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Abstract. Deep brain stimulation (DBS) is a surgical technique used to
treat movement disorders. The volume of tissue activated (VTA) is a con-
cept that partly explains the effects of DBS. Its visualization as part of
anatomically accurate reconstructions of the brain structures surround-
ing the DBS electrode has been shown to have important clinical applica-
tions. However, the computation time required to estimate the VTA with
traditional methods makes it unsuitable for practical applications. In this
study, we develop a hierarchical K-nearest neighbor approach (HKNN)
for VTA computation to address that hurdle. Our method reduces the
time to estimate the VTA by four orders of magnitude, to hundredths
of a second. In addition, it keeps the error with respect to the stan-
dard method for VTA estimation in the same range of that obtained
with alternative machine learning approaches, such as artificial neural
networks, without the limitations entailed by them.
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1 Introduction

Deep brain stimulation (DBS) is a treatment for movement disorders, such
as Parkinson’s disease, dystonia, or essential tremor. It usually consists of the
implantation of a stimulator in the infraclavicular region connected to an elec-
trode lead that is placed in a target structure in the basal ganglia (the subthala-
mic nucleus (STN) or the thalamus). The stimulator delivers electric pulses of
a specific frequency, amplitude, and pulse-width to the target via the electrode,
which results in symptom improvement [5]. Despite its effectiveness, the exact
mechanisms of action of DBS remain elusive, and most of the current understand-
ing of these mechanisms has come from computer simulations [7]. The volume of
tissue activated (VTA), the spatial spread of direct neural activation in response
to the DBS electric pulses, is a popular concept to partly explain the effects of
DBS [2]. The visualization of the VTA as part of anatomically accurate recon-
structions of the brain structures surrounding the implanted electrode allows
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the clinical specialist to observe the areas that are responding directly to the
delivered stimulus. This has been proven particularly useful for the post-surgical
adjustment of the stimulation parameters, one of the most challenging aspects
of the treatment. A faster adjustment of the DBS parameters saves the patient
both time and discomfort. However, the computational burden for computing a
patient-specific VTA is still tedious [4].

The gold standard for VTA estimation involves the computation of the brain
tissue response to the electrical stimulation through a field of multi-compartment
axon models [3]. Unfortunately, it is computationally intensive to be used as part
of a system that allows the clinical specialist to visualize the VTA generated by a
specific combination of stimulation parameters. This has led to machine learning
methods that minimize the use of such models by taking advantage of the relation
between the location of the axons in space and the electrical stimulation. Authors
in [4] proposed the use of two artificial neural networks (ANNs) with the DBS
stimulation parameters as inputs and the elliptic profiles defined by the active
axons as outputs. Once trained, the neural networks can estimate the VTA
for any combination of stimulation parameters. However, the elliptic profiles
assumed generate small deviations from the actual contours of activation and
this method only works under the assumption of isotropic tissue conductivity.
Recently, we presented an alternative method that considers the problem of
determining the VTA from a field of axons as equivalent to a binary classification
task [6]. So, we use a Gaussian process classifier (GPC) to determine whether
an axon at a given position in space is active due to DBS. This approach works
independently of the assumed tissue conductivity conditions and cuts down to a
tenth the time for VTA estimation. Nonetheless, this reduced computation time,
in the range of minutes, is still too high for practical applications.

In this work, we explore a hierarchical K-nearest neighbor approach (HKNN)
to accelerate the estimation of the VTA [1,8]. In this sense, HKNN is a data-
driven approximation of an expected squared error functional towards a local
weighted VTA averaging. The weights are computed as a softmax gating func-
tion applied over a set of features estimated from the DBS stimulation parameter
space. Our aim is to reduce the computation time needed to estimate the VTA
generated by the electrical stimulation delivered by the DBS electrode, for a
specific configuration of stimulation parameters, while trying to reproduce the
results that would be obtained with the standard method. Our results show that
HKNN outperforms the state of the art approaches in terms of computational
cost, achieving fast estimations and low errors with respect to the gold stan-
dard simulation. The remainder is as follows: Sect. 2 describes the materials and
methods. Sections 3 and 4 describe the experimental set-up and the obtained
results, respectively. Finally, the conclusions are outlined in Sect. 5.

