
Chapter 10

Spontaneous Symmetry Breaking

As we shall see, the undeniable natural phenomenon of spontaneous symmetry
breaking (SSB) seems to indicate a serious mismatch between theory and reality.
This mismatch is well expressed by what is sometimes called Earman’s Principle:

‘While idealizations are useful and, perhaps, even essential to progress in physics, a sound
principle of interpretation would seem to be that no effect can be counted as a genuine
physical effect if it disappears when the idealizations are removed.’ (Earman, 2004, p. 191)

To describe the various examples apparently violating Earman’s Principle (and
hence the link between theory and reality) in a general way (so general even that it
will encapsulate the measurement problem), it is convenient to install a definition:

Definition 10.1. Asymptotic emergence is the conjunction of three conditions:

1. A higher-level theory H (which is often called a phenomenological theory or
a reduced theory) is a limiting case of some theory!lower-level L (often called
fundamental theory or a reducing theory).

2. Theory H is well defined and understood by itself (typically predating L).
3. Theory H has features that cannot be explained by L, e.g. because L does not

have any property inducing those feature(s) in the pertinent limit to H.

In connection with SSB (as item 3.) we will look at the following pairs (H,L):

• – H is classical mechanics (notably of a particle on the real line R);
– L is quantum mechanics (on the pertinent Hilbert space L2(R));
– The limiting relationship between the two theories is as described in §7.1 (no-

tably by the continuous bundle of C*-algebras (7.17) - (7.19) for n = 1).
• – H is classical thermodynamics of a spin system;

– L is statistical mechanics of a quantum spin system on a finite lattice;
– Their limiting relationship is as described in §8.6 (cf. Theorem 8.4).

• – H is statistical mechanics of an infinite quantum spin system;
– L is statistical mechanics of a quantum spin system on a finite lattice;
– The limiting relationship between H and L is given in §8.6 (cf. Theorem 8.8).
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Of course, there are many other interesting example of (apparent) asymptotic emer-
gence not treated in this book, such as geometric optics (as H) versus wave optics
(as L), where the new feature of H would be the absence of interference of light
rays—foreshadowing the measurement problem of quantum mechanics!— or hy-
drodynamics (as H) versus molecular dynamics (as L), where the new feature is
irreversibility. Perhaps space-time asymptotically emerges from quantum gravity.

The “unexplained” features of H mentioned in the third part of Definition 10.1 are
often called emergent, although this term has to be used with great care. Its meaning
here reflects the original use of the term by the so-called “British Emergentists”
(whose pioneer was J.S. Mill), as expressed in 1925 by C.D. Broad:

‘The characteristic behaviour of the whole could not, even in theory, be deduced from the
most complete knowledge of the behaviour of its components, taken separately or in other
combinations, and of their proportions and arrangements in this whole. This is what I un-
derstand by the ‘Theory of Emergence’. I cannot give a conclusive example of it, since it is
a matter of controversy whether it actually applies to anything.’ (Broad, 1925, p. 59)

In quotations like these, the notion “emergence” is meant to be the very opposite of
the idea of “reduction” (or “mechanicism”, as Broad called it); in fact, for many au-
thors this opposition seems to be the principal attraction of emergence. In principle,
two rather different notions of reduction then lead (contrapositively) to two different
kinds of emergence, which are sometimes mixed up but should be distinguished:

1. The reduction of a whole (i.e., a composite system) to its parts;
2. The reduction of a theory H to a theory L.

In older literature concerned with the reduction of biology to chemistry (challenged
by Mill) and of chemistry to physics (still contested by Broad), the first notion also
referred to wholes consisting of a small number of particles. That notion of emer-
gence seems a lost cause, since, as noted by Hempel,

‘the properties of hydrogen include that of forming, if suitably combined with oxygen, a
compound which is liquid, transparent, etc.’ (Hempel, 1965, p. 260)

A similar comment applies to e.g. the tertiary structure of proteins, but also to cases
of emergence such as ant hills, slime mold, and even large cities (Johnson, 2001),
all of which are actually fascinating success stories for reductionism.

More recently, the apparent possibility that very large assemblies of parts might
give rise to emergent properties of the corresponding wholes has become increas-
ingly popular, both in physics and in the philosophy of mind (where consciousness
has been proposed as an emergent property of the brain). In physics, the modern dis-
cussion on emergence in physics was initiated by P.W. Anderson, who in a famous
essay from 1972 called ‘More is different’ emphasized the possibility of emergence
in very large systems (surprisingly, Anderson actually avoids the term ‘emergence’,
instead speaking of ‘new laws’ and ‘a whole new conceptual structure’). In partic-
ular, Anderson claimed SSB to be an example (if not the example) of emergence,
duly adding that one really had to take the N →∞ limit. Thus at least in physics, the
interesting case for emergence in the first (i.e. whole-part) sense arises if the ‘whole’
is strictly infinite, as in the thermodynamic limit of quantum statistical mechanics.
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This example confirms that 1. and 2. often go together, but they do not always do:
the classical limit of quantum mechanics is a case of pure theory reduction.

A clear description of emergence has also been given by Jaegwon Kim:

1. Emergence of higher-level properties: All properties of higher-level entities arise out of
the properties and relations that characterize their constituent parts. Some properties of
these higher, complex systems are “emergent”, and the rest merely “resultant”. Instead
of the expression “arise out of”, such expressions as “supervene on” and “are conse-
quential upon” could have been used. In any case, the idea is that when appropriate
lower-level conditions are realized in a higher-level system (that is, the parts that con-
stitute the system come to be configured in a certain relational structure), the system
will necessarily exhibit certain higher-level properties, and, moreover, that no higher-
level property will appear unless an appropriate set of lower-level conditions is realized.
Thus, “arise” and “supervene” are neutral with respect to the emergent/resultant distinc-
tion: both emergent and resultant properties of a whole supervene on, or arise out of,
its microstructural, or micro-based, properties. The distinction between properties that
are emergent and those that are merely resultant is a central component of emergen-
tism. As we have already seen, it is standard to characterize this distinction in terms of
predictability and explainability.

2. The unpredictability of emergent properties: Emergent properties are not predictable
from exhaustive information concerning their “basal conditions”. In contrast, resultant
properties are predictable from lower-level information.

3. The unexplainability/irreducibility of emergent properties: Emergent properties, unlike
those that are merely resultant, are neither explainable nor reducible in terms of their
basal conditions.’ (Kim, 1999, p. 21, italics added)

Similarly, Silberstein (2002) states (paraphrased) that a higher-level theory H:

‘bears predictive/explanatory emergence with respect to some lower-level theory L if L
cannot replace H, if H cannot be derived from L [i.e., L cannot reductively explain H], or
if L cannot be shown to be isomorphic to H.’

A key point here is Kim’s no. 1: not even “emergentists” deny that the whole con-
sists of its parts, or, in asymptotic emergence, that the higher-level theory H in fact
originates from the lower-level theory L. The essence of emergence, then, would be
that H nonetheless has “acquired” properties not reducible to L. One possibility for
this to happen could be that the (allegedly) emergent property of H refers to some
concept that does not even make sense in L, such as the experience of pain, which
is hard to make sense of at a neural level, but another possibility, which is indeed
the one relevant to physics and especially to SSB, is that some particular concept
possessed by H (such as SSB) is admittedly defined within L, but banned.

In describing the relationship between H and L we have to be clear about the
difference between approximations and idealizations. Following Norton (2012):

• An approximation is an inexact description of a target system.
• An idealization is a fictitious system, distinct from the target system, some of

whose properties provide an inexact description of aspects of the target system.

Thus idealizations also provide approximations, but as systems they stand on their
own and are defined independently of the target system. In our cases, the target
system is a real physical system such as a ferromagnet or a quantum particle, which
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is supposed to be described exactly by theory L, i.e., the lower-level theory. In fact,
L is a family of theories parametrized by 1/N (N ∈ N) or h̄ ∈ (0,1], and our real
material relates to some very small value of this parameter (which may also be seen
as a certain regime of L, seen as a single, unparametrized theory).

The pertinent theory H is an idealization in the above sense, through which one
approximates very large systems by infinite ones and highly semi-classical ones
(where h̄ is very small) by classical ones (where h̄ = 0). It is in this setting that
asymptotic emergence would violate Earman’s Principle and hence would blast the
relationship between theory and reality: the abstract point (made concrete for SSB
earlier on) is that if some real property of a real system is described by H but is not
approximated in any sense by L in any regime (as is the threat with SSB), although H
is supposed to be a limit of L, then the latter theory L fails to describe the real system
it is supposed to describe, whereas this systems is described by the theory H, which
portrays fictitious systems. This marks a difference with other cases of emergence,
where H (including some “whole”) is not an idealization but a real system itself (as
might be the case with consciousness and other examples from neuroscience and
the philosophy of mind). Thus our discussion does not apply to such cases.

The tension between SSB and Earman’s Principle has not quite gone unnoticed in
the philosophy of physics literature. For example, Liu and Emch (2005) first write
that it is a mistake to regard idealizations as acts of ‘neglecting the negligible’ (p.
155, which already appears to deny Earman’s Principle), and continue by:

“The broken symmetry in question is not reducible to the configurations of the microscopic
parts of any finite systems; but it should supervene on them in the sense that for any two
systems that have the exactly (sic) duplicates of parts and configurations, both will have the
same spontaneous symmetry breaking in them because both will behave identically in the
limit. In other words, the result of the macroscopic limit is determined by the non-relational
properties of parts of the finite system in question.” (Liu & Emch, 2005, p. 156)

It is not easy to make sense of this, but the authors genuinely seem to believe in
asymptotic emergence and hence they (again) appear to deny Earman’s Principle.
Another suggestion, made by Ruetsche, is to modify Earman’s Principle to:

‘No effect predicted by a non-final theory can be counted as a genuine physical effect if it
disappears from that theory’s successors.’ (Ruetsche, 2011, p. 336)

For example, the theory L explaining SSB should not be quantum statistical mechan-
ics but quantum field theory (which has an infinite number of ultraviolet degrees of
freedom even in finite volume, and hence in principle allows SSB). This does make
sense within physics, but, as Ruetsche herself notices, her principle ‘has the prag-
matic shortcoming that we can’t apply it until we know what (all) successors to our
present theories are.’ With due respect, we will describe a rather different way out,
based on unexpectedly implementing Butterfield’s Principle, which is a corollary
to Earman’s Principle that removes the reduction-emergence opposition:

‘there is a weaker, yet still vivid, novel and robust behaviour that occurs before we get to
the limit, i.e. for finite N. And it is this weaker behaviour which is physically real.’
(Butterfield, 2011, p. 1065)

To do so, we now turn our attention to specific (classes of) models of SSB.
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10.1 Spontaneous symmetry breaking: The double well

The simplest example of SSB is undoubtedly the equation x2 = 1 (where x ∈ C),
which is invariant under a Z2 symmetry given by x �→ −x. Its solutions x = ±1,
then, do not share this symmetry; instead Z2 acts nontrivially on the solution space.

Another example that is simple at least compared to quantum spin systems is
provided by elementary quantum mechanics. Thus we are now in the context of the
first of the three pairs (H,L) listed in the preamble to this chapter, where, in detail:

- H is classical mechanics of a particle moving on the real line, with associated
phase space R2 = {(p,q)} and ensuing C*-algebra of observables A0 =C0(R2);

- L is the corresponding quantum theory, with a C*-algebra of observables Ah̄
(h̄ > 0) taken to be the compact operators B0(L2(R)) on the Hilbert space L2(R);

- The relationship between H and L is given by the continuous bundle of C*-
algebras (7.17) - (7.19), for n = 1, notably in the classical limit h̄→ 0.

At the level of states, the passage to the classical limit h̄ → 0 of any h̄-dependent
wave-function ψh̄ ∈ L2(R), if it exists, is described via the associated probability
measure μψh̄ on R2, which is defined by (7.31); in other words,

μψh̄(Δ) =
∫

Δ

dn pdnq
2π h̄

|〈φ (p,q)
h̄ ,ψh̄〉|2 (Δ ⊂ R2n), (10.1)

where the (Schrödinger) coherent states φ (p,q)
h̄ ∈ L2(R) are given by (7.27), i.e.,

φ (p,q)
h̄ (x) = (π h̄)−n/4e−ipq/2h̄eipx/h̄e−(x−q)2/2h̄. (10.2)

In terms of the associated vector states ωψh̄ on the C*-algebra B0(L2(R)), one has

ωψh̄(Q
B
h̄ ( f )) = 〈ψh̄,QB

h̄ ( f )ψh̄〉=
∫
R2n

dμψ(p,q) f (p,q), (10.3)

where f ∈C0(R2). We then say that the wave-functions ψh̄ have a classical limit if

lim
h̄→0

∫
R2n

dμψ f =
∫
R2n

dμ0 f , (10.4)

for any f ∈C0(R2), where μ0 is some probability measure on R2. Seen as a state ω0
on the classical C*-algebra of observables C0(R2), the probability measure μ0 is re-
garded as the classical limit of the family ωψh̄ of states on the C*-algebra B0(L2(R))
of quantum-mechanical observables. This family is continuous in the sense that the
function h̄ �→ ωψh̄(σ(h̄)) from [0,1] to C is continuous for every continuous cross-
section σ of the given bundle of C*-algebras. An example of such a continuous
cross-section is σ(0) = f and σ(h̄) = QB

h̄ ( f ), for any f ∈ C0(R2)), cf. (C.550) -
(C.551), and indeed this example reproduces (10.4), which after all is just

lim
h̄→0

ωψh̄(Q
B
h̄ ( f )) = ω0( f ) ( f ∈C0(R2)). (10.5)
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First, let us illustrate this formalism for the ground state of the one-dimensional
harmonic oscillator. Taking m = 1/2 and V (x) = 1

2 ω2x2 in the usual Hamiltonian

hh̄ =−h̄2 d2

dx2 +V (x), (10.6)

it is well known that the ground state is unique and that its wave-function, i.e.,

ψh̄(x) =
( ω

2π h̄

)1/4
e−ωx2/4h̄, (10.7)

is a Gaussian, peaked above x = 0. As h̄→ 0, this ground state has a classical limit,
namely the Dirac measure μ0 concentrated at the origin (p = 0,q = 0), i.e.,

lim
h̄→0

∫
R2n

dμψh̄ f = f (0,0) ( f ∈C0(R2)). (10.8)

This is just the unique ground state of the corresponding classical Hamiltonian

h0(p,q) = p2 +V (q), (10.9)

seen as a point in the phase space R2 minimizing h0, reinterpreted as a probability
measure on phase space as explained in the context of Theorem 3.3. Note that we
kept the mass fixed at m = 1/2, but instead we could have kept h̄ fixed and take the
limit m→ ∞ instead of h̄→ 0; cf. the preamble to Chapter 7.

The same features hold for the anharmonic oscillator (with small λ > 0), i.e.,

V (x) = 1
2 ω2x2 + 1

4 λx4. (10.10)

However, a new situation arises for the symmetric double-well potential

V (x) =− 1
2 ω2x2 + 1

4 λx4 + 1
4 ω4/λ = 1

4 λ (x2−a2)2, (10.11)

where a = ω/
√

λ > 0 (assuming ω > 0 as well as λ > 0). This time, the ground
state of the classical Hamiltonian is doubly degenerate, being given by the points
(p = 0,q =±a) ∈ R2, with ensuing Dirac measures μ±0 given by∫

R2n
dμ±0 f = f (0,±a). (10.12)

But it is a deep and counterintuitive fact of quantum theory that the corresponding
quantum Hamiltonian (10.6) with (10.11) has a unique ground state. Indeed:

Theorem 10.2. Let V ∈ L2
loc(R

m) be positive and suppose that lim|x|→∞ V (x) = ∞.
Then −Δ +V has a nondegenerate (and strictly positive) ground state.

Roughly speaking, the proof is based on an infinite-dimensional version of the
Perron–Frobenius Theorem in linear algebra (applied to exp(−thh̄) rather than to
the Hamiltonian hh̄ itself, so that the largest eigenvalue of the former corresponds to
the smallest eigenvalue of the latter, i.e., the energy of the ground state).



10.1 Spontaneous symmetry breaking: The double well 373

And yet there are two quantum-mechanical shadows of the classical degeneracy:

• The wave-function ψ(0)
h̄ of the ground state (which by a suitable choice of phase

may be taken to be real) is positive definite and has two peaks, above x=±a, with
exponential decay |ψ(0)

h̄ (x)| ∼ exp(−1/h̄) in the classically forbidden region.
• Energy eigenfunctions (and the associated eigenvalues) come in pairs.

In what follows, we will be especially interested in the first excited state ψ(1)
h̄ , which

like ψ(0)
h̄ is real, but has one peak above x = a and another peak below x =−a. See

Figure 10.1. The eigenvalue splitting (or “gap”) vanishes exponentially in−1/h̄ like

Δh̄ ≡ E(1)
h̄ −E(0)

h̄ ∼ (h̄ω/
√

1
2 eπ) · e−dV /h̄ (h̄→ 0), (10.13)

where the typical WKB-factor is given by

dV =
∫ a

−a
dx
√

V (x). (10.14)

Also, the probability density of each of the wave-functions ψ(0)
h̄ or ψ(1)

h̄ contains ap-
proximate δ -function peaks above both classical minima ±a. See Figure 10.2, dis-
played just for ψ(0)

h̄ , the other being analogous. We can make the correspondence be-

tween the nondegenerate pair (ψ(0)
h̄ , ψ(1)

h̄ ) of low-lying quantum-mechanical wave-
functions and the pair (μ+

0 ,μ−0 ) of degenerate classical ground states more trans-
parent by invoking the above notion of a classical limit of states. Indeed, in terms of
the corresponding algebraic states ω

ψ(0)
h̄

and ω
ψ(1)

h̄
, one has

lim
h̄→0

ψ(0)
h̄ = lim

h̄→0
ψ(1)

h̄ = μ(0)
0 , (10.15)

μ(0)
0 ≡ 1

2 (μ
+
0 +μ−0 ), (10.16)

where μ±0 are the pure classical ground states (10.12) of the double-well Hamil-
tonian. To see this, one may consider numerically computed Husimi functions, as
shown in Figure 10.3 (just for ψ(0)

h̄ , as before). From this, it is clear that the pure

(algebraic) quantum ground state ψ(0)
h̄ converges to the mixed classical state (10.16).

In contrast, the localized (but now time-dependent) wave-functions

ψ±h̄ =
ψ(0)

h̄ ±ψ(1)
h̄√

2
, (10.17)

which of course define pure states as well, converge to pure classical states, i.e.,

lim
h̄→0

ψ±h̄ = μ±0 . (10.18)

In conclusion, one has SSB in H, but at first sight the underlying theory L seems to
forbid it. Yet we will now show that (10.17) - (10.18), will save Earman’s Principle.
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Fig. 10.1 Double-well potential with ground state ψ(0)
h̄=0.5 and first excited state ψ(1)

h̄=0.5.

Fig. 10.2 Probability densities for ψ(0)
h̄=0.5 (left) and ψ(0)

h̄=0.01 (right).

Fig. 10.3 Husimi functions for ψ(0)
h̄=0.5 (left) and ψ(0)

h̄=0.01 (right).
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10.2 Spontaneous symmetry breaking: The flea

Regarding the doubly-peaked ground state ψ(0)
h̄ of the symmetric double well as

the quantum-mechanical counterpart of a hung parliament, the analogue of a small
party that decides which coalition is formed is a tiny asymmetric perturbation
δV of the potential. Indeed, the following spectacular phenomenon in the theory
of Schrödinger operators was discovered in 1981 by Jona-Lasinio, Martinelli and
Scoppola. In view of the extensive (and very complicated) ensuing mathematical
literature, we just take it as our goal to explain the main idea in a heuristic way.

Replace V in (10.6) by V +δV , where δV (i.e., the “flea”) is assumed to:

1. Be real-valued with fixed sign, and C∞
c (hence bounded) with connected support

not including the minima x = a or x =−a;
2. Satisfy |δV |>> e−dV /h̄ for sufficiently small h̄ (e.g., by being independent of h̄);
3. Be localized not too far from at least one the minima, in the following sense.

First, for y,z ∈ R and A⊂ R, we extend the notation (10.14) to

dV (y,z) =
∣∣∣∣∫ z

y
dx
√

V (x)
∣∣∣∣ ; (10.19)

dV (y,A) = inf{dV (y,z),z ∈ A}. (10.20)

Second, we introduce the symbols

d′V = 2 ·min{dV (−a,supp δV ),dV (a,supp δV )}; (10.21)
d′′V = 2 ·max{dV (−a,supp δV ),dV (a,supp δV )}. (10.22)

The localization assumption on δV is that one of the following conditions holds:

d′V < dV < d′′V ; (10.23)
d′V < d′′V < dV . (10.24)

In the first case, the perturbation is typically localized either on the left or on the
right edge of the double well, whereas in the second it resides on the middle bump
(symmetric perturbations are excluded by 3, as these would satisfy d′V = d′′V ).

