
Distributed and Parallel Algorithm for
Computing Betweenness Centrality

Mirlayne Campuzano-Alvarez(B) and Adrian Fonseca-Bruzón

Center for Pattern Recognition and Data Mining, Santiago de Cuba, Cuba
{mirlayne,adrian}@cerpamid.co.cu

Abstract. Today, online social networks have millions of users, and con-
tinue growing up. For that reason, the graphs generated from these
networks usually do not fit into a single machine’s memory and the
time required for its processing is very large. In particular, computing a
centrality measure, like betweenness, is expensive on these graphs. For
addressing this challenge, in this paper we present a parallel and distrib-
uted algorithm for computing betweenness. Also, we develop a heuristic
for reducing the overall time, obtaining a speedup over 80x in the best
cases.

Keywords: Online social network · Betweenness centrality · MPI

1 Introduction

Nowadays, online social networks have gained a huge popularity among people
all around the world. An important task in Social Networks Analysis (SNA) is
to discover the most prominent users into a social network by using betweenness
centrality. This measure determines the frequency that a node or an edge acts
as a bridge in the shortest paths in the network.

However, in spite of the massive importance of betweenness, its computation
is expensive in large networks. For that reason, several strategies have been
proposed in the literature to accelerate this process. Some approaches make a
preprocessing of the graph by identifying vertexes with strategical positions
which can be removed or merged, thus reducing the number of nodes to visit
when the shortest paths are calculated [6].

However, due to the fast grow up of online social networks, nowadays previous
techniques are not enough, because the time cost can reach several days and
the main memory of a single machine is not enough to support the network
representation.

To tackle those problems, in this paper we propose a parallel and distributed
algorithm for computing betweenness using MPI. Also, we propose a modifica-
tion that allows our algorithm speed up when it is used in sparse networks. The
experimental results show that our proposal is suitable to process large networks
and it can be adapted according to the available resources.

c© Springer International Publishing AG 2017
C. Beltrán-Castañón et al. (Eds.): CIARP 2016, LNCS 10125, pp. 184–191, 2017.
DOI: 10.1007/978-3-319-52277-7 23

Distributed and Parallel Algorithm for Computing Betweenness Centrality 185

The rest of the paper is organized as follows. First, we expose some definitions
related with graph and betweenness concepts. Then, is given a brief description of
previous works, including an explanation of the sequential algorithms used. Next,
we explain our proposal. Finally, we describe the experimental environment,
present the results and make an analysis of them.

2 Background

Commonly, social networks are represented by a graph G = (V,E) where V is
a set of nodes, n = |V | and E a set of edges, m = |E|. In this paper we use
unweighted and undirected graphs. Let ds be the distance array of the shortest
paths from the source vertex s to each node of the graph. We denote σst(v) as
the number of the shortest paths from s to t that pass through v and σst the
number of the shortest paths from s to t, ∀t ∈ V .

Betweenness is considered a medial centrality measure, because all walks
passing through a node are considered [1]. Formally, it is defined as:

Cb(v) =
∑

s �=v,v �=t
s,v,t∈V

σst(v)
σst

(1)

The betweenness computation involves two main steps: determining the
shortest paths and computing the betweenness values. The first step implies
to determine a Directed Acyclic Graph (DAG) for a selected source node s. The
second step, consists in the computation of the betweenness value for each node
in the DAG previously computed. This process must be repeated taking every
node of graph as source node.

According to Eq. 1, betweenness is costly to compute because requires O(n3)
run-time. In large networks this implies that compute exact betweenness of all
nodes can take hours, even days. For that reason, have been proposed algorithms
and methods to reduce the time required for its computing.

The best known sequential algorithm was proposed by Brandes in [3]. The
author defined the dependency of a node v for a given source s as is shown in
Eq. 2, where Ps(w) is the set of predecessors of w in the DAG rooted by s:

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw
∗ (1 + δs•(w)) (2)

Then, the betweenness value of a node v will be the sum of δ(v) for each
s ∈ V, s �= v. Using Eq. 2, the running time of the algorithm was reduced to
O(nm) for unweighted graphs. But this reduction in the time cost is not enough
for large social networks.