2 Materials and Methods

Let X ∈ X and Y ∈ Y be a pair of random variables representing the DBS stimu-
lation parameters and the VTA spaces X and Y, respectively. Here, we introduce



VTA 127

a data-driven approach to estimate a new VTA y ∈ Y from a given DBS stimu-
lation sample x ∈ X through the minimization of the following expected square
error functional:

f∗ = arg min
f

EEEX

{
EEEY |X

{
(Y − f(g(X)))2 |g(X)

}}
, (1)

where g : X → H is a mapping function from the DBS stimulation parameter
space X to a given feature representation space H coding relevant patterns,
and f : H → Y is a regression function from H to the VTA space Y. Then, a
pointwise solution of Eq. (1) is carried out, yielding:

f (g(x)) = EEEY |X {Y |g(X) = g(x)} . (2)

Now, let X ∈ R
N×Q and Y ∈ {0, 1}N×P be a couple of sample matrices

holding Q stimulation parameters, P axons, and N samples (X ⊂ R
N×Q,

Y ⊂ {0, 1}N×P ). Namely, each row vector xi ∈ R
Q (i ∈ {1, . . . , N}) in X holds

the stimulation parameters employed to compute the i-th VTA yi ∈ {0, 1}P ,
which is stored through axon concatenation. Note that yip = 1 (p ∈ {1, . . . , P})
if the p-th axon is activated by the DBS device, otherwise, yip = 0. So, to estimate
f in Eq. (2) from X and Y , a weighted average approximation is computed as:

f̂ (g(x)) =
∑

y ∈ Ωy

wkyk,∀yk ∈ Ωy (3)

where Ωy is a set containing the K nearest neighbors of y in Y and wk ∈ R
+

(k ∈ {1, . . . , K}). In particular, a hierarchical neighborhood is computed by con-
sidering both the feature representation space H and the DBS contacts as:

Ωy ={yk : δ (||c||1 − ||ck||1) = 1,d (g(x), g(xk)) ≤ d (g(x), g(xK))}, (4)

where c ∈ {1, 0,-1}C stores the configuration of the C DBS contacts (1, 0 and
−1 represent anodic activation, inactivation or cathodic activation, respectively),
δ(·, ·) stands for the delta function that selects the contact configuration state
(one or two active contacts) in a hierarchical process, and xK is the K-th neigh-
bor of x in X according to the Euclidean distance operator d (·, ·). The specific
form of g(·) is given in Sect. 3. Moreover, to assess the relative importance of yk,
a softmax gating function is used for estimating wk:

wk =
exp (−d (g(x), g(xk)))∑

xj ∈ Ωx

exp (−d (g(x), g(xj)))
, (5)

where Ωx is the set containing the corresponding elements of Ωy in the DBS stim-
ulation parameter space. Finally, a thresholding procedure (ζ ∈ [0, 1]) is applied
to estimate the new VTA ŷ ∈ {0, 1}P as follows:

ŷp =

{
1 f̂ (g(x)) > ζ

0 otherwise
. (6)
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3 Experimental Set-Up