Under these assumptions, the ground state wave-function ψ(δ )
h̄ of the perturbed

Hamiltonian (which had two peaks for δV = 0!) localizes as h̄→ 0, in a direction
which given that localization happens may be understood from energetic consider-
ations. For example, if δV is positive and is localized to the right, then the relative
energy in the left-hand part of the double well is lowered, so that localization will
be to the left. See Figures 10.4 - 10.6. Eqs. (10.17) - (10.18) then yield Butterfield’s
Principle (with N � 1/h̄), so that also Earman’s Principle is saved: the essence of
the argument is that (at least in the presence of a flea-perturbation) SSB is already
foreshadowed in quantum mechanics for small yet positive h̄, if only approximately.
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Fig. 10.4 Flea perturbation of ground state ψ(δ )
h̄=0.5 with corresponding Husimi function. For such

relative large values of h̄, little (but some) localization takes place.

Fig. 10.5 Same at h̄ = 0.01. For such small values of h̄, localization is almost total.

Fig. 10.6 First excited state for h̄ = 0.01. Note the opposite localization area.
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In more detail, for the perturbed ground state we have (subject to assumptions 1–3):

ψ(δ )
h̄ (a)

ψ(δ )
h̄ (−a)

∼ e∓dV /h̄ (±δV > 0, supp(V )⊂ R+); (10.25)

ψ(δ )
h̄ (a)

ψ(δ )
h̄ (−a)

∼ e±dV /h̄ (±δV > 0, supp(V )⊂ R−), (10.26)

with the opposite localization for the perturbed first excited state (so as to remain
orthogonal to the ground state). A more precise version of the energetics used above
is as follows. The ground state tries to minimize its energy according to the rules:

• The cost of localization (if δV = 0) is O(e−dV /h̄).
• The cost of turning on δV is O(e−d′V /h̄) when the wave-function is delocalized.
• The cost of turning on δV is O(e−d′′V /h̄) when the wave-function is localized in

the well around x0 =±a for which dV (x0,supp δV ) = d′′V .

In any case, these results only depend on the support of δV , but not on its size: this
means that the tiniest of perturbations may cause collapse in the classical limit.

Although the collapse of the perturbed ground state for small h̄ is a mathematical
theorem, it remains enigmatic. Indeed, despite the fact that in quantum theory the
localizing effect of the flea is enhanced for small h̄, the corresponding classical
system has no analogue of it. Trivially, a classical particle residing at one of the two
minima of the double well at zero (or small) velocity, i.e., in one of its degenerate
ground states, will not even notice the flea; the ground states are unchanged. But
even under a stochastic perturbation, which leads to a nonzero probability for the
particle to be driven from one ground state to the other in finite time (as some form
of classical “tunneling”, where in this case the necessary fluctuations come from
Brownian motion), the flea plays a negligible role. For example, in the case at hand
the standard Eyring–Kramers formula for the mean transition time reads

〈τ〉 ∼= 2π√
V ′′(a)V ′′(0)

eV (0)/ε , (10.27)

where ε is the parameter in the Langevin equation dxt =−∇V (xt)dt +
√

2εdWt , in
which Wt is standard Brownian motion. Clearly, this expression only contains the
height of the potential at its maximum and its curvature at its critical points; most
perturbations satisfying assumptions 1–3 above do not affect these quantities.

The instability of the ground state of the double-well potential under “flea” per-
turbations as h̄→ 0 is easy to understand (at least heuristically) if one truncates the
infinite-dimensional Hilbert space L2(R) to a two-level system. This simplification
is accomplished by keeping only the lowest energy states ψ(0)

h̄ and ψ(1)
h̄ , in which

case the full Hamiltonian (10.6) with (10.11) is reduced to the 2×2 matrix

H0 = 1
2

(
0 −Δ
−Δ 0

)
, (10.28)
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with Δ > 0 given by (10.13). Dropping h̄, the eigenstates of H0 are given by

ϕ(0)
0 =

1√
2

(
1
1

)
, ϕ(1)

0 =
1√
2

(
1
−1

)
, (10.29)

with energies E0 =− 1
2 Δ and E1 = 1

2 Δ , respectively; in particular, E1−E0 = Δ . If

ϕ±0 =
ϕ(0)

0 ±ϕ(1)
0√

2
, (10.30)

as in (10.17), then

ϕ+
0 =

(
0
1

)
, ϕ−0 =

(
1
0

)
. (10.31)

Hence in this approximation ϕ+
0 and ϕ−0 play the role of wave-functions (10.17)

localized above the classical minima x=+a and x=−a, respectively, with classical
limits μ±0 . The “flea” is introduced as follows. If its support is in R+, we put

δ+V =

(
0 0
0 δ

)
, (10.32)

where δ ∈ R is a constant. A perturbation with support in R− is approximated by

δ−V =

(
δ 0
0 0

)
. (10.33)

Without loss of generality, take the latter (a change of sign of δ leads to the former).
The eigenvalues of H(δ ) = H0 +δ−V are E0 = E− and E1 = E+, with energies

E± = 1
2 (δ ±

√
δ 2 +Δ 2), (10.34)

and normalized eigenvectors

ϕ(0)
δ =

1√
2

(
δ 2 +Δ 2 +δ

√
δ 2 +Δ 2

)−1/2
(

Δ
δ +

√
δ 2 +Δ 2

)
; (10.35)

ϕ(1)
δ =

1√
2

(
δ 2 +Δ 2−δ

√
δ 2 +Δ 2

)−1/2
(

Δ
δ −√δ 2 +Δ 2

)
. (10.36)

Note that limδ→0 ϕ(i)
δ = ϕ(i)

0 for i = 0,1. Now, if h̄ → 0, then |δ | >> Δ , in which

case ϕ(0)
δ →ϕ±0 for±δ > 0 (and starting from (10.32) instead of (10.33) would have

given the opposite case, i.e., ϕ(0)
δ → ϕ∓0 for±δ > 0). Thus the ground state localizes

as h̄→ 0, which resembles the situation (10.25) - (10.26) for the full double-well.
In conclusion, in the (practically unavoidable) presence of asymmetric “flea” per-

turbations, explicit (rather than spontaneous) symmetry breaking already takes place
for positive h̄, so that Butterfield’s Principle holds, and hence also Earman’s.
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10.3 Spontaneous symmetry breaking in quantum spin systems

Before discussing SSB in quantum spin systems, we return to ground states and
KMS states as discussed in the generality of §§9.4–9.6. Starting with the former, it
is natural to ask whether ground states are pure, as would be expected on physical
grounds; indeed, this question goes to the heart of SSB. Proposition 9.20 implies
that ground states (for given dynamics) form a compact convex subset S(A)∞ of the
total state space S(A); the notation S∞(A) (rather than e.g. S0(A)) will be motivated
shortly by the analogy with equilibrium states. It would be desirable that

∂eS∞(A) = S∞(A)∩∂eS(A), (10.37)

in which case extreme ground states are necessarily pure. This will indeed be the
case in the simple models we study in this book, but it is provably the case in gen-
eral only under additional assumptions, such as weak asymptotic abeliannnes of the
dynamics, i.e., limt→∞ ω([αt(a),b]) = 0 for all a,b ∈ A. A weaker sufficient condi-
tion for (10.37) is that πω(A)′ be commutative (which is the case if ω is pure).

We are now in a position to define SSB, at least in the context of ground states.

Definition 10.3. Suppose we have a (topological) group G and a (continuous) ho-
momorphism γ : G→ Aut(A), which is a symmetry of the dynamics in that

αt ◦ γg = γg ◦αt (g ∈ G, t ∈ R). (10.38)

The G-symmetry is said to be spontaneously broken (at temperature T = 0) if

(∂eS∞(A))G = /0, (10.39)

and weakly broken if (∂eS∞(A))G �= ∂eS∞(A), i.e., there is at least one ω ∈ ∂eS∞(A)
that fails to be G-invariant (although invariant extreme ground states may exist).

Here S G = {ω ∈S | ω ◦ γg = ω ∀g ∈G}, defined for any subset S ⊂ S(A), is the
set of G-invariant states in S . Assuming (10.37), eq. (10.39) means that there are
no pure G-invariant ground states. This by no means implies that there are no G-
invariant ground states at all, quite to the contrary: for compact, or, more generally,
amenable groups G, one can always construct G-invariant ground states by averag-
ing over G, exploiting the fact that if G is a symmetry of the dynamics, then each
affine homeomorphism γ∗g of S(A) (defined by γ∗g (ω) = ω ◦γg) maps S∞(A) to itself.
Definition 10.3 therefore implies that if SSB occurs, then one has a dichotomy:

• Pure ground states are not invariant, whilst invariant ground states are not pure.

Definition 10.4. We call a G-symmetry spontaneously broken at inverse tempera-
ture β ∈ (0,∞) if there are no G-invariant extreme β -KMS states, i.e.,

(∂eSβ (A))
G = /0, (10.40)

and weakly broken if there is at least one non-G-invariant extreme KMS state.
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By Theorem 9.31 we may replace extreme β -KMS states by primary β -KMS states,
so that, similarly to ground states, SSB at nonzero temperature means that:

• Primary KMS states are invariant, whilst invariant KMS states are not primary.

For the next result, please recall Definition 9.10 and Theorem 9.11.

Proposition 10.5. Let A be a quasi-local C*-algebra of the kind (8.130) and sup-
pose the given G-action γ commutes not only with time translations αt but also
with space translation τx. If γ∗g ω �= ω for some ω ∈ ∂eSβ (A) and g ∈ G, then the
automorphism γg cannot be unitarily implemented in the GNS-representation πω .

This is true also at β = ∞, i.e., for ground states.

Proof. This is an obvious corollary of Proposition 9.13 and Theorems 9.14 and
9.31: if γg were implementable by a unitary ug, then ugΩω �= Ωω (not even up to
a phase), since γ∗g ω �= ω . But in that case, since τx ◦ γg = γg ◦ τx for each x ∈ Zd ,
we would have uxug = ugux and hence ux(ugΩω) = ugΩω . Thus ugΩω would be
another translation-invariant ground state, contradicting Theorem 9.14. �

This result is worth mentioning, since some authors define SSB through the con-
clusion of this proposition, that is, they call a symmetry γg (spontaneously) broken
by some state ω iff γg cannot be unitarily implemented in πω . This definition seems
physically dubious, however, because quantum spin systems may have ground states
ω that are not G-invariant but in which nonetheless all of G is unitarily imple-
mentable (in such states translation invariance has to be broken, of course). For
example, the Ising model in d = 1 with ferromagnetic nearest-neighbour interaction
and vanishing external magnetic field (where G = Z2) has an infinite number of
such ground states, in which a “domain wall” separates infinitely many “spins up”
to the left from infinitely many “spins down” to the right. Although this model has a
unique KMS state at any nonzero temperature, such ground states (and perhaps anal-
ogous states at β �=∞ in different models, so far understood only heuristically) seem
far from pathological and play a major role in modern condensed matter physics.
Hence we trust this alternative definition only if the states it singles out also satisfy
Definition 10.3 or 10.4, for which Proposition 10.5 gives a sufficient condition: for
translation-invariant states and symmetries on quasi-local algebras, our definition of
SSB through (10.40) is compatible with the one based on unitary implementability.

This is fortunate, since the physicist’s notion of an order parameter, through
which at least weak SSB may be detected, is tailored to translation-invariant states:

Definition 10.6. Let A be a quasi-local C*-algebra A as in (8.130), with symmetry
group G. A (strong) order parameter in A is an n-tuple φ = (φ1, . . . ,φn) ∈ An for
which ω(φ) = 0 if (and only if) ω is G-invariant, for any Zd-invariant state ω on A.

An order parameter defines an accompanying vector field x �→ φ(x) by φi(x) =
τx(φ). Since ω is translation-invariant, ω(φ) = 0 is equivalent to ω(φ(x)) = 0 for
all x. In the Ising model, with G = Z2, σ3(0) is an order parameter, which can
be extended to a strong one φ = (σ2(0),σ3(0)). In the Heisenberg model, where
G = SO(3), the triple (σ1(0),σ2(0),σ3(0)) provides a strong order parameter.
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Theorem 10.7. Suppose that φ is a (strong) order parameter, as in Definition 10.6.
Then a G-invariant and translation-invariant KMS state ω ∈ Sβ (A)G (including β =
∞, i.e., a ground state) displays weak SSB—in the sense that at least one of the
components in its extremal decomposition fails to be G-invariant—if (and only if)
the associated two-point function exhibits long-range order, in that

lim
x→∞

ω

(
n

∑
i=1

φi(0)∗φi(x)

)
> 0. (10.41)

Proof. The “if” part of the theorem is equivalent to the vanishing of the limit in
question in the absence of SSB. Let (9.132) be the extremal decomposition of ω . If
(almost) each extreme state ϕ is invariant, then ω ′(φi(x))= 0 for all i by definition of
an order parameter, and similarly ω ′(φi(x)∗) =ω ′(φi(x)) = 0. Interchanging limx→∞
with the integral over ∂Sβ (A) (which is allowed because μ is a probability measure),
and using (9.30) then shows that the left-hand side of (10.41) vanishes.

To avoid difficult measure-theoretic aspects of the extremal decomposition the-
ory, and also for pedagogical purposes, we prove the “only if” part only in the case

ω =
∫

G
dgω ′g, (10.42)

weakly, where ω ′ ∈ ∂Sβ (A) and ω ′g = γ∗g ω ′. Since the expression

ω ′g(
n

∑
i=1

φi(0)∗φi(x))

is independent of g∈G (by definition of an order parameter), we may replace ω ′g by
ω ′ in the expression for ω; the term

∫
G dg then factors out and is equal to unity. Thus

we may replace ω in (10.41) by ω ′. Since ω ′ is a primary state, we may now use
(9.30) once again, so that the left-hand side of (10.41) becomes ∑n

i=1 |ω ′(φi)|2. By
assumption, ω ′ is not G-invariant, so that (by definition of a strong order parameter)
at least one of the terms |ω ′(φi)| is nonzero. �

If G is compact, for any C*-algebra A, invariant KMS states (including ground
states) can always be constructed via (9.133), provided, of course, KMS states (or
ground states) exist in the first place. Fortunately, existence can be shown in the
following way. Let A be a quasi-local C*-algebra à la (8.130), in which:

1. dim(H)< ∞ (and hence also dim(HΛ )< ∞ for any finite Λ ⊂ Zd);
2. Dynamics is defined locally on each algebra AΛ = B(HΛ ) via (9.40) and (9.41),

i.e., with free boundary conditions, having a global limit α as in Theorem 9.15.

In that case, by Corollary 9.27 each C*-algebra AΛ has a unique β -KMS state ωβ
Λ ,

given by the local Gibbs state (9.96). However, if Λ (1) ⊂ Λ (2), then the restriction
of the β -KMS state ωβ

Λ (2) to AΛ (1) ⊂ AΛ (2) is not given as naively expected, namely

by the β -KMS state ωβ
Λ (1) , because the former involves boundary terms.
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Fortunately, this complication may be overcome, since at least for models with
short-range forces (cf. Theorem 9.15) one may put

ωβ
G(a) = lim

N→∞
ωβ

ΛN
(a), (10.43)

where ΛN is defined in (8.153). This limit exists for a ∈ ∪Λ AΛ , from which ωβ

extends by continuity to all of A, on which it is a β -KMS state (cf. Theorem 10.10).
Alternatively, by the Hahn–Banach Theorem (in the form of Corollary B.41)

combined with Lemma C.4 (which guarantees that any Hahn–Banach extension of
a state remains a state), each local Gibbs state ωβ

Λ on AΛ ⊂ A extends, in a non-
unique way, to a state ω̂β

Λ on A. This gives a net of states (ω̂β
Λ ) on A indexed by

the finite subsets Λ of Zd ; one may also work with sequences (ω̂β
ΛN

). Since A has
a unit, its state space S(A) is a compact convex set, so the above net (or sequence)
has at least one limit point, or, equivalently, has at least one convergent subnet (or
subsequence), which—despite its potential lack of uniqueness in two respects, i.e.
the choice of the extensions ω̂β

Λ and the choice of a limit point—one might write as

ω̂β = lim
Λ↗Zd

ω̂β
Λ . (10.44)

Without proof, we quote the relevant technical result (assuming 1–2 above):

Proposition 10.8. Each limit state ω̂β is a β -KMS state (i.e. for the dynamics α).

Anticipating the existence of SSB in models, one should now feel a little uneasy:

• It follows from Corollary 9.27 that (at fixed β ) there is a unique KMS state on
each local algebra AΛ for the given local dynamics α(Λ)

t , namely the local Gibbs
state ωβ

Λ on AΛ . If—as is the case in all our examples—the globally broken G-

symmetry is induced by local automorphisms γ(Λ)
g : AΛ → AΛ that commute with

the local dynamics α(Λ)
t , then each local Gibbs state is G-invariant: this follows

explicitly from G-invariance of the local Hamiltonian hΛ and the formulae (9.96)
- (9.98), or, more abstractly, from the fact if ωβ

Λ were not invariant under all γ(Λ)
g ,

it would not be unique (as its translate ωβ
Λ ◦ γ(Λ)

g would be another KMS state).
• And yet (in case of SSB) there exist non-invariant (and hence non-unique) KMS

states on A, which are even limits in the sense of (10.44) of the above invariant
(and hence unique) local KMS states on AΛ !

• Real samples are finite and hence are described by the local algebras AΛ , with
their unique invariant equilibrium states ωβ

Λ . Yet finite samples do display SSB,
e.g., ferromagnetism (broken Z2-symmetry), superconductivity (broken U(1)).

• Therefore, the theory that should describe SSB in real materials, namely the finite
theory AΛ , apparently fails to do so (as it seems to forbid SSB), whereas the
idealized theory A, which describes strictly infinite systems and in those systems
allows SSB, in fact turns out to describe key properties of finite samples.
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10.4 Spontaneous symmetry breaking for short-range forces

We continue our discussion of SSB in quantum spin systems, especially of the con-
struction of global KMS states in the previous section, see (10.44) and preceding
text. Recall that each finite system AΛ has a unique β -KMS state ωβ

Λ , namely the lo-
cal Gibbs state (9.96), but that these states are incompatible for different Λ ’s, in that,
if Λ (1) ⊂ Λ (2), then the restriction of ωβ

Λ (2) to AΛ (1) ⊂ AΛ (2) is not given by ωβ
Λ (1)

because of boundary terms. To correct for this, one introduces the surface energy

bΛ (1),Λ (2) = ∑
X⊆Λ (2):X∩Λ (1) �= /0,X∩Λ c

1 �= /0

Φ(X), (10.45)

with ensuing interaction energy

bΛ = lim
Λ (2)↗Zd

bΛ ,Λ (2) = ∑
X∩Λ �= /0,X∩Λ c �= /0

Φ(X), (10.46)

provided this limit exists (which it does for short-range forces). Now perturb ωβ
Λ (2)

by replacing hΛ (2) in (9.96) - (9.98) (with Λ � Λ (2)) by hΛ (2) −bΛ (1),Λ (2) . Denoting

this modification of ωβ
Λ (2) by ωβ

Λ (1),Λ (2) , we obtain (10.47), which implies (10.48):

ωβ
Λ (1),Λ (2) = ωβ

Λ (1) ⊗ωβ
Λ\Λ (1) ; (10.47)

(ωβ
Λ (1),Λ (2) )|AΛ(1)

= ωβ
Λ (1) . (10.48)

If (10.46) exists, we may likewise perturb any t-invariant state ω on A to ω̃Λ , i.e.,

ω̃Λ (a) =
〈e−β (hω−πω (bΛ ))/2Ωω ,πω(a)e−β (hω−πω (bΛ ))/2Ωω〉

‖e−β (hω−πω (bΛ ))/2Ωω〉‖2
, (10.49)

where Λ ⊂ Zd is finite, hω is defined as in (9.51) - (9.52), and Ωω is in the domain
of the unbounded operator exp(−β (hω −πω(bΛ ))/2); the reason is that πω(bΛ ) is
bounded, whereas exp(−βhω/2)Ωω = Ωω (since hω Ωω = 0). For example,

(ω̃β
Λ (2) )Λ (1) = ωβ

Λ (1),Λ (2) , (10.50)

where ω = ωβ
Λ (2) is a Gibbs state on A = AΛ (2) , as in Theorem 9.24 (with Λ �Λ (2)).