In [2] was proposed a new algorithm which speed up the Brandes’s. This
method take advantage of the sparsity of social networks identifying the nodes
of degree 1. The authors point out that those that had none value of between-
ness, however their presence is influential in the betweenness value of their

186 M. Campuzano-Alvarez and A. Fonseca-Bruzón

only neighbor. Thus, they compute the betweenness value of the neighbors
of the “hanging” nodes once. Then, those nodes can be removed and the
process is repeated for residual graph until there are not more nodes with
degree 1. The betweenness value of the removed nodes is computed as follows:
Cb(v) = Cb(v)+(n−p(v)−p(u)−2)∗(p(u)+1), where p is an array which store
in the position p(i) the number of nodes removed from the sub-tree rooted i.

To keep correctness of Brandes’s algorithm they modified the dependency
formula as is shown below:

δs•(v) =
∑

w:v∈Ps(w)

σsv

σsw
∗ (1 + δs•(w) + p(w)) (3)

Finally, the betweenness value of the remaining nodes of the graph is com-
puted as follows:

Cb(w) = Cb(w) + δ(w) ∗ (p(s) + 1), w �= s (4)

In [4] was proposed a distributed algorithm to compute betweenness using
successor sets instead of predecessor sets. They used the Δ-stepping algorithm
during the shortest path traversal [5], allowing use their proposal for weighted
and unweighed graphs as well. This is a space efficient approach incorporated at
present in the Parallel Boost Graph Library. However, as the authors themselves
point out on the experimental results, the algorithm is faster than the sequential
version when are available 16 processors or more. Besides, they do not propose
any heuristic to distributed nodes, so they need to search across processors where
are store vertexes every time they send a message.

3 Our Proposal

In this paper, we propose a solution to reduce the time required for computing
the shortest paths using a distributed schema. First, we distribute the nodes of
the graph using a round robin strategy across the available processors. Then, we
determine the DAGs rooted by the subset of nodes which belong to every proces-
sor. Next, we determine the number of the shortest paths that pass through the
nodes that lie in the DAGs previously determined. Finally, we compute the
dependency values and the betweenness contribution of the nodes reached in the
DAGs.

In our case, we opted for distributing the network nodes across the p available
processors. Each node is tagged with a unique id (0 ≤ id < n) and they will be
allocated to the processor r if id mod p = r. Using this strategy, each processor
stores a subset of nodes of the graph and we are able to know in which processor
the nodes are allocated.

When the shortest paths are computed, it is necessary to visit all the reach-
able nodes. Due to the vertexes are distributed in multiple processors, it is neces-
sary to send messages requesting the needed nodes and receive those nodes and

Distributed and Parallel Algorithm for Computing Betweenness Centrality 187

their neighbors. This situation might imply a lot of communications and thus
an increase of the time cost compared with the sequential version. To avoid that
problem, we propose the use of two threads on each processor. The first one do
the real computation, and also it demands and receives the needed nodes. The
second thread attends requests, builds the array of neighbors and send the nodes
in demand along its neighbors to the processor which need them. Thus, we over-
lap some computations and communications. In this way the over all time cost is
reduced because the overlapping of both the computation and communications
process.

As we model the network as an unweighted and undirected graph, we use
the BFS algorithm to determine the shortest paths. This algorithm performs a
breadth search starting at a root node si, by means, it visits the nodes by levels
and do not pass to next level until are visited all nodes at the current level.
This process must be repeated taking each node of the graph as root. As we
have the graph distributed across multiple processors, we are able to discover in
parallel the DAG corresponding to a source node s on each processor. However,
we notice that various si at the same processor might need the same nodes
in the same level of BFS algorithm. For that reason, we propose to expand
the DAGs corresponding to several si at the same time. The number of DAGs
simultaneously expanded is controlled by the parameter ch. This strategy reduces
communications which leads thrift of time.

Nevertheless, we need to store the DAGs corresponding to each source node
and this implies keep loaded in memory a lot of information, because apart from
the Ss(v), we need the σ and ds arrays and a stack S, which stores the nodes in
non-increased order from the root, for each source node. Due to the amount of
information we need to store, is necessary to minimize the number of structures
used in our algorithms. For that reason, we opted for obtaining the number of
the shortest paths σ later, because this structure is not needed to discover the
shortest paths and it can be deduced from the successors array.

We can deduce the nodes that will be visited at next level from the array
ds of the following way: the first thread only requests those nodes which are
not visited yet and that are going to be reachable at next level. This is made
by checking the arrays ds, which are updated before a node is visited. And this
process is repeated until there are no more vertexes to process.

Once there have been determined the DAGs, the dependency value of each
node is calculated. Then, we compute the dependency value and finally a partial
betweenness. That procedure is made in each processor in parallel.