We built a database of the VTAs generated by 1000 randomly selected com-
binations of realistic stimulation parameters, relevant in the context of VTA
estimation, for the Medtronic ACTIVA-RC stimulator [9]. Thereby, the DBS
stimulation parameter space is limited as follows: four contacts c = {c0, c1, c2,
c3}, where a maximum of two simultaneously active contacts are analyzed, e.g.,
monopolar and bipolar configurations, amplitude values a ∈ [0.5, 5.5] [V], and
pulse-width values w ∈ [60, 450] [μs]. The electric potentials are generated for 200
monopolar (one active contact) and 800 bipolar (two active contacts) stimulation
configurations as in [6]. An isotropic and homogenous brain tissue medium, and
an encapsulation layer of 0.5 [mm] are assumed. This procedure is repeated for
three different encapsulation layer conductivities: 0.680 [Sm−1], 0.128 [Sm−1],
0.066 [Sm−1], to represent low (∼ 500 [Ω]), medium (∼ 1000 [Ω]), and high
(∼ 1500 [Ω]) impedance conditions [4], yielding a total of 3000 electric poten-
tial distributions. Afterwards, the electric potentials are interpolated onto each
section of a field of 4144 multi-compartment axon models of diameter 5.7 [μm],
which are oriented perpendicularly to the axis of the electrode (see Fig. 1(a)),
and positioned into a grid of width 9 [mm] and height 27.75 [mm]. Furthermore,
the axons share a space of 0.25 [mm] between them in both the vertical and the
horizontal directions. The response of the axons to the stimulating potentials
defines each VTA: axons that fire an action potential per stimulation pulse are
considered active and their positions in space shape the VTA [3]. Figure 1(b)
depicts one of such shapes, a VTA for a monopolar configuration, and its spatial
interaction with a representation of the STN. The use of multi-compartment
axon models coupled to a stimulating electric field to estimate the VTA, as
described above, is what we refer to as the gold standard for VTA estimation.
All the axonal response simulations are implemented in NEURON 7.3.

Moreover, the g function in HKNN is defined as follows g(x) = [mxc,
mxabs(c)], where abs(·) is the element-wise absolute value operator, and mx ∈ N

is an approximation of the number of activated axons in y given x. Namely, mx =
�(x|a,w, c), where �(·|·) is a polynomial function. For concrete testing, the poly-
nomial order of � is fixed as six aiming to code nonlinear data relations. Unless
otherwise is stated, the number of nearest neighbors in Eq. (4) is set to K = 3,
and the threshold ζ in Eq. (6) is set to 0.6 (see Fig. 3 for details).

Two benchmarks are considered for validating the introduced HKNN app-
roach. First, a classifier based on Gaussian processes (GPC) is used to estimate
the VTA [6]. To this end, a random sample of 500 axons is taken from the
total axonal population. Next, a multi-compartment simulation is executed to
determine which of the sampled neural fibers are active during the stimulation.
The information provided by the multicompartment simulation is converted to
a set of labeled data. These data are used to train the GPC. The classifier is
trained using a general purpose kernel (squared exponential covariance function
with automatic relevance determination), and using Laplace’s approximation to
the posterior. The VTA is estimated by predicting which of the 4144 axonal
fibers would be activated by the applied stimulus. Second, an artificial neural
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networks approach (ANNs) is tested as described in [4]. Hence, the ANN method
allows modeling the spread of activation for both monopolar and bipolar stimu-
lation. Particularly, two feed-forward networks are trained to estimate the acti-
vation towards an ellipse parametrization. The former describes the size of each
activation region and the latter determines their placement along the electrode
shaft. The ANNs are trained using one hidden layer with 20 elements, a sigmoid
transfer function, and a linear output layer. As quantitative measures both the
computational time and the prediction error are considered. With respect to the
prediction error, each estimated VTA is compared with the VTA obtained with
the gold standard approach as follows ε = (FP + FN)/m, where FP and FN
are the false positives and false negatives with respect to the reference dataset
(the VTAs from the database), and m is the reference number of active axons
[4]. The errors are computed using a cross-validation scheme.

Fig. 1. (a) DBS electrode and VTA representations (Medtronic, model 3389). (b) 3D
depiction of a VTA and its spatial interaction with the STN.

4 Results and Discussion

Figure 2 shows the VTA generated by a stimulation of 2.5 [V ], 330 [μs], with
contacts c3 and c4 configured as an anode and a cathode, respectively. The
region of activation is formed by the axons that fired an action potential because
of the applied stimulus (green dots). The axons that do not respond to the
stimulation are depicted in black. Figure 2(a) shows the extent of activation
obtained with the gold standard for VTA estimation. Figure 2(b) to 2(d) show
the VTAs predicted by the HKNN approximation, the ANNs, and the GPC.
Besides, their corresponding errors with respect to the gold standard are shown.
In this regard, the errors for the methods studied arise from different factors: The
GPC is based on the assumption that axons are independent from one another
while ignoring the clear spatial relationship between active axons. The ANNs
take into account the spatial relationships among axons, but in modeling it as
ellipses they neglect the fine details of the distribution of active axons. Now, our
approach assumes smooth variations in the VTA as a result of small variations in
the DBS stimulation parameters space (provided that the activation status and
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Fig. 2. VTA stimulation for 2.5 [V], 330 [μs], and c2 and c3 configured as an anode
and a cathode. (a) Gold standard, (B) HKNN, (c) ANNs, and (d) GPC. (Color figure
online)