Indeed, using (9.114) - (9.117) and the relation hω = hΛ (2) − JhΛ (2)J, where the
operator J is defined in (9.124), we compute the numerator in (10.49) as

Tr(
((

e−β (h
Λ(2)−Jh

Λ(2) J−bΛ )/2e−βh
Λ(2)/2

)∗
ae−β (h

Λ(2)−Jh
Λ(2) J−bΛ )/2e−βh

Λ(2)/2
)

= Tr
(

e−β (h
Λ(2)−bΛ )a

)
, (10.51)
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since JhΛ (2)J commutes with hΛ (2) −bΛ . This subsequently gives

e−β (h
Λ(2)−Jh

Λ(2) J−bΛ )/2
= e−β (h

Λ(2)−bΛ )/2eβJh
Λ(2) J ;

eβJh
Λ(2) Je−βh

Λ(2)/2
= e−βh

Λ(2)/2eβh
Λ(2)/2

= 1H . (10.52)

Likewise, the denominator in (10.49) equals Tr(exp(−β (hΛ (2) −bΛ ))).
Eqs. (10.50) and (10.48) suggest that if ω = ωβ is a β -KMS state, then although

ωβ itself does not localizes to a Gibbs state ωβ
Λ on AΛ , its perturbed version ω̃β

Λ
does. Under assumptions 1–2 stated in §10.3, i.e., in the situation of Theorem 9.15
with dim(H) < ∞, this motivates the following quantum analogue of the DLR ap-
proach to classical equilibrium states, i.e., of Definition 9.23:

Definition 10.9. For fixed inverse temperature β ∈ R\{0} and fixed interaction Φ ,
a Gibbs state ωβ on a quasi-local algebra A with dynamics given by some potential
Φ is an αt -independent state such that for each finite region Λ ⊂ Zd one has

ω̃β
Λ = ωβ

Λ ⊗ω ′Λ c , (10.53)

where ωβ
Λ is the local Gibbs state (9.96) on AΛ and ω ′Λ c is some state on AΛ c .

Theorem 10.10. Under assumptions 1–2 in §10.3, and if in addition the subspace
D = ∪Λ AΛ ⊂ A is a core for the derivation (9.54) (i.e., the closure of δ defined on
D is δ as defined in Proposition 9.19), then Gibbs states coincide with KMS states.

The proof is rather technical and so we omit it. It follows that if ωβ ∈ Sβ (A), then

(ω̃β
Λ )|AΛ = ωβ

Λ . (10.54)

Even so, we still need to define in precisely which sense the net ((ω̃β
Λ )|AΛ )Λ con-

verges to ωΛ (or when perhaps even the net (ωβ
Λ ) converges to ωΛ ); for simplicity

we take Λ = ΛN as in (8.153), and just consider sequences indexed by N (rather
than nets). To this end, let (ω1/N)N be a sequence of states with ω1/N ∈ S(AΛN ). As
in Definition 8.24, given some ω0 ∈ S(A) (if it exists), we say that

lim
N→∞

ω1/N = ω0 (10.55)

iff for any sequence (a1/N)N in A with a1/N ∈ AΛN ⊂ A that converges to a ∈ A one
has

lim
N→∞

ω1/N(a1/N) = ω0(a). (10.56)

For example, if we take ω0 ∈ S(A) and define ω1/N = ω0|AΛN
, then (10.55) holds by

continuity of ω0 (as ‖ω0‖= 1), which implies that limN→∞ ω0(a1/N) = ω0(a).
It follows from the comments preceding Definition 8.24 that the above notion

(10.55) - (10.56) of convergence is the same as the one given by (8.164), so that it is
similar to the convergence of states we defined for the other two classes of examples
of listed earlier, viz. classical mechanics (cf. §10.1) and thermodynamics.
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We denote the restriction of some global KMS state ωβ (defined on A) to AΛN ⊂ A
by ωβ

1/N , whereas as usual we write ωβ
ΛN

for the unique local Gibbs state on AΛN .
Keeping Definition 8.24 and Proposition 8.25 in mind, the situation is as follows:

1. Any KMS state ωβ equals the limit ωβ
0 of its restrictions ωβ

1/N (i.e. to AΛN ).

2. Each state ωβ
1/N differs from the local Gibbs state ωβ

ΛN
(even if ωβ is unique).

3. The local Gibbs states ωβ
ΛN

typically converge to a KMS state ωβ
G , cf. (10.43).

4. In models with symmetry, this global Gibbs state ωβ
G is invariant (like the ωβ

ΛN
).

The first claim follows from the argument given after (10.55). The second is the
contrapositive to (10.54) and has been explained in §10.3: although the states ωβ

1/N

and ωβ
ΛN

are both of local Gibbs type, their Hamiltonians differ from hΛN by the
boundary term bΛ . The third claim cannot be proved in general, but in models with
short-range forces it holds in both forms (10.43) and (10.55) - (10.56). In such mod-
els the G-symmetry is local, i.e., G acts on each AΛ through unitaries

u(Λ)
g = ⊗x∈Λ ug(x); (10.57)

γ(Λ)
g (aΛ ) = u(Λ)

g a(u(Λ)
g )∗ (aΛ ∈ AΛ ,g ∈ G), (10.58)

where ug(x)∈B(Hx), leaving each local Hamiltonian hΛ and hence each local Gibbs
state ωβ

ΛN
invariant. If a ∈ A is local, i.e., a ∈ ∪Λ AΛ , then

γg(a) = lim
N→∞

γ(ΛN)
g (aN), (10.59)

followed by continuous extension to a ∈ A, so that, assuming (10.55),

ω0(γg(a)) = lim
N→∞

ω1/N(γg(aN)) = lim
N→∞

ω1/N(γ
(ΛN)
g (aN)) = lim

N→∞
ω1/N(aN) = ω0(a),

since ω1/N ◦ γ(ΛN)
g = ω1/N by assumption. Thus the global Gibbs state ωβ

G inherits

the G-invariance of its local approximants ωβ
ΛN

. In case of SSB, the restrictions ωβ
1/N

of some non-invariant extreme KMS state ωβ determine ωβ , so that in principle SSB

is detectable through the local states ωβ
1/N . It would be question-begging to construct

the latter from the global states ωβ , though, so Butterfield’s Principle (and hence in
its wake Earman’s Principle) holds only if we can show how and why the states of
sufficiently large yet finite systems AΛN tend to ωβ

1/N rather than to ωβ
ΛN

.
Unfortunately, showing any of this in specific models at finite (inverse) temper-

ature 0 < β < ∞ is pretty complicated. For example, in the quantum Ising model
(9.42) in d = 1, KMS states are unique for any B, so that for SSB one must go to
d ≥ 2. In that case, it can be shown from Theorem 10.7 that for B = 0, below some
critical temperature (i.e. for β > βc) the Z2 symmetry defined in (10.68) below is
broken, but this takes considerable effort and is beyond the scope of this book.
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10.5 Ground state(s) of the quantum Ising chain

It is much simpler to put β = ∞ and hence turn to the ground state(s) of the quantum
Ising model (9.42) in d = 1, which is manageable. The interesting case is B> 0, with
J = 1 and free boundary conditions, so that for Λ = ΛN (with N even), we have

hN = − ∑
x∈ΛN

(σ3(x)σ3(x+1)+Bσ1(x)) ; (10.60)

ΛN = {− 1
2 N, . . . , 1

2 N−1}; (10.61)
HΛN = HN =⊗x∈ΛN Hx; (10.62)

Hx = C2 (x ∈ΛN), (10.63)

where the operator σi(x) acts as the Pauli matrix σi on Hx and as the unit matrix
12 elsewhere. This model describes a chain of N immobile spin- 1

2 particles with
ferromagnetic coupling in a transverse magnetic field (it is a special case of the so-
called XY -model, to which similar conclusions apply). The local Hamiltonians hN
define time evolution on the local algebras

AΛN ≡ AN = B(HN) (10.64)

by (9.40), i.e.,
α(N)

t (aN) = eithN aNe−ithN (a ∈ AN), (10.65)

which by Theorem 9.15 defines a time evolution on the quasi-local C*-algebra

A =
⋃

N∈N
AN

‖·‖
=
⊗
x∈Z

B(Hx), (10.66)

namely by regarding the unitaries exp(ithN) ∈ AN ⊂ A as elements of A and putting

αt(a) = lim
N→∞

eithN ae−ithN (a ∈ A), (10.67)

which exists (although the sequence (exp(ithN))N in A does not converge in A).
For any B ∈ R, the quantum Ising chain has a Z2-symmetry given by a 180-

degree rotation around the x-axis, locally implemented by the unitary operator
u(x) = σ1(x), which at each x ∈ ΛN yields (σ1,σ2,σ3) �→ (σ1,−σ2,−σ3), since
σiσ jσ∗i = −σ j for i �= j. Thus u(x) sends each σ3(x) to −σ3(x) but maps each
σ1(x) to itself. As in (10.57), this symmetry is implemented by the unitary operator

u(N) =⊗x∈ΛN σ1(x) (10.68)

on HN , which satisfies [hN ,u(N)] = 0, or, equivalently,

u(N)hN(u(N))∗ = hN . (10.69)
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The ensuing Z2-symmetry is given by the automorphism γ(N) of AN defined by

γ(N)(a) = u(N)a(u(N))∗ (a ∈ AN), (10.70)

which induces a global automorphism γ ∈ Aut(A) as in (10.59), i.e.,

γ(a) = lim
N→∞

u(N)a(u(N))∗ (a ∈ A), (10.71)

which limit once again exists despite the fact that the sequence u(N) has no limit in
A. Thus Z2-invariance of the model follows from the local property

α(N)
t ◦ γ(N) = γ(N) ◦α(N)

t , (10.72)

which in the limit N → ∞ gives

αt ◦ γ = γ ◦αt (t ∈ R). (10.73)

Since γ2 = idA, we have an action of the group Z2 = {−1,1} on A, where the
nontrivial element (i.e., g = −1) is sent to γ . By (10.72) this group acts on the set
S∞(AN) of ground states of AN relative to the dynamics α(N), and by (10.73) the
same is true for the set S∞(A) of ground states of the corresponding infinite system
for α (and analogously for β -KMS states). These sets may be described as follows.

Theorem 10.11. 1. For any N < ∞ and B = 0 the ground state of the quantum Ising
model (10.60) is doubly degenerate and breaks the Z2 symmetry of the model.

2. For N <∞ and any B> 0 the ground state ω(0)
1/N is unique and hence Z2-invariant.

3. At N = ∞ with magnetic field 0 ≤ B < 1, the model has a doubly degenerate
translation-invariant ground state ω±0 , which again breaks the Z2 symmetry.

4. At N = ∞ and B≥ 1 the ground state is unique (and hence Z2-invariant).
5. Recall Definition 8.24. For 0≤ B < 1 the states (ω(0)

1/N)N∈N (as in no. 2) with

ω(0)
0 = 1

2 (ω
+
0 +ω−0 ) (10.74)

form a continuous field of states on the continuous bundle A(q); in particular,

lim
N→∞

ω(0)
1/N = ω(0)

0 . (10.75)

The two ground states in no. 1 and no. 3 are tensor products of | ↑〉 and | ↓〉, respec-
tively (where σ3| ↑〉= | ↑〉 and σ3| ↓〉=−| ↓〉), so that σ3(0) is an order parameter
in the sense of Definition 10.6. In no. 4, on the other hand, each spin aligns with the
magnetic field in the x-direction, so that the ground state is an infinite tensor product
of states | →〉, where σ1| →〉= | →〉, and this time σ1(0) is an order parameter.

Case no. 2 becomes more transparent if we realize the Hilbert space HN as
�2(SN), where SN is the set of all spin configurations s on N sites, that is,

s : {− 1
2 N,− 1

2 N +1, . . . , 1
2 N−1}→ {−1,1}.
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In terms of the eigenvectors |1〉 ≡ | ↑〉 and |−1〉 ≡ | ↓〉 of σ3, and the orthonormal
basis (δs)s∈SN of �2(SN) (where δs(t) = δst ), a suitable unitary equivalence

vN : �2(SN)→ HN (10.76)

is given by linear extension of

vNδs = |s(− 1
2 N) · · ·s( 1

2 N−1)〉, s, t ∈ SN . (10.77)

For example, the state |1 · · ·1〉 corresponds to δs↑ , where s↑(x) = 1 for all x, and
analogously s↓(x) = −1 for the state | − 1 · · · − 1〉. Using �2(SN), we may talk of
localization of states in spin configuration space (similar to localization of wave-
functions in L2(Rn)), in the sense that some ψ ∈ �2(SN) may be peaked on just a
few spins configurations. Provided 0 < B < 1 this is indeed the case for the unique
ground state in case no. 2, which is similar to the ground state of the double-well
potential discussed in §§10.1–10.2, replacing R by SN (and h̄ > 0 by 1/N).

Theorem 10.11 and related results used below, such as eq. (10.82), follow from
the exact solution of the model for both N < ∞ and N = ∞, to be discussed in
§§10.6–10.7. This solution is rather involved, but a rough picture of the various
ground states may already be obtained from a classical approximation in the spirit
of §8.1. This approximation assumes that the spin-1/2 operators 1

2 σi are replaced
by their counterparts for spin n · 1

2 , upon which one takes the limit n → ∞. In this
limit, the spin operators are turned into the corresponding coordinate functions on
the coadjoint orbit O1/2 ⊂ R3 for SU(2), which is the two-sphere S2

1/2 with radius
r = 1/2. In principle, this should be done for each of the N spins separately, yielding
a classical Hamiltonian hc that is a function on the N-fold cartesian product of S2

1/2
with itself. However, if we a priori assume translation invariance of the classical
ground state, only one such copy remains. Using spherical coordinates

(x = 1
2 sinθ cosφ ,y = 1

2 sinθ sinφ ,z = 1
2 cosθ), (10.78)

the ensuing trial Hamiltonian becomes just a function on O1/2, given by

h(θ ,φ)≈−( 1
2 cos2 θ +Bsinθ cosφ). (10.79)

Minimizing gives cosφ = 1 and hence y = 0 for any B, upon which

h(θ)≈−( 1
2 cos2 θ +Bsinθ) (10.80)

yields the phase portrait of Theorem 10.11 for N = ∞, as follows. For 0 ≤ B < 1,
the global minimum is reached at the two different solutions θ± of cosθ± = B, with
ensuing spin vectors

x±(B) = ( 1
2 B,0,± 1

2

√
1−B2), (10.81)

starting at x±(0) = (0,0,± 1
2 ) and merging at B = 1 to x+(1) = x−(1) = ( 1

2 ,0,0).
This remains the unique ground state for B≥ 1, where all spins align with the field.
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In the regime 0 < B < 1 with large but finite N, one finds a far-reaching analogy
between the double-well potential and and the quantum Ising chain, namely:

• The ground state of (10.60) is doubly peaked in spin configuration space, similar
to its counterpart for the double-well potential in real configuration space.

• One has convergence to localized ground states (10.15) - (10.16) for the quantum
Ising chain and (10.74) - (10.75) for the double well.

• For the energy difference ΔN = E(1)
N −E(0)

N between the first excited state and the
ground state one has (10.17) - (10.18) for the double well, and

ΔN ≈ (1−B2)BN (N → ∞), (10.82)

for the quantum Ising chain. Thus both models show exponential decay, i.e. of
(10.82) in N as N → ∞, and of (10.13) in 1/h̄ as h̄→ 0.

It should be mentioned that exponential decay of the energy gap seems a low-
dimensional luxury, which is not really needed for SSB. All that counts is that
limN→∞ ΔN = 0, which guarantees that the first excited state is asymptotically degen-
erate with the ground state, so that appropriate linear combinations like ω±0 can be
formed that converge to the degenerate symmetry-breaking pure (and hence physi-
cal) ground states (or extreme and hence physical KMS states) of the limit system,
which are localized and stable (as is clear from the double well). The fact that in
the two models at hand only one excited state participates in this mechanism is due
to the simple Z2 symmetry that is being broken; SSB of continuous symmetries re-
quires a large number of low-lying states that are asymptotically degenerate with the
ground state and hence also with each other—one speaks of a thin energy spectrum).

The existence of low-lying excited states may be proved abstractly (i.e., in a
model-independent way), as follows. For N < ∞, let ψ(0)

N be the ground state (as-
sumed unique) of some model defined on ΛN ⊂ Zd , and let φ be an order parameter
(cf. Theorem 10.7) with accompanying vector field ΦN = ∑x∈ΛN φ(x); in the quan-
tum Ising chain, we take φ = σ1. Then the key assumptions are expressed by

〈ψ(0)
N ,ΦNψ(0)

N 〉 = 0; (10.83)

〈ΦNψ(0)
N ,ΦNψ(0)

N 〉 ≥ C1 ·N2 (N → ∞,C1 > 0); (10.84)
‖[[ΦN ,hN ],ΦN ]‖ ≤ C2 ·N (N → ∞,C2 > 0). (10.85)

The first states that the ground state is symmetric, the second enforces long-range
order, as in (10.41), and the third follows from having short-range forces. A simple
computation then shows that the unit vector ψ̃(1)

N = ΦNψ(0)
N /‖ΦNψ(0)

N ‖ satisfies

〈ψ̃(1)
N ,hNψ̃(1)

N 〉−〈ψ(0)
N ,hNψ(0)

N 〉 ≤C2/(C1N) (N → ∞). (10.86)

Since ψ̃(1)
N is orthogonal to ψ(0)

N by (10.83), the variational principle for eigenvalues
(note that hN has discrete spectrum, as dim(HΛN )< ∞) then gives ΔN ≤C2/(C1N),
so that ΔN vanishes as N → ∞, though perhaps not as quickly as (10.82) indicates.
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10.6 Exact solution of the quantum Ising chain: N < ∞

The solution of the quantum Ising chain is based on a transformation to fermionic
variables. Let H be a Hilbert space and let F−(H) be its fermionic Fock space, i.e.,

F−(H) =⊕∞
k=0Hk

−, (10.87)

where H0 = C, and for k > 0 the Hilbert space Hk− = e(k)− Hk is the totally antisym-
metrized k-fold tensor product of H with itself, see also §7.7. Here the projection
e(k)− : Hk → Hk is defined by linear extension of

e(k)− f1⊗·· ·⊗ fk =
1
k! ∑

p∈Sk

sgn(p) fp(1)⊗·· ·⊗ fp(k), (10.88)

where Sk is the permutation group on k objects, and sgn(p) is +1/− 1 if p is
an even/odd permutation. With the (total) Fock space F(H) = ⊕∞

k=0Hk we have
F−(H) = e−F(H), where e = ∑k e(k)− (strongly) is a projection. For f ∈H we define
the (unbounded) annihilation operator a( f ) on F(H) by (finite) linear extension of

a( f ) f1⊗·· ·⊗ fk =
√

k〈 f , f1〉H ⊗·· ·⊗ fk, (10.89)

for k > 0, with a( f )z = 0 on H0 = C. This gives the adjoint a( f )∗ ≡ a∗( f ) as

a∗( f ) f1⊗·· ·⊗ fk =
√

k+1 f ⊗ f1⊗·· ·⊗ fk. (10.90)

For each f ∈ H, we then define the following operators on F−(H):

c( f ) = e−a( f )e−; (10.91)
c∗( f ) = e−a∗( f )e−. (10.92)

Note that the map f �→ c( f ) is antilinear in f , whereas f �→ a∗( f ) is linear in f . It
follows that c∗( f ) = c( f )∗, that each operator c( f ) and c( f ) on F−(H) is bounded
with ‖c( f )‖= ‖c∗( f )‖= ‖ f‖, and the canonical anticommutation relations hold:

[c( f ),c∗(g)]+ = 〈 f ,g〉H ·1F−(H); (10.93)
[c( f ),c(g)]+ = [c∗( f ),c∗(g)]+ = 0. (10.94)

Thus we may define CAR(H) as the C*-algebra within B(F−(H)) generated by all
c( f ), where f ∈ H. This is called the C*-algebra of canonical anticommutation
relations over H, which have constructed in its defining representation on F−(H).
Choosing an orthonormal basis (ei) of H and writing c(ei) = ci etc. clearly yields

[ci,c∗j ]+ = δi j ·1F−(H); (10.95)
[ci,c j]+ = [c∗i ,c

∗
j ]+ = 0. (10.96)
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If dim(H) = N < ∞, then CAR(H) = B(F−(H)). First, a dimension count yields

F−(CN) =⊕N
k=0Hk

− ∼= C2N ∼=⊗NC2. (10.97)

By Theorem C.90, the C*-algebra CAR(H) acts irreducibly on F−(H), so that

CAR(CN)∼= M2N (C). (10.98)

This is already nontrivial for N = 1. In that case, F−(C) = C⊕C= C2, and

c = σ− =

(
0 0
1 0

)
; (10.99)

c∗ = σ+ =

(
0 1
0 0

)
, (10.100)

where σ± = 1
2 (σ1± iσ2). This realization explicitly shows that

CAR(C) = M2(C). (10.101)

To generalize this to N > 1, we introduce a lattice (or chain) N = {1, . . . ,N}, and
for each x ∈ N we define operators cx,c∗x by the Jordan–Wigner transformation

cx = eπi∑x−1
y=1 σ+(y)σ−(y)σ−(x) =

(
x−1

∏
y=1

(−σ3)(y)

)
·σ−(x); (10.102)

c∗x = e−πi∑x−1
y=1 σ+(y)σ−(y)σ+(x) =

(
x−1

∏
y=1

(−σ3)(y)

)
·σ+(x), (10.103)

where x > 1, and c1 = σ−1 and c∗1 = σ+
1 (here σ±(x) = 1

2 (σ1(x)± iσ2(x)) etc.).
These operators satisfy (10.95) - (10.96); the second expression on each line follows
because the operators σ+(y)σ−(y) commute for different sites y, and

eπiσ+σ− =−σ3. (10.104)

Furthermore, since

c∗xcx = σ+(x)σ−(x) =
(

1 0
0 0

)
(x); (10.105)

cxc∗x = σ−(x)σ+(x)) =
(

0 0
0 1

)
(x), (10.106)

the inverse of the Jordan–Wigner transformation is given by

σ−(x) = e−πi∑x−1
y=1 c∗ycy cx; (10.107)

σ+(x) = c∗xeπi∑x−1
y=1 c∗ycy . (10.108)
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We return to the quantum Ising model (10.60) with free boundary conditions,
where we relabel the sites as {1, . . . ,N}, as above, and change to the Hamiltonian

hQI
N =− 1

2

(
N−1

∑
x=1

σ1(x)σ1(x+1)+λ
N

∑
x=1

σ3(x)

)
, (10.109)

where, in order to avoid notational confusion with the operator B in (10.111) below,
we henceforth replace B � λ . In terms of the unitary operator u =

√
1/2(12 + iσ2)

on C2 and hence u(N) =⊗N
x=1u(x) on ⊗NC2, we have u(N)hN(u(N))∗ = h′N .