Finally, when the contribution to betweenness of all nodes of the graph has
been computed and stored in the δ arrays, we are able to compute the final score.
To get the betweenness value of each node, we perform a reduction of the partial
values.

3.1 Modification for Sparse Networks

As social networks often are distinguished by their sparsity, this property can be
taking in advantage to speed up the betweenness computation. This was made

188 M. Campuzano-Alvarez and A. Fonseca-Bruzón

by using the idea of the SPVB algorithm, in [2]. In our approach, we modified
our previous distributed algorithm by adding a preprocessing step. First, we
look up, in parallel, for all connected components, the number of vertex in each
component and which of them belongs to each vertex. Then, we determine, in
parallel the nodes of degree 1 for each connected component. For those nodes,
we compute the betweenness value that they aport to its unique neighbor and
finally those nodes are removed. With the residual graph, we repeat this step,
until there are not more nodes of degree 1. Also, we removed the nodes of degree
0. When is finished the pre-processing step, we compute the shortest paths as we
explained before and employed Eqs. 3 and 4 to keep correctness of betweenness
values.

3.2 Analysis

We consider the worse of the cases to make our analysis, and we focus in the
stage of computing the shortest paths, because is there where we propose the
major changes. As we process several source nodes at the same time, this process
depends of the parameter ch, and the minimum value that it can take is 1, which
means that the process must be repeated by taking a single source node s each
time, i.e. n/p times for each processor. Then, to select the nodes in the shortest
paths, visit the n nodes of the graph at most diam times, where diam is the
diameter of the network.

The amount of memory consumed on each processor depends of the parame-
ter ch, because we almost use the same structures than the Brandes’s algorithm,
but for several source nodes at the same time. Also, as we employ threads, the
processes share all the data.

4 Experiments

For validating our proposal, we conducted several experiments with different
datasets corresponding to real networks. We analyze the performance of our
proposal in comparison with Brandes’s algorithm. Also, we make an analysis of
the rate between computing time and communications time in our method in
relation to the number of processor employed.

Table 1. Datasets from standford large network collection

Dataset Nodes Edges Average % Hang

soc-Slashdot0922 82168 948464 11.54 2.19

Email-Enron 36692 183831 10.02 31.09

soc-Epinions 75879 508837 6.71 50.84

Email-EuAll 265214 420045 1.58 86.34

Distributed and Parallel Algorithm for Computing Betweenness Centrality 189

To implement our algorithms we use the C++ language programming. To
run the experiments, we employed a cluster of 13 machines, each of them with:
4 GB of RAM DDR2, processor DualCore Opteron 2.66 GHz.

We use four well known datasets from Stanford Large Network Dataset Col-
lection1. These datasets were selected attending their features, especially the
density of the network, as is shown in Table 1. The column Average indicates
the average degree of each node. As can be observed, the datasets present dif-
ferent density of edges per nodes. The column % Hang indicates the percent
of nodes that can be removed from the graph when the modification for sparse
networks is applied.

Table 2. Speedup

Datas soc-Slashdot0922 Email-Enron soc-Epinions Email-EuAll

Procs DBB DSPVB DBB DSPVB DBB DSPVB DBB DSPVB

2 0.75 2.06 0.99 1.86 0.57 2.78 0.38 20.92

3 1.07 2.99 1.36 2.65 0.80 4.00 0.58 26.82

4 1.41 3.98 1.74 3.39 1.00 5.08 0.64 33.60

5 1.68 4.78 2.14 4.10 1.20 6.17 0.70 39.51

6 1.99 5.75 2.49 5.01 1.36 7.58 0.77 45.43

7 2.22 6.50 2.86 5.60 1.55 8.59 0.83 53.45

8 2.59 7.49 3.16 6.25 1.71 9.61 0.92 60.29

9 2.87 8.55 3.56 6.99 1.92 11.01 0.99 61.59

10 3.15 9.28 3.86 7.60 2.10 11.89 1.03 71.94

11 3.41 10.19 4.14 8.36 2.33 12.94 1.16 77.83

12 3.66 10.99 4.48 8.99 2.50 14.11 1.27 80.58

13 3.96 11.72 4.86 9.59 2.68 15.07 1.34 86.29

To evaluate our proposal, we set ch = 50 and we use the speedup as measure.
Speedup is defined as the ratio between the sequential time and the parallel
time. In Table 2 we show the results, we tagged as DBB (Distributed Bran-
des Betweenness), to our distributed algorithm based in the Brandes one; and
DSPVB (Distributed the Shortest Paths Vertex Betweenness) is the modification
based in the idea of the SPVB algorithm. As can be observed, the speedup of our
DSPVB proposal always gets better behavior than the sequential algorithm and
the speedup increases when we augment to number of processors in all cases. In
other hands, we noted that when the graph, which represent the social network,
is sparse is better to used the DSPVB algorithm, because it can achieve a speed
up over 80x, as happened with Email-Euall dataset. It is important to highlight
this result, because a special feature of social networks is their sparsity. However,
a better performance depends of the network sparsity as well as the number of
nodes eliminated on preprocessing step.
1 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/

