of the (theoretically optimal) ISSVM method [3], and often
tends to outperform it on the sparsest section of the path. However as it can be
seen from Table 1, our method enjoys a considerable computational advantage
over ISSVM: on average, it is faster by 1–2 orders of magnitude, and the overhead
due to parameter selection is marginal compared to the case of ISSVM, where the
total time is one order of magnitude larger than the single model training time.
We also note that the aggressive variant of SASSO enjoys a small but consistent
advantage on all the considered datasets. Both versions of our method exhibit a
very stable and predictable performance, while ISSVM needs the more aggressive
variant of the algorithm to produce a regular path. However, this version requires
considerable parameter tuning to achieve a behavior similar to that observed for
SASSO, which translates into a considerably longer running time.

5 Conclusions

We presented an efficient method to compute sparse approximations of non-linear
SVMs, i.e. to reduce the number of support vectors in the model. The algorithm
enjoys strong convergence guarantees and it is easy to implement in practice.
Further algorithmic improvements could also be obtained by implementing the
stochastic acceleration studied in [4]. Our experiments showed that the proposed
method is competitive with the state of the art in terms of accuracy, with a small
but systematic advantage when sparser models are required. In computational
terms, our approach is significantly more efficient due to the properties of the
optimization algorithm and the avoidance of cumbersome parameter tuning.
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