Using (10.102) - (10.103), up to an additive constant λN ·1N we omit, we find

hQI
N =−

N

∑
x=1

(λc∗xcx + 1
2 (c

∗
x− cx)(c∗x+1 + cx+1)), (10.110)

so we now show how to diagonalize quadratic fermionic Hamiltonians of the type

hN =−
N

∑
x,y=1

(
Axyc∗xcy + 1

2 Bxy(c∗xc∗y− cxcy)
)
, (10.111)

where A and B are real N×N matrices, with A∗ = A and B∗ =−B. Indeed, taking

A = 1
2 (S+S∗)+λ ·1N ; (10.112)

B = 1
2 (S−S∗), (10.113)

recovers (10.110), where S : CN → CN is the shift operator, defined by

S f (x) = f (x+1); (10.114)
S∗ f (x) = f (x−1). (10.115)

By convention, f (N + 1) = f (0) = 0 (i.e., S f (N) = S∗ f (0) = 0 for any f ∈ CN);
in terms of the standard basis (υx) of CN we have Sυ1 = 0 and Sυx = υx−1 for
x = {2, . . . ,N}, and likewise S∗υN = 0 and Sυx = υx+1 for x = {1, . . . ,N−1}.

The smart thing to do now turns out to be diagonalizing the 2N×2N-matrix

M =

(
A B
−B −A

)
, (10.116)

which by a unitary transformation may be brought into the simpler form

M′ =
(√

1/2 −√1/2√
1/2

√
1/2

)(
A B
−B −A

)( √
1/2

√
1/2

−√1/2
√

1/2

)
=

(
0 C

C∗ 0

)
, (10.117)

where C = A+B. For example, for the model (10.111) we simply have

C = S+λ ·1N . (10.118)
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The equations for the eigenvalues εk and eigenvectors of M′, i.e.,

M′
(

ϕk
ψk

)
= εk

(
ϕk
ψk

)
(10.119)

where ϕk,ψk ∈ CN , are equivalent to both the coupled system of equations

Cψk = εkϕk; (10.120)
C∗ϕk = εkψk; (10.121)

C = A+B, (10.122)

where the eigenvalues εk are real (since M∗ = M), and to the uncoupled version

CC∗ϕk = ε2
k ϕk; (10.123)

C∗Cψk = ε2
k ψk; (10.124)

CC∗ = A2−B2− [A,B]; (10.125)
C∗C = A2−B2 +[A,B]. (10.126)

Without loss of generality we may (and will) assume that the ϕk,ψk are unit vectors
in CN , so that the corresponding unit vector in C2N is (ϕk,ψk)/

√
2). Furthermore,

since C (or M) is a matrix with real entries and the εk are real, by a suitable choice
of phase we may (and will) also arrange that ϕk,ψk have real components. Finally,
it follows from (10.120) - (10.120) that (−ϕk,ψk) is an eigenvector of C with eigen-
value −εk, so that the unitary transformation U ′ that diagonalizes M′, i.e.,

(U ′)−1M′U ′ =
(−E 0

0 E

)
, (10.127)

where E = diag(ε1, . . . ,εN), takes the form

U ′ =
1√
2

(
ϕ −ϕ
ψ ψ

)
, (10.128)

where ϕ is the N×N matrix (ϕ1, . . . ,ϕN), seeing each vector ϕi as a column, etc.
Combined with (10.117), we obtain

U−1MU =

(−E 0
0 E

)
; (10.129)

U = 1
2

(
1 1
−1 1

)
·
(

ϕ −ϕ
ψ ψ

)
= 1

2

(
ψ +ϕ ψ−ϕ
ψ−ϕ ψ +ϕ

)
≡
(

u v
v u

)
, (10.130)

where we introduced N×N matrices

u = 1
2 (ψ +ϕ); (10.131)

v = 1
2 (ψ−ϕ). (10.132)
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Using orthonormality and completeness of both the (ϕk) and the (ψk), one obtains

u∗u+ v∗v = 1H ; (10.133)
u∗v+ v∗u = 0; (10.134)
uu∗+ vv∗ = 1H ; (10.135)
uv∗+ vu∗ = 0. (10.136)

Of course, u and v are far from unique, as they depend on both the ordering and
the phases of the vectors ϕk and ψk. In partial remedy of the former ambiguity we
assume that 0≤ ε0 ≤ ε1 ≤ ·· · ≤ εN (which can be arranged by a suitable ordering as
well as choice of sign of the eigenvectors ϕk). Towards the latter, we already agreed
that both the ϕk and ψk are real, so that also our matrices u and v have real entries.

We now explain the purpose of diagonalizing M in (10.116) using u and v.

Proposition 10.12. Let u and v be operators on a Hilbert space H, where u is linear
and v is anti-linear. Let c( f ) and c∗( f ) be the operators (10.91) - (10.92), satisfying
the CAR (10.93) - (10.94). Define the Bogoliubov transformation

η( f ) = c(u f )+ c∗(v f ); (10.137)
η∗( f ) = c∗(u f )+ c(v f ), (10.138)

which extends to a linear map α : CAR(H)→CAR(H), where η( f ) = α(c( f )) etc.
Then α is a homomorphism of C*-algebras, or, equivalently, one has the CAR

[η( f ),η∗(g)]+ = 〈 f ,g〉H ·1H ; (10.139)
[η( f ),η(g)]+ = [η∗( f ),η∗(g)]+ = 0, (10.140)

iff u and v satisfy (10.133) - (10.134), with u � u,v � v. Moreover, α is invertible
(and hence defines an automorphism of CAR(H)) iff in addition (10.135) - (10.136)
are valid (again with with u � u,v � v), in which case the inverse is

c( f ) = η(u∗ f )+η∗(v∗ f ); (10.141)
c∗( f ) = η∗(u∗ f )+η(v∗ f ). (10.142)

Note that anti-linearity of v is needed to make f �→ η( f ) anti-linear, like f �→ c( f ).
With respect to a base (ei) of H, the transformations (10.137) - (10.142) reads

ηi = ∑
j
(u jic j + v jic∗j); (10.143)

η∗j = ∑
j
(u jic∗j + v jic j); (10.144)

ci = ∑
j
(ui jη j + vi jη∗j ); (10.145)

c∗i = ∑
j
(ui jη∗j + vi jη j). (10.146)
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Proof. The proof is a straightforward computation. �

In comparison with the preceding diagonalization process, where H = CN , we
notice that in this process u and v were both linear, whereas in Proposition 10.12 u
is linear whereas v is antilinear. This difference is easily overcome by taking u= u
and v = Jv, where J : CN → CN is the anti-linear map J f (x) = f (x), so that J is a
conjugation in being an anti-linear map that satisfies J∗ = J−1 = J.

Returning to our generic Hamiltonian (10.111), a straightforward computation
using (10.145) - (10.146), (10.116), (10.129), and (10.133) - (10.136) yields

hN =
N

∑
k=1

εkη∗k ηk, (10.147)

up to a (computable) constant, where we recall that εk ≥ 0 (k = 1, . . . ,N). Note that
hN is still defined on the fermionic Fock space F−(CN), as hN is a (complicated)
quadratic expression in the operators ci and c∗i on F−(CN). The point is that (as a
consequence of Proposition 10.12) the ηk and η∗k also satisfy the CAR, i.e.,

[ηi,η∗j ]+ = δi j ·1F−(H); (10.148)
[ηi,η j]+ = [η∗i ,η

∗
j ]+ = 0. (10.149)

Theorem 10.13. Let A = CAR(CN) be the CAR-algebra over H =CN with dynam-
ics αt(a) = eithN ae−ithN given by (10.111) and hence by(10.147). Then α has a
unique (and hence pure and symmetric) ground state ω0, specified by the property

πω0(η( f ))Ωω0 = 0 ( f ∈ CN). (10.150)

Proof. Recall that α defines a derivation δ : CAR(CN)→ CAR(CN) defined by
(9.54), which in the case at hand is simply by δ (a) = i[hN ,a] (since A is finite-
dimensional, δ is bounded and hence defined everywhere). Using the identity

[ab,c] = a[b,c]+− [c,a]+b, (10.151)

as well as the relations (10.148) - (10.149), we obtain δ (ηk) =−iεkηk, and hence

−iω0(η∗k δ (ηk)) =−ω0(η∗k ηk). (10.152)

The condition −iω0(a∗δ (a)) ≥ 0, i.e., eq. (9.56) from Proposition (9.20), there-
fore implies that ω0(η∗k ηk)≤ 0, and hence ω0(η∗k ηk) = 0 by positivity of ω0. Since
F0(H) is finite-dimensional and A∼= B(F0(H)), cf. (10.98), we may assume ground
state(s) to be pure and normal, i.e., there is some unit vector ψ0 ∈ F−(H) with
ω(a) = 〈ψ0,aψ0〉 for each a ∈ A. Hence 〈ψ0,η∗k ηkψ0〉= 0, which enforces

ηkψ0 = 0 (k = 1, . . . ,N). (10.153)

This property makes ψ0 unique up to a phase. Indeed, together with (10.148) -
(10.149), eq. (10.153) implies the values of all one- and two-point functions, i.e.,
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ω0(η( f )) = ω0(η∗( f )) = 0; (10.154)
ω0(η∗( f )η(g)) = ω0(η∗( f )η∗(g)) = ω0(η( f )η(g)) = 0; (10.155)
ω0(η( f )η∗(g)) = 〈 f ,g〉H . (10.156)

Furthermore, the value of ω0 on any product of an odd number of η( f ) and η∗(g)
vanishes; for an even number the value ω0(∏n

i=1 η( fi)∏n
j=1 η∗(g j)) it is given by

n

∑
p=1

(−1)n−pω0(η( f1)η∗(gp)ω0

(
n

∏
i=2

η( fi)
n

∏
j=1, j �=p

η∗(g j)

)
.

Hence (10.153) gives ω0 on all of CAR(CN). Since CAR(H) =B(F−(H)), this fixes
ψ0 up to a phase. Eq. (10.150) is just a fancy way of rewriting (10.153). �

By construction, the ground state energy of (10.147) is zero. In connection with
our approach to SSB via Butterfield’s Principle it is of interest to compute the energy
ε1 of the first excited state. This may be done from (10.120) - (10.121) with (10.122)
and the specific expression (10.118) for the quantum Ising chain. Thus we solve

λψk(x)+ψk(x+1) = εkϕk(x) (x = 1, . . . ,N,ψk(N +1) = 0); (10.157)
λϕk(x)+ϕk(x−1) = εkψk(x) (x = 1, . . . ,N,ϕk(0) = 0). (10.158)

A solution of this system (with real wave-functions and positive energy) is given by

ϕk(x) = C(−1)k sin(qk(x−N−1)); (10.159)
ψk(x) = −C sin(qkx); (10.160)

εk =
√

1+λ 2 +2λ cos(qk), (10.161)

where C > 0 is a normalization constant, and qk should be solved from

(N +1)qk = (k−1)π + arctan
(

sinqk

λ + cosqk

)
. (10.162)

For example, for λ = 0 (i.e. no transverse magnetic field) we obtain qk = kπ/N,
where k = 1, . . . ,N. For λ > 1 there is a unique real solution qk for each k, too, and
even as N → ∞ there is an energy gap εk > 0 for each k. For 0 < λ < 1, however,
there is a complex solution q1 = π + iρ , where ρ ∈ R is a solution to

tanh((N +1)ρ) =
sinhρ

coshρ−λ
. (10.163)

As N → ∞, we find ρ =− ln(λ )− (1−λ 2)λ 2(N−1). Eq. (10.161) then gives

ε(q1)≈ (1−λ 2)λ N (N → ∞), (10.164)

which, recalling that E(1)
N = ε1 and E(0)

N = 0 and hence ΔN = ε1, confirms (10.82).



10.7 Exact solution of the quantum Ising chain: N = ∞ 397
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The (two-sided) infinite quantum Ising chain is described by the C*-algebra

F = CAR(�2(Z)); (10.165)

one may also consider a one-sided chain, but it lacks translation symmetry. By the
construction at the beginning of the previous section, F is isomorphic to the infinite
tensor product A = M2(C)∞. We consider F to be generated by the operators c±x
(x ∈Z), where c−x ≡ cx and c+x ≡ c∗x . In this notation, the CAR (10.95) - (10.96) read

[c±x ,c
∓
y ]+ = δxy; (10.166)

[c±x ,c
±
y ]+ = 0. (10.167)

Although the local Hamiltonians (10.111) do not have a limit as N → ∞, as ex-
plained in §10.5 they do generate a time-evolution on F in the sense of a continuous
homomorphism α : R→ Aut(F) via (10.65) and (10.67); see also Theorem 9.15.

Let us first extend the approach in the previous section to N = ∞, in which case
CN is replaced by H = �2(Z), assuming the theory has already been brought into
fermionic form with local Hamiltonians (10.111) (as we will see, it is this step,
i.e., the Jordan–Wigner transformation, that marks the difference between N < ∞
and N = ∞). Thus we define operators A : �2(Z)→ �2(Z) and B : �2(Z)→ �2(Z)
as the obvious extensions of the N ×N matrices A and B to operators on �2(Z),
and similarly S : �2(Z)→ �2(Z) is the “full” shift operator, defined by (S f )(x) =
f (x+1). Instead of the somewhat clumsy explicit solution procedure sketched in the
previous section for N < ∞, we may now simply rely on the Fourier transformation

F : �2(Z)→ L2([−π,π]); (10.168)
(F f )(k)≡ f̂ (k) = ∑

x∈Z
e−ikx f j; (10.169)

(F−1 f̂ )(x)≡ f (x) =
∫ π

−π

dk
2π

eikx f̂ (k), (10.170)

which diagonalizes A and B to operators Â, B̂ : L2([−π,π])→ L2([−π,π]). For the
quantum Ising Hamiltonian (10.110) these are given by the multiplication operators

Âψ̂(k) = −(cosk+λ )ψ̂(k); (10.171)
B̂ψ̂(k) = −isink ψ̂(k). (10.172)

For fixed k, the eigenvalues and eigenvectors of the 2×2 matrix

Mk =

(−(cosk+λ ) −isink
isink cosk+λ

)
, (10.173)
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are ±εk, given by (10.161) with qk � k. It is then routine to find a unitary 2×2 ma-

trix Uk =

(
uk vk
vk uk

)
that diagonalizes Mk in the sense that U−1

k MkUk =

(−εk 0
0 εk

)
.

Fourier transforming these multiplication operators back to �2(Z) then yields an op-
erator U on �2(Z)⊕ �2(Z) that satisfies (10.129). This yields a unique ground state
ω0 characterized by a property like (10.150) or (10.153), where

η( f̂ ) =
∫ π

−π

dk
2π

f̂ (k)(ukĉk + vkĉ∗−k); (10.174)

ĉk = ∑
j∈Z

e−i jkc j; (10.175)

ĉ∗k = ∑
j∈Z

ei jkc∗j . (10.176)

In summary, one-dimensional fermionic models with quadratic Hamiltonians like
(10.111) have a unique ground state even at N = ∞. Thus one wonders where SSB in
the quantum Ising chain could possibly come from. We will answer this question.

Almost every argument to follow relies on Z2-symmetry. In general, a Z2-action
on a C*-algebra A corresponds to an automorphism θ : A→ A such that θ 2 = idA,
i.e. θ represents the nontrivial element of Z2. For example, define θ : F → F by

θ(c±x ) =−c±x ( j ∈ Z), (10.177)

which is an example of a Bogoliubov transformation (cf. Proposition 10.12) and
hence extends to an automorphism of F (which implies that θ(1F) = 1F ). Clearly,
θ 2 = idF , and in addition each local Hamiltonian (10.111) is invariant under θ ; by
implication, so is the dynamics α , i.e., αt ◦θ = θ ◦αt for all t ∈ R.

A C*-algebra A carrying a Z2-action decomposes as

A = A+⊕A−; (10.178)
A± = {a ∈ A | θ(a) =±a}, (10.179)

where the even part A+ is a subalgebra of A, whereas the odd part A− is not: one
has ab ∈ A+ for a,b both in either A+ or A−, and ab ∈ A− if one is in A+ and the
other in A−. For example, if A = B(H) for some Hilbert space H and w : H → H is
a untitary operator satisfying w2 = 1 (and hence w∗ = w), then

θ(a) = waw∗ (= waw) (10.180)

defines a Z2-action on A. In that case, A+ and A− consist of all a ∈ A that commute
and anticommute with w, respectively, that is,

A± = {a ∈ A | aw∓wa = 0}. (10.181)

In case of (10.165) with (10.177), the subspace F+ (F−) is just the linear span of all
products of an even (odd) number of c±j ’s.
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Let us move to Theorem C.90 and reconsider the proof of the claim that if
πω(A)′ �= C · 1, then ω is mixed. If the commutant πω(A)′ is nontrivial, then it
contains a nontrivial projection e+ ∈ πω(A)′. It then follows that e+Ωω �= 0: for
if e+Ωω = 0, then ae+Ωω = e+aΩω = 0 for all a ∈ A, so that e+ = 0, since πω is
cyclic. Similarly, e−Ωω �= 0 with e− = 1H − e+, so we may define the unit vectors

Ω± = e±Ωω/‖e±Ωω‖, (10.182)

and the associated states ω±(a) = 〈Ω±,πω(a)Ω±〉on A. This yields a convex de-
composition ω = λω++(1−λ )ω−, with λ = ‖Ω−‖2. Since λ �= 0,1 and ω+ �=ω−,
it follows that ω is mixed. The associated reduction is effected by writing

H = H+⊕H−; (10.183)
H± = e±H, (10.184)

in that A (more precisely, πω(A)) maps each subspace H± into itself. Now pass from
the projections e± to the operator w = e+− e−, which by construction satisfies

w∗ = w−1 = w. (10.185)

In particular, w is unitary. Conversely, if some unitary w satisfies w2 = 1H , then

e± = 1
2 (1H ±w) (10.186)

are projections satisfying e++ e− = 1H , giving rise to the decomposition (10.184).
Group-theoretically, this means that one has a unitary Z2-action on H ≡ Hω , in
which the nontrivial element of Z2 = {−1,1} is represented by w. The decompo-
sition (10.184) then simply means that Z2 acts trivially on H+ (in that both group
elements are represented by the unit operator) and acts nontrivially on H− (in that
the nontrivial element is represented by minus the unit operator). In conclusion, one
has a Z2 perspective on the reduction of Hω , and instead of a projection e ∈ πω(A)′
one may equivalently look for an operator w ∈ πω(A)′ that satisfies (10.185).

Proposition 10.14. Suppose A carries a Z2-action θ and consider a state ω : A→C
that is Z2-invariant in the sense that ω(θ(a)) = ω(a) for all a ∈ A. We write this
as θ ∗ω = ω , with θ ∗ω = ω ◦ θ . Then there is a unitary operator w : Hω → Hω
satisfying w2 = 1H, wΩ = Ω , and and wπω(a)w∗ = πω(θ(a)) for each a ∈ A.