190 M. Campuzano-Alvarez and A. Fonseca-Bruzón

2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Processors

Email-Enron

2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Processors

Email-Euall

2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Processors

Slashdot0922

2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

Processors

soc-Epinions

Fig. 1. Time per cent of communications (white bars) and processing (black bars)

We also study the behavior of our proposal with respect to time consuming
when it is processing and when it is communicating. In each chunk of 50 sources
nodes, from which we expanded the DAGs at the same time in each processor,
we measured both times and we computed the average per chunk and the results
are shown in the Fig. 1. To establish a comparison, we only show the result of
our first proposal, because the other one has a similar behavior.

As we can be observed for all the datasets, the processing time is bigger than
the communication time, because in all cases the average time that processors
wait for send o receive messages never is greatest than 15 %. That proves that

2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

Fig. 2. Time log10 of Boost (black bars) and DBB (white bars).

Distributed and Parallel Algorithm for Computing Betweenness Centrality 191

our strategies for reducing the number of message actually work, also proves
that we reach to overlap communications and processing by using two threads.

We conducted an experiment to compare our DBB algorithm with the one
proposed in [4]. In the Fig. 2, we only show the results of the Email-Enron dataset
set, because is the smallest one and there is high difference of time. We can notice
that our algorithm is faster than the one implemented in the Boost Library.

5 Conclusions and Future Work

In this paper we presented a distributed and parallel algorithm to compute
betweenness centrality. Also, we proposed a version which take advantage of
the sparsity of social networks to remove iteratively vertexes of degree 1 and
thus reduce the amount of computation. In the experimental results we showed
that our proposal is more efficient than the sequential Brandes algorithm. In
addition, we overlap communication and processing, thus reducing the delay in
the messages interchange due to the use of two threads by processor. Moreover,
it necessary to highlight that in our experimental results we observe that our
DSPVB algorithm had better performance than the sequential one when we use
2 processors or more for all datasets. Also, in both algorithms, DBB and DSPVB,
the speedup increases when we augment the number of processors, which means
that our algorithms scale well.

Besides, we proposed to work in a strategy to reduce the memory consump-
tion by not storing the successor arrays for each source node. Moreover, we
believe that is possible to reduce the processing time employing a global array
for each processor to indicate, during the computing the shortest paths step, the
nodes that are going to be visited at next level, instead of traverse the distance
arrays.

References

1. Aggarwal, C.C. (ed.): Social Network Data Analytics. Springer, Heidelberg (2011)
2. Baglioni, M., Geraci, F., Pellegrini, M., Lastres, E.: Fast exact computation of

betweenness centrality in social networks. In: Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012),
pp. 450–456. IEEE Computer Society (2012). http://dx.doi.org/10.1109/ASONAM.
2012.79

3. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25,
163–177 (2001)

4. Edmonds, N., Hoefler, T., Lumsdaine, A.: A space-efficient parallel algorithm for
computing betweenness centrality in distributed memory. In: HiPC, pp. 1–10. IEEE
Computer Society (2010)

5. Meyer, U., Sanders, P.: Δ-stepping: a parallel single source shortest path algorithm.
In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS,
vol. 1461, pp. 393–404. Springer, Heidelberg (1998). doi:10.1007/3-540-68530-8 33

6. Sariyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Shattering and compressing
networks for betweenness centrality. In: SIAM Data Mining Conference (SDM).
SIAM (2013)

http://dx.doi.org/10.1109/ASONAM.2012.79
http://dx.doi.org/10.1109/ASONAM.2012.79
http://dx.doi.org/10.1007/3-540-68530-8_33

	Distributed and Parallel Algorithm for Computing Betweenness Centrality
	1 Introduction
	2 Background
	3 Our Proposal
	3.1 Modification for Sparse Networks
	3.2 Analysis

	4 Experiments
	5 Conclusions and Future Work
	References