polarity of the electrode contacts is held constant). So, it requires the presence of
a set of VTAs similar to the desired VTA, thus, a database coding representative
VTA shapes and sizes must be available for a successful estimation of the extent
of neural activation. Figure 3 shows the error surfaces obtained with the HKNN
algorithm for a parametric sweep over the number of nearest neighbors K and
the binarization threshold ζ, for the (a) monopolar and (b) bipolar cases. The
lowest errors occur when K < 5 and 0.4 ≤ ζ ≤ 0.6. That such a small number of
neighbors suffices to estimate a new VTA points to the aforementioned smooth
variations in the VTA in response to small changes in the stimulation parameters.

Despite these shortcomings, our results show that the proposed HKNN repro-
duces closely the results of the gold standard. Figure 4 shows the error distri-
butions produced by the different approaches, discriminated by the number of
active contacts and by the impedance condition. The top row corresponds to the
errors for the monopolar case and the bottom row to the errors for the bipo-
lar case. For all the methods studied, the error tends to grow with the number
of active contacts, because of the higher complexity of the shape of the VTA,
and with the impedance of the encapsulation tissue. A higher impedance will
result in smaller VTAs, that is, a smaller number of active axons, and because
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Fig. 3. Median error surfaces obtained with the proposed method for a parametric
sweep over K and ζ for (a) monopolar case, (b) bipolar case.
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Fig. 4. Distributions of the error between the methods studied and the gold standard
for VTA estimation, discriminated by the impedance condition and by the number of
active contacts. Top row, monopolar case. Bottom row, bipolar case.
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Fig. 5. Average errors versus the evaluation times for VTA estimation (models running
in a Dell optiplex 990 with an Intel Core i7-2600 processor, and 8 GB RAM).

of the definition of the error measure, any false positive or false negative will
be penalized more heavily. In addition, HKNN presents the lowest median error
regardless of the number of active contacts or the impedance condition.

Figure 5 shows the average error versus the average evaluation time (compu-
tational load) for all the approaches tested across all DBS stimulation conditions
considered. As seen, our method reduces the computation time to hundreds of a
second, a figure that is well within the range of times needed for practical appli-
cations. This reduction also represents a decrease of four orders of magnitude in
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the VTA estimation time, compared with the gold standard. Hence, the intro-
duced HKNN is faster than the GPC, and its evaluation time is of the same
order than that of the ANNs. However, the HKNN outperforms the ANNs in
terms of the prediction error.

5 Conclusions

In this study we develop a novel approach, termed HKNN, to speed up the
computation of the VTA during DBS. The HKNN estimates a target VTA, given
a set of stimulation parameters, from a database of precomputed VTAs. Our
approach outperforms the state of the art approach in terms of computational
cost, achieving fast estimation (fraction of a second) and low errors with respect
to the gold standard simulation. In particular, it outperforms a GPC-based VTA
estimation method [6], in terms of its computation time, while matching its
prediction errors. In addition, HKNN matched the computation time of an ANN-
based method [4], outperforming it in terms of the prediction error. Our method
is heavily dependent on the size of the database used to interpolate the VTAs,
and can produce larger errors when the VTA is comprised of a small number of
active axons. We will tackle this issues exploring most robust machine learning
techniques such as support vector machines (SVMs). Testing our approach for
VTAs obtained under anisotropic conditions will also be a future line of work.

Acknowledgments. This study was developed under grant supported by the project
111065740687 funded by Colciencias.

References
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