Cf. Corollary 9.12. In this situation, we obtain a decomposition of H ≡ Hω accord-
ing to (10.183), where the projections e± are given by (10.186), so that, equivalently,

H± = {ψ ∈ H | wψ =±ψ}= A±Ω−. (10.187)

In terms of the decomposition (10.178), it is easily seen that each subspace H±
is stable under A+, whereas A− maps H± into H∓. We denote the restriction of
πω(A+) to H± by π±, so that a Z2-invariant state θ on A not just gives rise to the
GNS-representation πω of A on Hω , but also induces two representations π± of the
even part A+ on H±. This leads to a refinement of Theorem C.90:
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Theorem 10.15. Suppose A carries a Z2-action θ , and let ω : A → C be a Z2-
invariant state. With the above notation, suppose the representation π+(A+) on H+

is irreducible. Then also the representation π−(A+) on H− is irreducible, and there
are the following two possibilities for the representation πω(A) on H = H+⊕H−:

1. πω(A) is irreducible (and ω is pure) iff π+(A+) and π−(A+) are inequivalent.
2. πω(A) is reducible (and ω is mixed) iff π+(A+) and π−(A+) are equivalent.

Proof. The proof of this theorem is much more difficult than one would expect
(given its simple statement), so we restrict ourselves to the easy steps, as well as to
two examples illustrating each of the two possibilities. To start with the latter:

1. A = M2(C), with θ(a) = σ3aσ3; note that σ2
3 = 1 and σ∗3 = σ3. Then

A+ =

{(
z+ 0
0 z−

)
,z± ∈ C

}
≡ D2(C); (10.188)

A− =

{(
0 z1
z2 0

)
,z1,z2 ∈ C

}
, (10.189)

where Dn(C) denotes the C*-algebra of diagonal n×n matrices. Take Ω = (1,0),
with associated state

ω(a) = 〈Ω ,aΩ〉, (10.190)

where a ∈ M2(C). It follows from §2.4 that the associated GNS-representation
πω(A) is just (equivalent to) the defining representation of M2(C) on Hω = C2,
in which the cyclic vector Ωω of the GNS-construction is Ω itself. Since σ3Ω =
Ω , the state defined by (10.190) is Z2-invariant, and the unitary operator w in
Proposition 10.14 is simply w = σ3. Hence the decomposition (10.183) of H =
C2 is simply C2 = C⊕C, i.e.,

H+ = {(z,0),z ∈ C}; (10.191)
H− = {(0,z),z ∈ C}. (10.192)

Of course, we then have H± = A±Ω . Identifying H± ∼= C, this gives the one-
dimensional representations π±(D2(C)) as

π±
(

z+ 0
0 z−

)
= z±, (10.193)

which are trivially inequivalent. Hence by Theorem 10.15 the defining represen-
tation of M2(C) on C2 is irreducible, as it should be.

2. A = D2(C), with
θ(diag(z+,z−)) = diag(z−,z+), (10.194)

where we have denoted the matrix in (10.188) by diag(z+,z−). This time,

A± = {diag(z,±z),z ∈ C}. (10.195)

We once again define a Z2-invariant state ω by (10.190), but this time we take
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Ω =
1√
2

(
1
1

)
. (10.196)

Hence
H± = {(z,±z),z ∈ C}.. (10.197)

We may now identify each A± with C under the map diag(z,±z) �→ z from
A± to C. Similarly, we identify each each subspace H± with C under the map
H± → C defined by (z,±z) �→ z. Under these identifications, we have two one-
dimensional representations π± of the C*-algebra C on the Hilbert space C, given
by π±(z)= z. Clearly, these are equivalent: they are even identical. Hence by The-
orem 10.15 the defining representation of D2(C) on C2 is reducible, as it should
be: the explicit decomposition of C2 in D2(C)-invariant subspaces is just the one
(10.191) - (10.192) of the previous example.

The first-numbered claim of Theorem 10.15 is relatively easy to prove from The-
orem C.90. Suppose π±(A+) are inequivalent and take b∈ πω(A)′: we want to show
that b = λ ·1 for some λ ∈ C. Relative to H = H+⊕H−, we write

b =

(
b++ b+−
b−+ b−−

)
, (10.198)

where the four operators in this matrix act as follows:

b++ : H+→ H+,b+− : H− → H+, b−+ : H+→ H−, b−− : H− → H−. (10.199)

Since A+ ⊂ A, we also have b ∈ πω(A+)
′. The condition [b,a] = 0 for each a ∈ A+

is equivalent to the four conditions

[b++,π+(a)] = 0; (10.200)
[b−−,π−(a)] = 0; (10.201)

π+(a)b+− = b+−π−(a); (10.202)
π−(a)b−+ = b−+π+(a). (10.203)

We now use the fact (which we state without proof) that, as in group theory, the
irreducibility and inequivalence of π±(A+) implies that there can be no nonzero
operator c : H+ → H− such that cπ+(a) = π−(a)c for all a ∈ A+, and vice versa.
Hence b+− = 0 as well as b−+ = 0. In addition, the irreducibility of π±(A+) implies
that b++ = λ+ · 1H+ and b−− = λ− · 1H1 . Finally, the property [b,a] = 0 for each
a ∈ A− implies λ+ = λ−. Hence b = λ ·1, and πω(A) is irreducible.

To prove the second-numbered claim of Theorem 10.15, let π+(A+) ∼= π−(A+),
so by definition (of equivalence) there is a unitary operator v : H− → H+ such that

vπ−(a) = π+(a)v,∀a ∈ A+. (10.204)

Extend v to an operator w : H → H by
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w =

(
0 v
v∗ 0

)
. (10.205)

It is easy to verify from (10.204) that [w,π(a)] = 0 for each a ∈ A+. To check
that the same is true for each a ∈ A−, one needs the difficult analytical fact that
w is a (weak) limit of operators of the kind π(an), where an ∈ A−, which also im-
plies that w∗π(a) ∈ π(A+)

′′. Since π(A+)
′′′ = π(A+)

′ and w ∈ π(A+)
′, we obtain

[w∗π(a),w] = 0 for each a ∈ A−. But for unitary operators w this is the same as
[w,π(a)] = 0. So w ∈ π(A)′, and hence π(A) is reducible by Theorem C.90. �

In determining the ground state(s) of the quantum Ising chain, we will apply The-
orem 10.15 to the C*-algebra (10.87). This application relies on the representation
theory of F . For the moment we leave the Hilbert space H general, equipped though
with a conjugation J : H → H. It turns out to be convenient to use the self-dual
formulation of the CAR, which treats c and c∗ on an equal footing. Define

K = H⊕H, (10.206)

whose elements are written as h = ( f ,g) or h = f +̇g, with inner product

〈h1,h2〉K = 〈 f1, f2〉H + 〈g1,g2〉H . (10.207)

We then introduce a new operator in CAR(H), namely the field

Φ(h) = c∗( f )+ c(Jg), (10.208)

which is linear in h = f +̇g, because the antilinearity of c( f ) in f is canceled by the
antilinearity of J. This yields the anti-commutation relations

[Φ∗(h1),Φ(h2)]+ = 〈h1,h2〉K , (10.209)

but be aware that generally [Φ∗(h1),Φ∗(h2)]+ and [Φ(h1),Φ(h2)]+ do not vanish.
Indeed, in terms of the antilinear operator Γ : K → K, defined by

Γ =

(
0 J
J 0

)
(10.210)

we have the following expression for the adjoint Φ(h)∗ ≡Φ∗(h):

Φ∗(h) = Φ(Γ h). (10.211)

If we identify f ∈ H with f +̇0 ∈ K, we may reconstruct c and c∗ from Φ through

c∗( f ) = Φ( f ); (10.212)
c( f ) = Φ(Γ f ). (10.213)

Bogoliubov transformations now take an extremely elegant form. For any unitary
operator S on K that satisfies [S,Γ ] = 0, we define the transform ΦS of Φ by
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ΦS(h) = Φ(Sh), (10.214)

with associated creation- and annihilation operators (where H � f ≡ f +̇0, as above)

c∗S( f ) = ΦS( f ); (10.215)
cS( f ) = Φ∗

S ( f ). (10.216)

To see the equivalence with the original formulation of the Bogoliubov transforma-
tion, note that for unitary S, the condition [S,Γ ] = 0 is equivalent to the structure

S =

(
u vJ
Jv JuJ

)
, (10.217)

where u : H → H is linear, v : H → H is antilinear, and u and v satisfy (10.133) -
(10.134). Moreover, from (10.137) - (10.138) we obtain

cS( f ) = η( f ); (10.218)
c∗S( f ) = η∗( f ). (10.219)

An interesting class of pure states on CAR(H) arises as follows.

Theorem 10.16. There is a bijective correspondence between:

• Projections e : K → K that (apart form the properties e2 = e∗ = e) satisfy

Γ eΓ = 1K− e; (10.220)

• States ωe on F that satisfy

ωe(Φ(h)∗Φ(h)) = 〈h,eh〉 ∀h ∈ K. (10.221)

Such a state ωe is automatically pure (so that the corresponding GNS-representation
πe is irreducible), and is explicitly given by

ωe(Φ(h1) · · ·Φ(h2n+1)) = 0; (10.222)

ωe(Φ(h1) · · ·Φ(h2n)) =
′

∑
p∈S2n

sgn(p)
n

∏
j=1
〈ehsgn(2 j),Γ hsgn(2 j−1)〉,(10.223)

the sum Σ ′ is over all permutations p of 1, . . . ,2n such that

p(2 j−1) < p(2 j); (10.224)
p(1) < p(3)< · · ·< p(2n−1). (10.225)

We omit the proof. Note that (10.221) is a special case of (10.223), because of
(10.211). States like ωe, which are determined by their two-point functions, are
called quasi-free; the ground state ω0 on CAR(CN) constructed in the previous
section is an example (one also has mixed quasi-free states, e.g. certain KMS states).
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As a warm-up, we reconstruct the ground state of the free fermionic Hamiltonian
on F using the above formalism. That is, we assume that hN in (10.111) reads

hN =
N/2−1

∑
x=−N/2

εxc∗xcx, (10.226)

initially defining dynamics on FN = CAR(CN). In that case, the projection e0 onto
the second copy of H = CN in K, i.e.

e0 =

(
0 0
0 1

)
, (10.227)

reproduces the ground state ω0(a) = 〈0|a|0〉, where |0〉 is the vector 1∈C in F−(H),
such that c( f )|0〉 = 0 for all f ∈ H. This also works for N = ∞, i.e., we construct
dynamics on CAR(�2(Z)) from the local Hamiltonians (10.226) as indicated at the
beginning of this section, and use the same formula for e0, this time with H = �2(Z).

In the more general case (10.111), we replace e0 in (10.227) by

e(S)0 = Se0S−1, (10.228)

where S is given by (10.217), in which for N < ∞ the operators u and v were con-
structed in (10.131) - (10.132). This time, the associated state ω

e(S)0
≡ ωS is the state

called ω0 in Theorem 10.13. As explained at the beginning of this section, this pro-
cedure even works for N = ∞ and hence H = �2(Z).

Having understood fermionic models with quadratic Hamiltonians, what remains
to be done now is to reformulate the original quantum Ising chain, defined in terms
of the local spin matrices σi(x), in terms of the fermionic variables cx and c∗x . For fi-
nite N this was done through the Jordan–Wigner transformation (10.102) - (10.103).
This time we need a similar isomorphism between A and F , where

A = ⊗ j∈ZM2(C); (10.229)

F = CAR(�2(Z)), (10.230)

and hence we would need to start the sums in the right-hand side of (10.102) -
(10.103) at j = −∞. At first sight this appears to be impossible, though, because
operators like exp(πi∑x−1

y=−∞ σ+(y)σ−(y)) do not lie in A (whose elements have in-
finite tails of 2×2 unit matrices). Fortunately, this problem can be solved by adding
a formal operator T to A, which plays the role of the “tail”

“T = eπi∑0
y=−∞ σ+(y)σ−(y))”. (10.231)

This formal expression (to be used only heuristically) suggests the relations:
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T 2 = 1; (10.232)
T ∗ = T ; (10.233)

TaT = θ−(a), (10.234)

where θ− : A→ A is a Z2-action defined by (algebraic) extension of

θ−(σ±(y)) = −σ±(y) (y≤ 0); (10.235)
θ−(σ±(y)) = σ±(y) (y > 0); (10.236)
θ−(σ3(y)) = σ3(y) (y ∈ Z); (10.237)
θ−(σ0(y) = σ0(y) (y ∈ Z), (10.238)

where σ0 = 12. Formally, define an algebra extension

Â = A⊕A ·T, (10.239)

with elements of the type a+bT , a,b ∈ A, and algebraic relations given by (10.232)
- (10.233). That is, we have

(a+bT )∗ = a∗+θ−(b∗)T ; (10.240)
(a+bT ) · (a′+b′T ) = aa′+bθ−(b′)+(ab′+bθ−(a′))T. (10.241)

Within Â, the correct version of (10.102) - (10.103) may now be written down as

c±x = Te∓πi∑0
y=x σ+(y)σ−(y)σ±x (x < 1); (10.242)

c±x = T σ±1 ; (10.243)

c±x = Te∓πi∑x−1
y=1 σ+(y)σ−(y)σ±x (x > 1), (10.244)

with formal inverse transformation given by

σ±(x) = Te±πi∑0
y=x c+y c−y c±x (x < 1); (10.245)

σ±(x) = T c±1 ; (10.246)

σ±(x) = Te±πi∑x−1
y=1 σ+(y)σ−(y)σ±(x) (x > 1), (10.247)

where this time we regard T as an element of the extended fermionic algebra

F̂ = F⊕F ·T, (10.248)

satisfying the same rules (10.232) - (10.234), but now in terms of a “fermionic” Z2-
action θy : F → F given by extending the following action on elementary operators:

θ−(c±y ) = −c±y (y≤ 0); (10.249)

θ−(c±y ) = c±y (y > 0). (10.250)
(10.251)
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Because of T , the Jordan–Wigner transformation does not give an isomorphism
A∼= F , but it does give an isomorphism Â∼= F̂ . More importantly, if, having already
defined the Z2-action θ on F by (10.177), we define a similar Z2-action on A by

θ(σ±(y)) = −σ±(y) (y ∈ Z); (10.252)
θ(σ3(y)) = σ3(y) (y ∈ Z); (10.253)
θ(σ0(y)) = σ0(y) (y ∈ Z), (10.254)

and decompose A=A+⊕A− and F =F+⊕F−, according to this action, cf. (10.178),
we have isomorphisms

A+
∼= F+; (10.255)

A− ∼= F−T ; (10.256)
A ∼= F+⊕F−T. (10.257)

For given dynamics (10.111), suppose ωA
0 is a Z2-invariant ground state on A. Then

ωA
0 also defines a Z2-invariant ground state ωF

0 on F by (10.255) and ωF
0 ( f ) = 0 for

all f ∈ F−. Conversely, a Z2-invariant ground state ωF
0 on F defines a state ωA

0 on A
by (10.255) and ωA

0 (a) = 0 for all a ∈ A−. But F has a unique ground state, so:

• Either ω0 is pure on A, in which case it is the unique ground state on A;
• Or ω0 is mixed on A, in which case ω0 = 1

2 (ω
+
0 +ω−0 ), where ω±0 are pure but

transform under the above Z2-action θ as ω±0 ◦θ = ω∓0 .

Theorem 10.15 gives a representation-theoretical criterion deciding between these
possibilities, but to apply it we need some information on the restriction of Z2-
invariant quasi-free pure states on F to its even part F+. The abstract setting involves
a Z2-action W on K that commutes with Γ (so that W is unitary, W 2 = 1, and
[Γ ,W ] = 0), which induces a Z2-action θ on F by linear and algebraic extension
of θ(Φ(h)) = Φ(Wh). A quasi-free state ωe, defined according to Theorem 10.16
by a projection e : K → K that satisfies (10.220), is then Z2-invariant iff [W,e] = 0.

In our case, this simplifies to θ(Φ(h)) = −Φ(h), so that W = −1, and every
projection commutes with W . In any case, with considerable effort one can prove:

Lemma 10.17. Given some Z2-action W on K, as well as a projection e : K → K
satisfying (10.220), such that [W,Γ ] = [W,e] = 0:

1. The quasi-free state ωe of Theorem 10.16 is Z2-invariant (i.e., ωe ◦θ = ωe);
2. The corresponding GNS-representation space He ≡Hωe for F = F+⊕F− decom-

poses as He = H+
e ⊕H−

e , with H±
e = F±Ωe. Each subspace H±

e is stable under
πe(F+), and the restriction π±e of π(F+) to H±

e is irreducible.

Theorem 10.15 then leads to a lemma, which also summarizes the discussion so far.

Lemma 10.18. 1. For given Z2-invariant dynamics, let ωF
0 be the (unique, Z2-

invariant) ground state on F = F+ ⊕ F−. Under F+ ⊂ F the associated GNS-
representation space H0 decomposes as H0 = H+

0 ⊕H−
0 , with H±

0 = F±Ω0, and
we denote the restriction of π0(F+) to H±

0 by π±0 . Then π±0 (F+) are irreducible.
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2. Regard ωF
0 also as a state ωT

0 on F+⊕F−T by putting ωT
0 (a) = 0 for all a∈F−T ,

and similarly as a state ωA
0 on A by invoking (10.255) and putting ωA

0 (a) = 0 for
all a ∈ A−. Let HT

0 = HT
+ ⊕HT− be the GNS-representation space of F+⊕F−T

defined by ωT
0 , where HT

+ = F+Ω and HT− = F−T Ω . Here HT
+ and HT− are stable

under F+; we denote the restriction of F+ to HT± by πT±, so that πT
+
∼= π+

0 .

a. Then ωA
0 is a ground state on A. Any Z2-invariant ground state on A arises in

this way (via F), so that there is a unique Z2-invariant ground state on A.
b. The state ωA

0 is pure on A iff the irreducible representations πT
+(F+) (or

π+
0 (F+)) and πT−(F+) are inequivalent.

It turns out to be difficult to directly check the (in)equivalence of πT±(F+). For-
tunately, we can circumvent this problem by passing to yet another (irreducible)
representation of F+. We first enlarge F to a new algebra

F̂ = F⊕FT = F+⊕F−⊕F+T ⊕F−T, (10.258)

and extend the state ωF
0 on F to a state ω̂0 on F̂ by putting ω̂0(FT ) = 0, so that ω̂0

is nonzero only on F+ ⊂ F̂ . Let π̂0 be the associated GNS-representation of F̂ on the
Hilbert space Ĥ0 = F̂Ω̂ . Under π̂(F+) this space decomposes as

Ĥ0 = F+Ω̂0⊕F−Ω̂0⊕F+T Ω̂0⊕F−T Ω̂0, (10.259)

with corresponding restrictions π̂±(F+) and π̂T±(F+); more precisely, π̂± is the re-

striction of π̂(F+) to F±Ω̂0, whilst π̂T± is is the restriction of π̂(F+) to F±T Ω̂0.
Clearly, π̂±(F+) is the same as π±0 (F+), and π̂T−(F+) is just our earlier πT−(F+), but
π̂T
+(F+) is new. To understand the latter, we rewrite (10.259) as

Ĥ0 = H0⊕ ĤT
0 ; (10.260)

H0 = F+Ω̂0⊕F−Ω̂0 ∼= F+Ω0⊕F−Ω0; (10.261)

ĤT
0 = F+T Ω̂0⊕F−T Ω̂0, (10.262)

the point being that π̂(F) evidently restricts to both H0 and ĤT
0 . We know the action

of π̂(F) on H0 quite well: it is the representation induced by the ground state ω0. As
to ĤT

0 , we define a state ω̂T
0 on F by

ω̂T
0 (a) = 〈π̂(T )Ω̂0, π̂(a)π̂(T )Ω̂0〉Ĥ0

= 〈Ω̂0, π̂(θ−(a))Ω̂0〉Ĥ0
, (10.263)

where the second equality follows from (10.234). Comparing H0 and Ĥ0, for all
b ∈ F (and hence especially for b = θ−(a)) we simply have

〈Ω̂0, π̂(b)Ω̂0〉Ĥ0
= ω̂0(b) = ωF

0 (b), (10.264)

so that ω̂T
0 = ωF

0 ◦θ− ≡ θ ∗−ωF
0 . Decomposing the GNS-representation space Hθ∗−ωF

0

of πθ∗−ωF
0
(F) as Hθ∗−ωF

0
= H+

θ∗−ωF
0
⊕H−

θ∗−ωF
0

, it follows that π̂T
+(F+) is the restriction
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of πθ∗−ωF
0
(F+) to H+

θ∗−ωF
0

. Therefore, the representation π̂(F) restricted to ĤT
0 is the

GNS-representation πθ∗−ωF
0
(F), so that in turn π̂T

+(F+) is πθ∗−ωF
0
(F+), restricted to

H+
θ∗−ω0

. Hence, further to (10.260) - (10.262), we obtain the decomposition

π̂(F)∼= πωF
0
(F)⊕πθ∗−ωF

0
(F). (10.265)

The point is that for the quantum Ising chain Hamiltonian (10.110), we have:

Lemma 10.19. 1. For each λ �=±1, we have πωF
0
(F)∼= πθ∗−ωF

0
(F).

2. If this holds, then the representations π+
0 (F+) ≡ π+

ωF
0
(F+) and πT−(F+) are in-

equivalent iff the representations π+
ωF

0
(F+) and π+

θ∗−ωF
0
(F+) are equivalent.

3. For each λ �= ±1, the ground state ωA
0 is pure on A iff the representations

πωF
0
(F+) and πθ∗−ωF

0
(F+) are equivalent.

The first claim follows from Theorem 10.20 below. The third follows from Lemma
10.18 and the previous claims. The second claim is proved by repeatedly applying
Theorem 10.15 to π̂(F̂). Given this lemma, the real issue now lies in comparing πωF

0
and πθ∗−ωF

0
, both as representations of F (as they are defined) and as representations

of F+ ⊂ F . This can be settled in great generality by first looking at Theorem 10.16,
and thence, recalling the positive-energy projection (10.228), realizing that

πωF
0
= π

e(S)0
; (10.266)

πθ∗−ωF
0
= π

W−e(S)0 W−
. (10.267)

Here W− : K → K is the Z2-action on K defining the Z2-action θ− on F as ex-
plained above Lemma 10.17; specifically, W− is the direct sum of two copies of
w− : �2(Z)→ �2(Z), defined by w−( f j) = f j ( j > 0) and w−( f j) =− f j ( j ≤ 0).

Subsequently, without proof we invoke a basic result on the CAR-algebra:

Theorem 10.20. Let e and e′ be projections on K that satisfy (10.220). Then:

1. πe(F)∼= πe′(F) iff e− e′ ∈ B2(K);
2. π+

e (F+)∼= π+
e′ (F+) iff e− e′ ∈ B2(K) and dim(eK∩ (1− e′)K) is even.

If the first condition is satisfied, the dimension in the second part is finite, so that
one may indeed say it is even or odd. From Lemmas 10.18 and 10.19 and Theorem
10.20, we finally obtain the phase structure of the infinite quantum Ising chain:

Theorem 10.21. The unique Z2-invariant ground state ω0 of the Hamiltonian (10.110)
is pure (and hence forms the unique ground state) iff both of the following hold:

e(S)0 −W−e(S)0 W− ∈ B2(K); (10.268)

dim(e(S)0 K∩ (1−W−e(S)0 W−)K) is even. (10.269)

This is true for all λ with |λ | ≥ 1. If |λ |< 1, then ω0 = 1
2 (ω

+
0 +ω−0 ), where ω±0 are

pure and transform under the Z2-action θ as ω±0 ◦θ = ω∓0 .
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10.8 Spontaneous symmetry breaking in mean-field theories

We are now going to study SSB in so-called mean-field theories: these are quantum
spin systems with Hamiltonians like the Curie–Weiss-model for ferromagnetism:

hCW
Λ =− J

2|Λ | ∑
x,y∈Λ

σ3(x)σ3(y)−B ∑
x∈Λ

σ1(x), (10.270)

where J > 0 scales the spin-spin coupling, and B is an external magnetic field.
Similar to the quantum Ising model, (10.270) has a Z2-symmetry (σ1,σ2,σ3) 7→
(σ1,−σ2,−σ3), which at each site x is implemented by u(x) = σ1(x). This model
differs from its short-range counterpart (9.42), i.e, the quantum Ising model, or the
Heisenberg model (9.44), in that every spin now interacts with every other spin. It
falls into the class of homogeneous mean-field theories, which are defined by a
single-site Hilbert space Hx = H = Cn and local Hamiltonians of the type

hΛ = |Λ |h̃(T (Λ)
0 ,T (Λ)

1 , . . . ,T (Λ)

n2−1). (10.271)

Here T0 = 1n, and the matrices (Ti)
n2−1
i=1 in Mn(C) form a basis of the real vector

space of traceless self-adjoint n×n matrices; the latter may be identified with i times
the Lie algebra su(n) of SU(n), so that (T0,T1, . . . , ) is a basis of i times the
Lie algebra u(n) of the unitary group U(n) on Cn. In those terms, we define

T (Λ)
i =

1
|Λ | ∑x∈Λ

Ti(x), (10.272)

Finally, h̃ is a polynomial (which is sensitive to operator ordering). For example, to
cast (10.270) (with J = 1) in the form (10.271), take n = 2, Ti = 1

2 σi (= 1,2,3), and

h̃CW(T1,T2,T3) =−2(T 2
3 +BT1). (10.273)

The assumptions of Theorem 9.15 do not hold now, and indeed the local dy-
namics (9.40) fails to converge to global dynamics on the quasi-local C*-algebra A
defined by (8.130). Fortunately, it does converge to a global dynamics on the C*-
algebra C(S(B)), where B = Mn(C) is the single-site algebra. In order to describe
the limiting dynamics of (homogeneous) mean-field models as Λ ↗ Zd , we equip
the state space S(B) with the Poisson structure (8.52), which we now elucidate.

For unital C*-algebras B, we may regard S(B) as a w∗-compact subspace of either
the complex vector space B∗ or the real vector space B∗sa; in the latter case we regard
states as linear maps ω : B∗sa → R that satisfy ω(1B) = 1 and ω(a2) ≥ 0 for each
a ∈ Bsa. If B = Mn(C), which is all we need, we may furthermore identify B∗sa with
iu(n)∗, and since the value of each state ω ∈ S(Mn(C)) is fixed on T0 = 1B ∈ iu(n),
it follows that S(Mn(C)) is a compact convex subset of isu(n)∗. In that case, the
Poisson bracket (8.52) on S(Mn(C)) is none other than the restriction of (minus) the
canonical Lie-Poisson bracket on su(n)∗ ∼= isu(n)∗ to S(Mn(C)), cf. (3.98) - (3.99).

Tn2−1
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For example, for n = 2 we have S(M2(C))∼= B3 ⊂ R3 by Proposition 2.9, i.e.,

ω(x,y,z)(a) = Tr(ρ(x,y,x)a) ((x,y,z) ∈ B3, a ∈M2(C)); (10.274)

ρ(x,y,z) = 1
2

(
1+ z x− iy
x+ iy 1− z

)
. (10.275)

We also have su(2)∗ ∼= R3 upon the choice of the basis (Ti = 1
2 σi), i = 1,2,3, of

isu(2), which means that θ(x,y,z) ∈ isu(2)∗ maps (T1,T2,T3) to (x,y,z) (where this
time (x,y,z) ∈ R3), cf. §5.8). If we now regard the matrices Ti as functions T̂i on B3

by T̂i(ω) = ω(Ti), we find that the corresponding functions on B3 are given by

T̂1(x,y,z) = 1
2 x, T̂2(x,y,z) = 1

2 y, T̂3(x,y,z) = 1
2 z. (10.276)

The corresponding Poisson brackets (8.52) are {T1,T2} = −2T3 etc., i.e., {x,y} =
−2z etc.; this is−2 times the bracket defined in (3.43) or (3.97) - (3.98). This factor
2 could have been avoided by moving to the three-ball with radius r = 1/2 instead
of r = 1, whose boundary is the coadjoint orbit O1/2 naturally associated to spin- 1

2 .
We now return to our continuous bundle of C*-algebras A(c) of Theorem 8.4, of

course in the slightly adapted form appropriate to quantum spin systems, see §8.6. In
particular, we recall that A(c)

0 = C(S(B)) and A(c)
1/N = B(HΛN ), cf. (8.157) - (8.158),

and hence we see the limit N → ∞ as a specific way of taking the limit Λ ↗ Zd

along the hypercubes ΛN . Symmetric and quasi-symmetric sequences (a1/N)N∈N
are defined as explained after (8.161). The following observation is fundamental.

Theorem 10.22. Let B = Mn(C). If (a1/N)N∈N and (b1/N)N∈N are symmetric se-
quences with limits a0 and b0 as defined by (8.46), respectively (so that (a1/N)N∈Ṅ
and (b1/N)N∈Ṅ are continuous sections of the continuous bundle A(c)), then the se-
quence ({a0,b0}, i[a1,b1], . . . , i|ΛN |[a1/N ,b1/N ], · · ·

)
(10.277)

defines a continuous section of A(c). In particular, for each ω ∈ S(B) we have

i lim
N→∞

ω |ΛN |(|ΛN |[a1/N ,b1/N ]) = {a0,b0}(ω). (10.278)

Proof. The proof is a straightforward combinatorial exercise, and we just mention
the simplest case where d = 1 and a1/N = S1,N(a1) and b1/N = S1,N(b1), where
a1 ∈ B and b1 ∈ B, cf. (8.39). Then a0 = â1, b0 = b̂1, and similarly to (8.45) we find

[S1,N(a1),S1,N(b1)] =
1
N

S1,N([a1,b1]), (10.279)

Using (8.52), we find that (10.277) is equal to (i[̂a1,b1], . . . ,S1,N([a1,b1]), . . .). Since
ωN(S1,N([a1,b1])) = ω([a1,b1]), the left-hand side of (10.278) is therefore equal to
iω([a1,b1]), which by (8.52) equals the right-hand side. �
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In other words, although the sequence of commutators [a1/N ,b1/N ] converges to zero

(which is why A(c)
0 has to be commutative!), the rescaled commutators iN[a1/N ,b1/N ]

converge to the macroscopic observable {a0,b0} ∈ C(S(B)). This reconfirms the
analogy between the limit N → ∞ and the limit h̄→ 0 of Chapter 7, see especially
Definitions 7.1 and 8.2. With B = Mn(C), Theorem 10.22 implies the central result
about the macroscopic (and hence classical!) dynamics of mean-field theories:

Corollary 10.23. Let (h1/N)N∈Ṅ be a continuous section of A(c) defined by a sym-
metric sequence, and let (a1/N)N∈Ṅ be an arbitrary continuous section of A(c) (i.e.
a quasi-symmetric sequence). Then, writing h1/N = hΛN for clarity, the sequence(

a0(t),e
ihΛ1 ta1e−ihΛ1 t , · · ·eihΛN ta1/Ne−ihΛN t , · · ·

)
, (10.280)

where a0(t) is the solution of the equations of motion on S(Mn(C)) with classical
Hamiltonian h0 and Poisson bracket (8.52), defines a continuous section of A(c).

In other words, the Heisenberg dynamics on AΛN = B(HΛN ) defined by the quan-
tum Hamiltonians hΛN converges to the classical dynamics on the Poisson manifold
S(Mn(C)) that is generated by their classical limit, viz. the Hamiltonian h0.

For example, since the operators T (Λ)
i form symmetric sequences, so do Hamil-

tonians of the type (10.271). The limit h0 ∈ C(S(Mn(C))) of the family (hΛ ) in
(10.271) is simply obtained by replacing the operators T (Λ)

i in the function h̃ by the
functions T̂i on S(Mn(C)). Equivalently, one may replace the T (Λ)

i by the canon-
ical coordinates (θi) of isu(n)∗ dual to the basis (T1, . . . ,Tn2−1) of isu(n)∗, i.e.,
θi(Tj) = δi j, and restricting the ensuing function on isu(n)∗ to S(Mn(C))⊂ isu(n)∗.

Using (10.276), for the Curie–Weiss model (10.270) with J = 1 this gives

hCW
0 (x,y,z) =− 1

2 z2−Bx. (10.281)

The ground states of this Hamiltonian are simply its minima, viz.

x± = (B,0,±
√

1−B2) (0≤ B < 1); (10.282)
x = (1,0,0)) (B≥ 1), (10.283)

all of which lie on the boundary S2 of B3. Note that the points x± coalesce as B→ 1,
where they form a saddle point. Modulo our use of radius r = 1 instead of r = 1/2,
this result coincides with (10.81) for classical limit of the quantum Ising model.

We now turn to symmetry and its possible breakdown. Suppose there is some
subgroup of U(n), typically the image of a unitary representation g 7→ ug of a com-
pact group G on Cn, under which h̃(T0,T1, . . . ,Tn2−1) in (10.271) satisfies

h̃(T0,ugT1u∗g, . . . ,ugTn2−1u∗g) = h̃(T0,T1, . . . ,Tn2−1) (g ∈ G). (10.284)

For example, in the Curie–Weiss model one has G = Z2, whose nontrivial element
is represented by σ1. For (10.271) itself this implies u(N)hN(u(N))∗= hN , cf. (10.69).
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Hence also in homogeneous mean-field models we obtain the structure (10.57),
(10.58), and (10.59) familiar from the case of short-range forces. For the limit theory
this implies that the classical Hamiltonian h0 on S(Mn(C)) is invariant under the
coadjoint action of G ⊂U(n) on isu(n)∗, restricted to S(Mn(C)) ⊂ isu(n)∗: in the
Curie–Weiss model this “classical shadow” of the Z2 symmetry of the quantum
theory is simply the map (x,y,z) �→ (x,−y,−z) on B3.

In the regime 0 < B < 1, the degenerate ground states of this model break this
symmetry. In contrast, it can be shown from the Perron–Frobenius Theorem (which
applies since both σ3 and σ1 are real matrices) that for B > 0 each quantum-
mechanical Hamiltonian (10.270) has a unique ground state ψ(0)

N . Being unique,
this vector must share the invariance of hN under the permutation group SN , so that

ψ(0)
N =

N

∑
n+=0

c(n+/N)|n+,n−〉, (10.285)

where |n+,n−〉 is the totally symmetrized unit vector in ⊗NC2 with n+ spins up
and n− = N − n+ spins down, and c : {0,1/N,2/N, . . . ,(N − 1)/N,1} → [0,1] is

Frobenius Theorem). The asymptotic behaviour of c as N → ∞ has been studied,

Thus we encounter a familiar headache: the “higher-level” theory C(S(Mn(C)))
at N = ∞ breaks the Z2 symmetry, whereas the “lower-level” quantum theories
B(HΛN ) (N < ∞) do not, although the former should be a limiting case of the latter.
Indeed, the situation for the Curie–Weiss model in the regime 0 < B < 1 is exactly
analogous to the double-well potential as well as to the quantum Ising model in the
same regime: if the two degenerate ground states x± ∈B3 of hCW

0 are reinterpreted as
Dirac measures δ± on B3, which in turn are seen as (pure) states ω± on the classical
algebra of observables C(S(M2(C))), then (10.74) holds, mutatis mutandis.

The resolution of this problem through the restoration of Butterfield’s Principle
should also be the same as for the previous two cases: there is a first excited state
ψ(1)

N such that as N → ∞, the energy difference with the ground state approaches
zero and one has approximate symmetry breaking as in (10.75)). Alas, for the Curie–
Weiss model so far only numerical evidence is available supporting this scenario.

Equilibrium states of homogeneous mean-field models at any inverse tempera-
ture 0 < β < ∞ exist, despite the fact that in such models time-evolution αt on the
infinite system A (and hence the KMS condition characterizing equilibrium states)
is ill-defined (unless one passes to certain representations of A, which would be
question-begging). Instead, one invokes the quasi-local C*-algebra A, cf. (8.130),
and in lieu of KMS states looks for limit points ω̂β ∈ S(A) of the local Gibbs states
ωβ

ΛN
defined by (9.96) as N → ∞; see (10.44) and surrounding discussion. Proposi-

tion 10.8 does not apply now, but Theorem 8.9 does: since each local Hamiltonian
hΛN is permutation-invariant (because each T (ΛN)

i is), so is each local Gibbs state
ωβ

ΛN
, and accordingly, each w∗-limit point of this sequence must share this property.

some function such that ∑n+ c(n+/N)2 = 1 (we may assume c ≥ 0 by the Perron–

and as expected, c to converges pointwise to c(0) = c(1) =
√

1/2 and c(x) = 0, and
zero elsewhere (at B = 0 one of course has either c(0) = 1 or c(1) = 1 for all N).
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As in (8.174), from the quantum De Finetti Theorem 8.9 we therefore have:

ω̂
β =

∫
S(Mn(C))

dµβ (θ)
(

ω
β

θ

)∞

, (10.286)

for some probability measure µβ on the single-spin state space S(Mn(C)). By Propo-
sition 8.28, this measure may also be regarded as a limit of the local Gibbs states, but
now regarded as a state on the limit algebra A(c)

0 =C(S(Mn(C))) rather than as a state

on A(q)
0 = A. By the same token, each state ω

β

θ
in the decomposition (10.286) is a

pure state on A(c)
0 (though seen as a state on Mn(C) it will be mixed!). The states ω

β

θ

are computed as follows. Given a classical Hamiltonian h0 computed from (10.271)
as explained after Corollary 10.23, for each point θ = (θ0, . . . ,θn2−1) ∈ iu(n)∗ we
define a new self-adjoint operator ĥθ ∈Mn(C) by

ĥθ = h0(θ) ·1n +
n2−1

∑
i=0

∂h0

∂θi
(θ) ·Ti. (10.287)

For example, in the Curie–Weiss model, from (10.273) we have

hCW
0 (θ) = −2(θ 2

3 +Bθ1); (10.288)
ĥCW

θ = hCW
0 (θ)−2θ3σ3−Bσ1. (10.289)

Eq. (10.287) has the following origin. Let ω be any state on A for which the strong
limit T (ω)

i of each operator πω(T
(ΛN)

i ) on Hω exists as N→∞ (for example, as in the
proof of Theorem 8.16 one may show that this is the case when ω is a permutation-
invariant state of A). It easily follows that T (ω)

i lies in the algebra at infinity for πω ,
and hence in the center of πω(A)′′, cf. §8.5. If, in addition, ω is primary, then

T (ω)
i = θi ·1Hω

; (10.290)

θi = lim
N→∞

ω(T (ΛN)
i ). (10.291)

Under these assumptions, we compute the commutator

[πω(hΛN ),πω(a)]=∑
i

∂h0

∂θi

(
T (Λ)

0 , . . . ,T (Λ)

n2−1

)
· ∑
x∈ΛN

[πω(Ti(x)),πω(a)]+O
(

1
|ΛN |

)
,

where a ∈ ∪Λ AΛ , and O(1/|ΛN |) denotes a finite sum of (multiple) commutators
between some power of T (Λ)

i and operators that are (norm-) bounded in N. For
example, for the Curie–Weiss model the O(1/|ΛN |) term is a multiple of

∑
x∈ΛN

[[πω(σ3(x)),πω(a)],σ
(ΛN)
3 ]. (10.292)
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Since a is local, all commutators ∑x∈ΛN [πω(Ti(x)),πω(a)] are in πω(A), so that fur-

ther commutators à la (10.292) vanish as N → ∞. Also, in this limit the terms T (Λ)
i

in the argument of ∑i ∂h0/∂θi assume their c-number values θi, so that

lim
N→∞

[πω(hΛN ),πω(a)] = [hω ,πω(a)], (10.293)

where formally (i.e. on a suitable domain) we have an ω-dependent Hamiltonian

hω = ∑
x∈Zd

π(ĥθ (x)), (10.294)

where the θi depend on ω via (10.291). Also, for each a ∈ A one has strong limits

lim
N→∞

πω

(
eihΛN tae−ihΛN t

)
= eihω tπ(a)e−ihω t . (10.295)

Hence in the limit N = ∞ (provided it makes sense, which it does under the stated
assumptions), the original mean-field Hamiltonian (10.271) with its homogeneous
long-range forces converges to a sum of single-body Hamiltonians, in which the
original forces between the spins have been incorporated into the parameters θi.

Returning to (10.286), for any β = T−1, we now determine ωβ
θ from the Ansatz

ωβ
θ (a) =

Tr(e−β ĥθ a)

Tr(e−β ĥθ )
, (10.296)

where θ is found by by solving the self-consistency equation

ωβ
θ = θ . (10.297)

As explained after Corollary 10.23, here ωβ
θ : Mn(C)sa → R is defined by its val-

ues on isu(n) and hence should be seen as a map isu(n)→ R, like θ ∈ su(n)∗,
so that (10.297) consists of n2− 1 equations ωβ

θ (Ti) = θi (i = 1, . . . ,n2− 1). Al-
ternatively, one may extend θ from isu(n) to iu(n) by prescribing θ(1n) = 1, and
subsequently extend it further to Mn(C) by complex linearity. Clearly, the constant
h0(θ) in (10.287) drops out of (5.152) and may be ignored in solving (10.297).

For example, if we take (10.289) with B = 0, then (10.297) forces θ1 = θ2 = 0,
whereas the magnetization 2θ3 ≡ m = ωβ

θ (σ3) satisfies the famous gap equation

tanh(βm) = m. (10.298)

For any β this has a solution m= 0, i.e., θ = 0 in B3, which corresponds to the tracial
state ω(a) = 1

2 Tr(a) normally associated with infinite temperature (i.e., β = 0). This
state is evidently Z2-invariant. For T ≥ Tc = 1/4 (i.e. β ≤ 4) this is the only solution.
For T < Tc (or β > 4), two additional solutions ±mβ (with mβ > 0) appear, which
break the Z2 symmetry. For B > 0 computations become tedious, but for β → ∞,
where ωβ

θ converges to the ground state of ĥθ , one recovers our earlier conclusions.



10.8 Spontaneous symmetry breaking in mean-field theories 415

Proposition 10.24. The self-consistency equation (10.297) has at least one solution.

Proof. This follows from Brouwer’s Fixed Point Theorem (stating that any contin-
uous map f from a compact compact set K ⊂ Rk to itself has a fixed point), applied
to K = S(Mn(C)) and f (θ) = ωβ

θ , where θ ∈ S(Mn(C)), as just explained. �

The key result on equilibrium states of homogeneous mean-field theories, then, is:

Theorem 10.25. Let hΛ in (10.271) define a homogeneous mean-field theory with
compact symmetry group G. The sequence (ωβ

ΛN
) of local Gibbs states defined by

(9.96) and (10.271) has a unique G-invariant limit point ω̂β , whose decomposition
into primary states is given by (10.286). The G-invariant probability measure μβ is

concentrated on some G-orbit in S(Mn(C)), and the states ωβ
θ on Mn(C) are given

by (10.296), with Hamiltonians ĥθ defined by (10.287), where θ satisfies (10.297).

Proof. We just sketch the proof, which is based on the Quantum De Finetti Theorem
8.9. Each operator T (ΛN)

i is permutation-invariant, which property is transferred first
to each local Hamiltonian hΛN , thence to each local Gibbs state ωβ

ΛN
defined by hΛN ,

and finally to each limit point of this sequence. As already noted, Theorem 8.9 then
gives the decomposition (10.286), which by Theorem 8.29 (whose assumption holds
in mean-field models) also gives the primary decomposition of ω̂β (i.e., each state
(ωβ

θ )
∞ is primary on the quasi-local algebra A). By our earlier argument centered

on (10.294) - (10.295), time-evolution is implemented in the GNS-representation
induced by such a state. An important step in the proof—which we omit because
it requires various reformulations of the KMS condition we have not discussed—is
that (ωβ

θ )
∞ satisfies the KMS condition with respect to the dynamics (10.295). This,

in turn, implies (10.296), which, by definition of θ through (10.290) - (10.291),
gives the self-consistency condition (10.297). The proof is completed by a tricky
argument (which again uses alternatives to the KMS condition) to the effect that
if some ωβ

θ breaks the G-symmetry, the probability measure μβ on the G-orbit in

S(Mn(C)) through ωβ
θ induced by the normalized Haar measure on G, defines the

only possible limit point of the local Gibbs states, and hence must be unique. �

Thus SSB can be detected by solving (10.297) and checking if the ensuing state(s)
ωβ

θ on Mn(C) is (are) G-invariant. As we have seen, in the Curie–Weiss model this
is the case for β ≤ 4, whereas for β > 4 the measure μβ in (10.286) is given by

μβ = 1
2 (δ(0,0,mβ /2) +δ(0,0,−mβ /2)), (10.299)

where δθ ( f ) = f (θ). In such cases, since each local Gibbs state is invariant, one
faces the (by now) familiar threat to Earman’s Principle. In response, we expect
Butterfield’s Principle to be restored through the introduction of asymmetric flea-
type perturbations to hΛ that are localized in spin configuration space, although at
nonzero temperature all excited states (rather than just the first) will start to play a
role, and the precise details of the “flea” scenario remain to be settled.
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10.9 The Goldstone Theorem

So far, we have only discussed the simplest of all symmetry groups, namely G =Z2,
which is both finite and abelian. Although it will not change our picture of SSB,
for the sake of completeness (and interest to foundations) we also present a brief
introduction to continuous symmetries, culminating in the Goldstone Theorem and
the Higgs mechanism (which at first sight contradict each other and hence require a
very careful treatment). The former results when the broken symmetry group G is a
Lie group, whereas the latter arises when it is an infinite-dimensional gauge group.

Let us start with the simple case G = SO(2), acting on R2 by rotation. This
induces the obvious action on the classical phase space T ∗R2, i.e.,

R(p,q) = (Rp,Rq), (10.300)

cf. (3.94), as well as on the quantum Hilbert space H = L2(R2), that is,

uRψ(x) = ψ(R−1x). (10.301)

Let us see what changes with respect to the action of Z2 on R considered in §10.1.
We now regard the double-well potential V in (10.11) as an SO(2)-invariant function
on R2 through the reinterpretation of x2 as x2

1+x2
2. This is the Mexican hat potential.

Thus the classical Hamiltonian h(p,q)= p2/2m+V (q), similarly with p2 = p2
1+ p2

2,
is SO(2)-invariant, and the set of classical ground states

E0 = {(p,q) ∈ T ∗R2 | p = 0,q2 = a2} (10.302)

is the SO(2)-orbit through e.g. the point (p1 = p2 = 0,q1 = a,q2 = 0). Unlike the
one-dimensional case, the set of ground states is now connected and forms a cir-
cle in phase space, on which the symmetry group SO(2) acts. The intuition behind
the Goldstone Theorem is that a particle can freely move in this circle at no cost
of energy. If we look at mass as inertia, such motion is “massless”, as there is no
obstruction. However, this intuition is only realized in quantum field theory. In quan-
tum mechanics, the ground state of the Hamiltonian (10.6) (now acting on L2(R2))
remains unique, as in the one-dimensional case. In polar coordinates (r,φ) we have

hh̄ =− h̄2

2m

(
∂ 2

∂ r2 +
1
r

∂
∂ r

+
1
r2

∂ 2

∂φ 2

)
+V (r), (10.303)

with V (r) = 1
4 λ (r2−a2)2. With

L2(R2)∼= L2(R+)⊗ �2(Z) (10.304)

under Fourier transformation in the angle variable, this becomes

hh̄ψ(r,n) =
(
− h̄2

2m

(
∂ 2

∂ r2 +
1
r

∂
∂ r
− n2

r2

)
+V (r)

)
ψ(r,n). (10.305)
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Since h̄2n2/2mr2 is positive, the ground state ψ(0)
h̄ has ψ(0)

h̄ (r,n) = 0 for all n �= 0,
and hence it is SO(2)-invariant, since the SO(2)-action on L2(R2) becomes

uθ ψ(r,n) = exp(inθ)ψ(r,n), (10.306)

after a Fourier-transform. Indeed, from a group-theoretical point of view, the unitary
isomorphism (10.304) is nothing but the decomposition

L2(R2)∼=
⊕
n∈Z

Hn, (10.307)

where Hn = L2(R+) for all n, but with φn ∈ Hn transforming under SO(2) as

uθ φn(r) = exp(inθ)φn(r) (θ ∈ [0,2π]). (10.308)

The SO(2)-invariant subspace of L2(R2), then, is precisely the space H0 in which
ψ(0)

h̄ lies. This is analogous to the situation occurring in one dimension higher (i.e.
R3) with e.g. the hydrogen atom: in that case, the symmetry group is SO(3), and
L2(R3) decomposes accordingly as

L2(R3) ∼=
⊕
j∈N

Hj; (10.309)

Hj = L2(R+)⊗C2 j+1. (10.310)

The ground state for a spherically symmetric potential, then, lies in H0 and is SO(3)-
invariant. For our purposes the relevant comparison is with the one-dimensional
case: the decomposition of L2(R) under the natural Z2-action u−1ψ(x) = ψ(−x) is

L2(R) = H0⊕H1 (10.311)
Hi = {ψ ∈ L2(R) | ψ(x) = (−1)iψ(−x)}, i = 0,1. (10.312)

This time, H+ is the Z2-invariant subspace containing the ground state ψ(0)
h̄ . Being

Z2-invariant, ψ(0)
h̄ is has peaks above both classical minima±a; in fact, ψ(0)

h̄ is real-
valued and strictly positive. The ground state of the corresponding two-dimensional
system, seen as an element of L2(R2), is just this wave-function ψ(0)

h̄ extended from
R to R2 by rotational invariance. Hence the ground state remains real-valued and
strictly positive, with peaks about the circle of classical minima in R2.

Let us recall the situation for d = 1 (cf. §10.1). The first excited state ψ(1)
h̄ lies

in H1; it is real-valued, like ψ(0)
h̄ , but since it has to satisfy ψ(1)

h̄ (−x) = −ψh̄(x),

it cannot be positive. Indeed, with a suitable choice of phase, ψ(1)
h̄ has one positive

peak above a and the same peak but now negative below−a. Then the wave-function

ψ±h̄ = (ψ(0)
h̄ ±ψ(1)

h̄ )
√

2, (10.313)
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is peaked above±a alone (i.e., the negative peak of±ψ(1)
h̄ below∓a exactly cancels

the corresponding peak of ψ(0)
h̄ ). The classical limit of ψ(0)

h̄ comes out as the mixed
state 1

2 (ω
+
0 +ω−0 ), where ω±0 = (p = 0,±a), but each state ψ±h̄ has the pure state

ω±0 as its classical limit. The latter are ground states, and hence in particular they

are time-independent, because the energy difference E(1)−E(0) between ψ(1)
h̄ and

ψ(0)
h̄ vanishes (even exponentially fast) as h̄→ 0.

A similar but more complicated situation arises in d = 2. The role of the pair(
ψ(0)

h̄ ∈ H0,ψ
(1)
h̄ ∈ H1

)
is now played by an infinite tower of unit vectors(

ψ(n)
h̄ ∈ Hn,n ∈ Z

)
,

where ψ(n)
h̄ is the lowest energy eigenstate (for hh̄ in (10.305)) in Hn ⊂ L2(R2). The

analogue of the states ψ±h̄ for d = 1 involves a limit which heuristically is like

lim
N→∞

ψ(N,θ)
h̄ =

1√
2N +1

N

∑
n=−N

uθ ψ(n)
h̄ , (10.314)

but this limit does not exist in L2(R2). As in §10.1, we instead rely on the technique
explained around (10.4), which makes the unit vectors ψ(N,θ)

h̄ converge to some
probability measure μθ

h̄ on R2 as N →∞. In the subsequent limit h̄→ 0, one obtains
a probability measure μθ

0 concentrated on a suitable point in the orbit of classical
ground states (10.302). Similarly, in the same sense the ground state ψ(0)

h̄ converges
to a probability measure supported by all of E0.

To the extent that there is a Goldstone Theorem in classical mechanics, it would
state that motion in the orbit E0 is free. That is, at fixed (r = a, pr = 0), where pr is
the radial component of momentum, one has an effective Hamiltonian

ha(pφ ,φ) =
p2

φ

2ma2 , (10.315)

whose time-independent states (pφ = 0,φ0) for arbitrary φ0 ∈ [0,2π) yield the
ground states of the system, and whose “excited states”

(pφ (t),φ(t)) =
(

pφ (0),φ(0))+
pφ (0)t
ma2

)
(10.316)

give motion along the orbit E0 with effective mass ma2, whose energy converges
to zero as pφ → 0. However, since massless particles (whose existence is the main
conclusion of the usual Goldstone Theorem) are not defined in classical mechanics,
we now turn to relativistic field theory (with which we assume some familiarity).
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We now illustrate SSB in classical field theory through a simple example, where
the symmetry group is G = SO(N), but whenever write things down in such a way
that the generalization to arbitrary scalar field theories is obvious. Suppose we have
N real scalar fields ϕ ≡ (ϕ1, . . . ,ϕN), on which SO(N) acts in the defining represen-
tation on RN . Following the physics literature, from now on we sum over repeated
indices like i and μ (Einstein summation convention). Let the Lagrangian

L = 1
2 ∂μ ϕi∂ μ ϕi−V (ϕ), (10.317)

contain an SO(N)-invariant potential V , typically of the form (with ϕ2 ≡ ∑N
i=1 ϕ2

i )

V (ϕ) =−m2

2
ϕ2 +

λ
4

ϕ4, (10.318)

where λ > 0, but m2 may have either sign. If m2 < 0, the minimum of V lies at
ϕ = 0, but if m2 > 0 the minima form the SO(N)-orbit through

ϕc = (v,0, · · · ,0); (10.319)

v ≡ m/
√

λ = ‖ϕc‖. (10.320)

The idea is that the physical fields are excitations of the “vacuum state” ϕc, so that,
instead of ϕ , as the appropriate “small oscillation” field one should use

χ(x) = ϕ(x)−ϕc. (10.321)

Consequently, the potential is expanded in a Taylor series for small χ as

V (ϕ) = V (ϕc)+ 1
2V ′′i j χiχ j +O(χ3); (10.322)

V ′′i j ≡
∂ 2V

∂ϕi∂ϕ j
(ϕc). (10.323)

Note that the linear term vanishes because V ′(ϕc) = 0. We now use the SO(N)-
invariance of V , i.e., V (gϕ) = V (ϕ) for all g ∈ SO(N). For Ta ∈ g (i.e. the Lie
algebra of G, realized by anti-symmetric traceless N×N matrices) this yields

d
dt

V (etTaϕ)t=0 = 0 ⇔ ∂V (ϕ)
∂ϕi

(Ta)i jϕ j = 0. (10.324)

Differentiation with respect to ϕk and putting ϕ = ϕc then gives

V ′′ik(Ta)i jϕc
j = 0. (10.325)

In general, let H ⊂ G be the stabilizer of ϕc, i.e., g ∈ H iff gϕc = ϕc. In our exam-
ple (10.318) - (10.319), we evidently have H = SO(N− 1). Then Taϕc = 0 for all
generators Ta of the Lie algebra h of H, so that there are

M ≡ dim(G)−dim(H) = dim(G/H) = dim(G ·ϕc) (10.326)
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linearly independent null eigenvectors of V ′′ (seen as an N×N matrix). This number
equals the dimension of the submanifold of RN where V assumes its minimum. In
our example we have M = N−1, since dim(SO(N)) = 1

2 N(N−1). We now perform
an affine field redefinition, based on an affine coordinate transformation in RN that
diagonalizes the matrix V ′′. The original (real) fields were ϕ = (ϕ1, . . . ,ϕN), and the
new (real) fields are (χ1,θ2, · · · ,θN), with

χ1 = ϕ1− v, (10.327)

as in (10.321), and the Goldstone fields are defined, also in general, by

θa =
1
v
〈Taϕc,ϕ〉= 1

v
(Ta)i jϕc

j ϕi. (10.328)

Here 〈·, ·〉 denotes the inner product in RN , and we have chosen a basis of g in which
the elements (T1, . . . ,Tdim(H)) form a basis of h, completed by M further elements
(Tdim(H)+1, . . .Tdim(G)+1), so as to have basis of g. The index a in (10.328), then,
runs from dim(H)+1 to dim(G), so that there are M Goldstone fields, cf. (10.326).
In our running example, this number was shown to be M = N− 1, and in view of
(10.319), the field θa = (Ta)i1ϕi is a linear combination of the ϕ2 till ϕN .

The simplest example is N = 2, with potential (10.318) and m2 > 0. With the
single generator T = −iσ2, we obtain θ = ϕ2. Since V ′′ = diag(2m2,0), we see
that the mass term − 1

2 m2ϕ2
1 in (10.318) (with ϕ2 = ϕ2

1 + ϕ2
2 ) changes from the

“wrong” sign−m2 to the ‘right’ sign +2m2 in (10.322), whilst− 1
2 m2ϕ2

2 in (10.318)
disappears, so that the field θ comes out to be massless. Indeed, this is the point
of the introduction of the Goldstone fields: in view of (10.325) and (10.328), the
Goldstone fields do not occur in the quadratic term in (10.322) and hence they are
massless, in satisfying a field equation of the form ∂μ ∂ μ θa = · · · , where · · · does not
contain any term linear in any field. This proves the classical Goldstone Theorem:

Theorem 10.26. Suppose that a compact Lie group G ⊂ SO(N) acts on N real
scalar fields ϕ = (ϕ1, . . . ,ϕN), leaving the potential V in the Lagrangian (10.317)
invariant. If G is spontaneously broken to an unbroken subgroup H ⊂ G (in the
sense that the stability group of some point ϕc in the G-orbit minimizing V is H),
then there are at least dim(G/H) massless fields, i.e., there is a field transformation

(ϕ1, . . . ,ϕN) �→ (χ1, . . . ,χN−M,θ1, . . . ,θM) (M = dim(G)−dim(H)), (10.329)

that is invertible in a neighborhood of ϕ = ϕc, such that the potential V (ϕ), re-
expressed in the fields χ and θ , has no quadratic terms in θ .

The local invertibility of the field redefinition around ϕc �= 0 is crucial; in our ex-
ample, where χ ≡ χ1 = ϕ1− v and θa = T a

i1ϕi, this may be checked explicitly.
An alternative proof of Theorem 10.26 uses nonlinear Goldstone fields, viz.

ϕ(x) = e
1
v θa(x)Ta(ϕc +χ(x)), (10.330)
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where the sum over a (implicit in the Einstein summation convention) ranges from 1
to M, v = ‖ϕc‖, and the fields χ = (χ1, . . . ,χN−M) are chosen orthogonal (in RN) to
each Taϕc, a = 1, . . . ,M, and hence to the θa. Provided that the generators of SO(N)
(and hence of G⊂ SO(N)) have been chosen such that

〈Taϕc,Tbϕc〉= v2δ ab, (10.331)

the fields θ a defined by (10.330) coincide with the fields in (10.328) up to quadratic
terms in χ and θ ; to see this, expand the exponential and also use the fact that both
〈Taϕc,ϕc〉 and 〈Taϕc,χ〉 vanish. This transformation is only well defined if v �= 0,
i..e., if SSB from G to H occurs, and its existence implies the Goldstone Theorem
10.26, for by (10.330) and G-invariance, V (ϕ) is independent of θ .

The Goldstone Theorem can be derived in quantum field theory, but in the spirit
of this chapter we will discuss it rigorously for quantum spin systems. Far from
considering the most general case, we merely treat the simplest setting. We assume
that A is a quasi-local C*-algebra given by (8.130), with H = Cn. Furthermore:

1. The group of space translations Zd acts on A by automorphisms τx, and so does
the group R of time translations by automorphisms αt commuting with the τx (cf.
§9.3); we often write α(x,t) for αt ◦ τx as well as a(x, t) for αt ◦ τx(a).

2. A compact Lie group G acts on H = Cn through a unitary representation u and
hence acts on on A by automorphisms γg as in (10.58) - (10.59), such that

γg ◦α(x,t) = α(x,t) ◦ γg ((x, t) ∈ Zd×R,g ∈ G). (10.332)

3. There exists a pure translation-invariant ground state ω .
4. One has SSB in that ω ◦ γg �= ω for all g ∈ Ga ⊂ G, where

Ga = {exp(sTa),s ∈ R,Ta ∈ g}. (10.333)

5. There is an n-tuple ϕ = (ϕ1, . . . ,ϕn) of local operators ϕα ∈ Mn(C) that trans-
forms under G by ϕ �→ ugϕu∗g = γg(ϕ), and defines an order parameter φa by

φa = δaϕ ≡ d
ds

(
γexp(sTa)(ϕ)

)
|s=0 , (10.334)

at least for SSB of Ga (as above) in that, cf. Definition 10.6,

ω(δaϕ) �= 0. (10.335)

6. Writing j0
a = iu′(Ta) ∈Mn(C), it follows that δaϕ =−i[ j0

a,ϕ], and hence that

δaϕ(x) =−i lim
Λ↗Zd

∑
y∈Λ

[ j0
a(y),ϕ(x)] (x ∈ Zd), (10.336)

since by (8.132) (i.e., Einstein locality) only the term y= x will contribute. Physi-
cists then wish to define a charge by Qa = ∑y∈Zd j0

a(y) and write (10.336) as
δaϕ(x) =−i[Qa,ϕ(x)], but Qa does not exist precisely in the case of SSB!
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Eq. (10.336) motivates the crucial assumption for the Goldstone Theorem, viz.

ω(δaϕ(x, t)) =−i lim
Λ↗Zd

∑
y∈Λ

ω([ j0
a(y),ϕ(x, t)]) (x ∈ Zd , t ∈ R), (10.337)

which incorporates the condition that the sum over y converge absolutely.
Although (10.337) at first sight softens (10.336) in turning an operator equation
into a numerical one, in fact (10.337) decisively sharpens (10.336) by involving
the time-dependence of ϕ , whose propagation speed should be sufficiently small
for enabling the limit in (10.336) to catch up with the limit in (10.337). As such,
eq. (10.337) is satisfied with short-range forces, but the Meissner effect in su-
perconductivity and the closely related Higgs mechanism in gauge theories (both
of which circumvents the Goldstone Theorem) are possible precisely because in
those cases (10.337) fails (at least in physical gauges, see also §10.10).

7. Finally, we make two assumptions just for convenience, namely

ϕα(x)∗ = ϕα(x); (10.338)
ω(ϕα(x)) = 0. (10.339)

If these are not the case, one could simply take real and imaginary components
of ϕα and/or redefine ϕα as ϕ̃α = ϕα −ω(ϕα) ·1A, so that ω(ϕ̃α(x)) = 0.

The Goldstone Theorem provides information about the joint-energy momentum
spectrum of the theory at hand. To define this notion, we exploit the fact that from
assumption no. (3) and Corollary 9.12 we obtain a unitary representation uω of
the (locally compact) abelian space-time translation group A = Zd×R on the GNS-
representation space Hω induced by ω . The SNAG-Theorem C.114 applied to A, with
dual Â = Td×R (cf. Proposition C.108), then yields a projection-valued measure

eω : B(R×Td)→P(Hω), (10.340)

as a map from the Borel sets in R×Td to the projection lattice in B(Hω), such that

1Hω =
∫
Td

∫ ∞

0
de(E,k); (10.341)

uω(y, t) =
∫
Td

∫ ∞

0
de(E,k)ei(Et−y·k) (y ∈ Zd , t ∈ R). (10.342)

Here k=(k1, . . . , ld), y ·k=∑d
i=1 yiki, and we have reduced the integration range over

E (which a priori would be R) to R+. Indeed, by Stone’s Theorem we have uω(t) =
exp(ithω), where σ(hω) ⊂ [0,∞) because ω is a ground state by assumption, and
the support of e is evidently contained in Zd×σ(hω) (cf. Definition A.16).

Definition 10.27. The joint energy-momentum spectrum σ(hω , pω) of a space-
time invariant state ω (i.e., ω ◦α(x,t) = ω , (x, t) ∈ Zd ×R) is the support of the
projection-valued measure eω associated to the GNS-representation πω , i.e., the
smallest closed set σ(hω , pω)⊂ Td×R such that e((Td×R)\σ(hω , pω)) = 0.
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The notation σ(hω , pω) is purely symbolic here, since (as opposed to the continuum
case) the group Zd of spatial translations is discrete and hence has no generators pω .

Since uω(x, t)Ωω = Ωω , the origin (0,0) certainly lies in σ(hω , pω), with

eω(0,0) = |Ωω〉〈Ωω |, (10.343)

which by Theorem 9.14 is the unique Td ×R-invariant state in Hω . Denoting this
contribution to eω by e(0)ω , in many physical theories one has eω = e(0)ω + e(1)ω + · · · ,
where e(1)ω is supported on the graph of some continuous function k �→ εk ≥ 0, i.e.,

{(k,εk),k ∈ Td} ⊂ σ(hω , pω)⊂ Td×R. (10.344)

The joint energy-momentum spectrum may be studied in part by considering

f (ε, p) = ∑
y∈Zd

∫ ∞

−∞
dt e−iεt+ip·(x−y)ω([ j0

a(y),ϕ(x, t)])

= 2i ∑
y∈Zd

∫ ∞

−∞
dt e−iεt+ip·(x−y)Im〈Ωω ,πω( j0

a(0))e
ithω uω(y)πω(ϕα(0))Ωω〉

=
∫
Td

∫ ∞

0

(〈Ωω ,πω( j0
a(0))deω(E,k)πω(ϕα(0))Ωω〉δ (ε−E)δ (p− k)

− 〈Ωω πω(ϕα(0))deω(E,k)πω( j0
a(0))Ωω〉δ (ε +E)δ (p+ k)

)
, (10.345)

i.e., the Fourier transform of the two-point function defined by j0
a and ϕ , which is

a distribution on the dual group Td ×R; for the third equality we used a distribu-
tional version of the Fourier inversion formula (C.382). For example, if we replace
eω(E,k) by e(1)ω (E,k), then, since e(1)ω is absolutely continuous with respect to Haar
measure ddk on Td , we see that f (ε, p) is proportional to δ (ε− εp).
Theorem 10.28. Under assumptions 1–7 (notably (10.337) and SSB of some contin-
uous symmetry), the Hamiltonian hω has continuous spectrum starting at zero and
hence has no gap. If there is an excitation spectrum e(1)ω as explained above, with∫

〈Ωω ,πω( j0
a(0))de(1)ω (E,k)πω(ϕα(0))Ωω〉 �= 0, (10.346)

then the continuous function k �→ εk defining the spectrum satisfies ε0 = 0.

Proof. Since the sum in (10.337) converges absolutely, the Fourier transform f̌ (t, p)
of y �→ ω([ j0

a(y),ϕ(x, t)]) in y alone is continuous in p, and by (10.337) we have

iω(δaϕ(x, t)) = f̌ (t,0). (10.347)

By (10.332), the left-hand side is independent of x and t, hence the Fourier transform
f (ε,0) of the right-hand side in t is proportional to δ (ε). Since (10.343) does not
contribute to f by (10.339), the calculation (10.345) shows that f (ε,0) = 0 if σ(hω)
has a gap. But f (ε,0) �= 0 by (10.335), and so σ(hω) has no gap. Similarly, for the
final claim note that f (ε,0)∼ δ (ε− ε0) as well as f (ε,0)∼ δ (ε). �
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10.10 The Higgs mechanism

We proceed to a discussion of SSB in gauge theories, especially with an eye on the
Higgs Mechanism, which plays a central role in the Standard Model of high-energy
physics (whose empirical confirmation was more or less finished with the discovery
of the Higgs boson at CERN, announced on July 4, 2012).

We look at the Abelian Higgs Model, given by the Lagrangian

L =− 1
4 F2

A + 1
2 〈DA

μ ϕ,DA
μ ϕ〉−V (ϕ), (10.348)

where ϕ = (ϕ1,ϕ2) is a scalar doublet, the usual electromagnetic field strength is

Fμν = ∂μ Aν −∂ν Aμ , (10.349)

in terms of which F2
A = Fμν Fμν , and the covariant derivative is

DA
μ ≡ ∂μ − eAμ ·T = ∂μ ·12 + ieAμ ·σ2. (10.350)

Here e is some coupling constant, identified with the unit of electrical charge. We
still assume that V only depends on ‖ϕ‖2 = 〈ϕ,ϕ〉 and hence is SO(2)-invariant.

The novel situation compared to (10.317) and the like is that, whereas (10.317) is
invariant under global SO(2) transformations, the Lagrangian (10.348) is invariant
under local SO(2) gauge transformations that depend on x, namely

ϕ(x) �→ eα(x)·T ϕ(x) =
(

cosα(x) −sinα(x)
sinα(x) cosα(x)

)
·
(

ϕ1(x)
ϕ2(x)

)
; (10.351)

Aμ(x) �→ Aμ(x)+
1
e

∂μ α(x). (10.352)

We say that the local gauge group G = C∞(Rd ,U(1)) acts on the space of fields
(A,ϕ) by (10.351) - (10.352). Now suppose V has a minimum at some constant
value ϕc �= 0. In that case, any field configuration

ϕ(x) = exp(α(x) ·T )ϕc; (10.353)
Aμ(x) = (1/e)∂μ α(x)) (α ∈ G ), (10.354)

minimizes the action. Hence the possible “vacua” of the model comprise the
(infinite-dimensional) orbit V of the gauge group through (A = 0,ϕ = ϕc). Note
that DA

μ ϕ = 0 for (A,ϕ) ∈ V , i.e., ϕ is covariantly constant along the vacuum orbit
(whereas for global symmetries it is constant full stop). Relative to the (arbitrary)
choice (0,ϕc)∈ V , we then introduce real fields χ and θ , called the Higgs field and
the would-be Goldstone boson, respectively, by (10.330), which now simply reads(

ϕ1(x)
ϕ2(x)

)
= e

1
v θ(x)·T ·

(
v+χ(x)

0

)
. (10.355)
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After this redefinition of the scalar fields, the Lagrangian (10.348) becomes

L =− 1
4 F2

B + 1
2 ∂μ χ∂ μ χ + 1

2 e2(v+χ)2Bμ Bμ −V (v+χ,0), (10.356)

where Bμ = Aμ − (1/ev)∂μ θ , and F2
B = Fμν Fμν for Fμν = ∂μ Bν − ∂ν Bμ . This de-

scribes a vector boson B with mass term 1
2 m2

BBμ Bμ , with m2
B = 1

2 e2v2 > 0 (as op-
posed to the massless vector field A), and a scalar field χ with mass term 1

2 m2
χ χ2,

with m2
χ = (∂ 2V/∂φ 2

1 )|(v,0) > 0 (since V supposedly has a minimum at ϕc = (v,0)).
This is the Higgs mechanism: the gauge field becomes massive, whilst the mass-

less (“would-be”) Goldstone boson disappears from the theory: it is (allegedly)
“eaten” by the gauge field. Thus the scalar degree of freedom θ that seems lost
is recovered as the longitudinal component of the massive vector field (which for a
gauge field would have been an unphysical gauge degree of freedom, see below).

In the description just given, the Higgs mechanism in classical field theory is
seen as a consequence of SSB. Remarkably, there is an alternative account of the
Higgs mechanism, according to which it has nothing to do with SSB! Namely, we
now perform a field redefinition analogous to (10.355) etc. straight away, viz.(

ϕ1(x)
ϕ2(x)

)
= eθ(x)·T ·

(
ρ(x)

0

)
; (10.357)

Aμ = Bμ +(1/e)∂μ θ . (10.358)

This transformation is defined and invertible in a neighbourhood of any point
(ρ0,θ0,B0, where ρ0 > 0, θ0 ∈ (−π,π), and B0 is arbitrary. Each of these new fields
is gauge-invariant: for the gauge transformation (10.351) becomes

θ(x) �→ θ(x)+α(x); (10.359)
ρ(x) �→ ρ(x), (10.360)

and in view of (10.352), B does not transform at all. The Lagrangian becomes

L =− 1
4 F2

B + 1
2 ∂μ ρ∂ μ ρ + 1

2 e2ρ2Bμ Bμ −V (ρ), (10.361)

with V (ρ) ≡ V (ρ,0). This is a Lagrangian without any internal symmetries at all
(not even Z2, since ρ > 0), but of course one can still look for classical vacua that
minimize the energy and hence the potential V (ρ). If ρ = 0 is the absolue mini-
mum, then the above field redefinition is a fortiori invalidated, but if V ′(v) = 0 for
some v > 0, we proceed as before, introducing a Higgs field χ(x) = ρ(x)− v, and
recovering the Lagrangian (10.356). This once again leads to the Higgs mechanism.

This can be generalized to the nonabelian case; since it suffices to explain the
idea, we just discuss the SU(2) case. In (10.348), the scalar field ϕ = (ϕ1,ϕ2) is now
complex, forming an SU(2) doublet, the brackets 〈·, ·〉 now denote the inner product
in C2, the nonabelian gauge field is A = Aaσa (where the Pauli matrices σa, a =
1,2,3, form a self-adjoint basis of the Lie algebra of SU(2)), with associated field
strength Fμν = ∂μ Aν −∂ν Aμ +g[Aμ ,Aν ] and covariant derivative DA

μ = ∂μ + igAμ .
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With F2
A = Fa

μν Fμν
a , the Lagrangian (10.348) is invariant under the transformations

ϕ(x) �→ eiαa(x)σa(x)ϕ(x); (10.362)

Aμ(x) �→ eiαa(x)σa(x)(Aμ(x)− (i/g)∂μ)e−iαa(x)σa(x). (10.363)

The definition of the gauge-invariant fields B and ρ à la (10.357) - (10.358) is now(
ϕ1(x)
ϕ2(x)

)
= eiθa(x)·σa ·

(
ρ(x)

0

)
; (10.364)

Aμ(x) = eiθa(x)σa(x)(Bμ(x)− (i/g)∂μ)e−iθa(x)σa(x), (10.365)

which leads, mutatis mutandis, to the very same Lagrangian (10.361).
As a compromise between these two derivations of the Higgs mechanism, it is

also possible to fix the gauge by picking the representative (ϕ,A) in each G -orbit for
which ϕ2(x) = 0 and ϕ1(x)> 0; note that this so-called unitary gauge is ill-defined
if ϕ1(x) = 0. Calling this unique representative (ρ,B), we are again led to (10.361).

Gauge field theories are constrained systems, in which the apparent degrees of
freedom in the Lagrangian are not the physical ones. For free electromagnetism,
the Lagrangian is L (A) = − 1

4 Fμν Fμν , with Fμν = ∂μ Aν − ∂ν Aμ . In terms of the
gauge-invariant fields Ei = Fi0 = ∂iA0−∂0Ai and B = ∇×A, Maxwell’s equations

∇ ·E = 0; (10.366)
∂E/∂ t = ∇×B; (10.367)

∂B

∂ t
=−∇×E; (10.368)

∇ ·B = 0, (10.369)

then arise as follows: eqs. (10.366) and (10.367) correspond to the Euler–Lagrange
equation for A0 and Ai, respectively, whereas (10.368) and (10.369) immediately
follow from the definitions of B and E in terms of A. The Maxwell equations are in
Hamiltonian form, with canonical momenta Πμ = ∂L /∂ Ȧμ ; this yields Πi =−Ei,
as well as the primary constraint Π0 = 0. Nonetheless, the canonical Hamiltonian

h =
∫

d3x
(
Πμ(x)Ȧμ(x)−L (x)

)
=
∫

d3x( 1
2 E2(x)+ 1

2 B2(x)−A0(x)∇ ·E(x))

is well defined. In the Hamiltonian formalism, Gauss’ Law resurfaces as the sec-
ondary constraint stating that the primary constraint be preserved in time, viz.

Π̇0(x) =− δh
δA0(x)

= ∇ ·E(x)≡ 0. (10.370)

Since

d
dt

∇ ·E(x) =−∂i(δh/δAi(x)) =−∂i(ΔAi−∂i∇ ·A) = 0, (10.371)
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there are no “tertiary” constraints. Thus we have canonical phase space variables
(E,A) and (Π0,A0), subject to (10.366) and to Π0(x) = 0 for each x ∈ R3, i.e.,

Π0(λ0)≡
∫

d3xΠ0(x)λ0(x) = 0; (10.372)

Π(λ )≡
∫

d3x∇ ·E(x)λ (x) = 0, (10.373)

for all (reasonable) functions λ0 and λ on R3. The constraints (10.372) - (10.373)
are first class in the sense of Dirac, which means that their Poisson brackets are
equal to existing constraints (or zero). In the Hamiltonian formalism, the role of the
space-time dependent gauge transformations of the Lagrangian theory is played by
the canonical transformations generated by the first class constraints, i.e.,

δλ0A0(x) = {Π0(λ0),A0(x)}= λ0(x); (10.374)

δλ0Ai(x) = δλ0Ei(x) = 0; (10.375)

δλ A(x) = ∇λ (x); (10.376)
δλ E(x) = 0; (10.377)

δλ A0(x) = 0. (10.378)

The holy grail of the Hamiltonian formalism is to find variables that are both
gauge invariant and unconstrained. In our case, Aμ = (A0,A) are unconstrained but
gauge variant, whilst Πμ =(Π0,−E) are gauge invariant but constrained! Now write
some vector field V as V = VL +VT , where VL = Δ−1∇(∇ ·V) is the longitudinal
component, so that V T

i = (δi j−Δ−1∂i∂ j)Vj is the transverse part. Then the physical
variables of free electromagnetism are AT and ET . The physical Hamiltonian

h = 1
2

∫
d3x(ET ·ET −AT ·ΔAT ), (10.379)

then, is well defined on the physical (or reduced) phase space, which is the subset
of all (Aμ ,Πμ) where the constraints (10.373) hold, modulo gauge equivalence.

After this preparation, we now revisit the abelian Higgs model as a constrained
Hamiltonian system. It is convenient to combine the two real scalar fields ϕ1 and ϕ2
into a single complex scalar field ϕ = (ϕ1 + iϕ2)/

√
2, and treat ϕ and its complex

conjugate ϕ as independent variables. The Lagrangian (10.348) then becomes

L =− 1
4 F2

A +DA
μ ϕ ·DA

μ ϕ−V (ϕ,ϕ), (10.380)

with DA
μ ϕ = (∂μ − ieAμ)ϕ , etc. The conjugate momenta Πμ to Aμ are the same as

for free electromagnetism, i.e., Π0 = 0 and Πi =−Ei, and for ϕ we obtain

π = ∂L /∂ ϕ̇ = DA
0 ϕ; (10.381)

π = ∂L /∂ ϕ̇ = DA
0 ϕ. (10.382)
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The associated Hamiltonian h is equal to∫
d3x

(
1
2 E2 + 1

2 B2−A0(∇ ·E− j0)+ππ +DA
i ϕ ·DA

i ϕ +V (ϕ,ϕ)
)
, (10.383)

where j0 = ie(πϕ − πϕ) is the zero’th component of the Noether current. Hence
the primary constraint remains Π0 = 0, but the secondary constraint picks up an
additional term and becomes ∇ ·E = j0 (which remains Gauss’ law!). The physical
(i.e., gauge invariant and unconstrained) variables can be computed as

ϕA = eieΔ−1∇·Aϕ, ϕA = e−ieΔ−1∇·Aϕ; (10.384)

πA = e−ieΔ−1∇·Aϕ, πA = eieΔ−1∇·Aπ, (10.385)

plus the same transverse fields AT and ET , as in free electromagnetism. In terms of
the transverse covariant derivative DT

i = ∂i− ieAT
i , the physical Hamiltonian h is∫

d3x
(

1
2 (E

T ·ET −AT ·ΔAT − jA
0 Δ−1 jA

0 )+πAπA +DT
i ϕA ·DT

i ϕA +V (ϕA,ϕA)
)
.

(10.386)
The third term in (10.386) is the Coulomb energy, in which the charge density

jA
0 = ie(πAϕA−πAϕA) (10.387)

is the same as j0 (since the latter is gauge invariant). Remarkably, the physical field
variables carry a residual global U(1)-symmetry, viz.

ϕA �→ exp(iα)ϕA; (10.388)
πA �→ exp(−iα)πA; (10.389)
ϕA �→ exp(−iα)ϕA; (10.390)
πA �→ exp(iα)πA, (10.391)

and no change for AT and ET , under which the Hamiltonian (10.386) is invariant.
If V has a minimum at ϕ = ϕ = v, we recover the Higgs mechanism: redefining

ϕA = exp(iθ/v)(v+χ), (10.392)

and complex conjugate, and the reintroduction of the longitudinal components

AL
i =−(1/ev)∂iθ ; EL

i =−evΔ−1∂iπθ , (10.393)

of the gauge field and its conjugate momentum, the Hamiltonian (10.386) becomes

1
2

∫
d3x

(
E2 +B2 +π2

χ +∂iχ∂iχ +
(∇ ·E)2

e2v2 + e2v2A2 +V (v+χ)
)
, (10.394)

where A = AT +AL and E = ET +EL. This describes a massive vector field, and
the would-be Goldstone boson θ has disappeared, as befits the Higgs mechanism!
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It is fair to say that the Higgs mechanism in quantum field theory—and more
generally, the notion of SSB in gauge theories—is poorly understood. Indeed, the
entire quantization of gauge theories is not well understood, except at the perturba-
tive level or on a lattice. The problems already come out in the abelian case with
d = 3. The main culprit is Gauss’ Law ∇ ·E = j0. One would naively expect this
constraint to remain valid in quantum field theory as an operator equation, and this is
indeed the case in so-called physical gauges like the Coulomb gauge (i.e. ∂iAi = 0).
If we now look at condition (10.337) in §10.9, which for G =U(1) and for example
δϕ1 = ϕ2 and δϕ2 =−ϕ1 for a charged field ϕ = (ϕ1+ iϕ2)/

√
2, or δϕ = iϕ , reads

lim
Λ↗R3

∫
Λ

d3yω([ j0(y,0),ϕα(x, t)]) =−iω(δϕα(x, t)), (10.395)

then it is clear that (10.395) can only hold if charged fields are nonlocal. For by
Gauss’ Law the commutator [ j0(y,0),ϕα(x, t)] equals [∇ ·E(0,y),ϕα(x, t)], and by
Gauss’(!) Theorem in vector calculus, all contributions to the left-hand side of
(10.395) come from terms [Ei(0,y),ϕα(x, t)], with y ∈ ∂Λ (i.e., the boundary of
Λ ). These must remain nonzero if Λ ↗ R3, at least if (10.395) holds. On the other
hand, such nonlocality must be enforced by massless fields, which idea leads to one
of the very few rigorous result about the Higgs mechanism (in the continuum):

Theorem 10.29. In the Coulomb gauge the following conditions are equivalent:

• The electromagnetic field A is massless;
• Eq. (10.395) holds for any field ϕα ;
• The charge operator Q = limΛ↑R3

∫
Λ d3y j0(y,0) exists (on some suitable domain

in Hω containing Ωω ) and satisfies QΩω = 0.

Hence (contrapositively), SSB of U(1) by the state ω is only possible if A is massive.
In that case, the Fourier transform of the two-point function 〈0|ϕα(x,x0) ja

0(y,y0)|0〉
(cf. the proof of the Goldstone Theorem 10.28 in §10.9) has a pole at the mass of A.

This theorem indeed yields the Higgs mechanism for say the abelian Higgs model
in a specific physical gauge: note that the idea that the would-be Goldstone boson is
eaten by the gauge field is already suggested by Gauss’ Law, through which (minus)
the canonical momentum E to A acquires j0 as its longitudinal component; that is,
the very same field that creates the Goldstone boson from the ground state.

In covariant gauges, all fields remain local, but (10.395) is rescued by the gauge-
fixing term added to the Lagrangian. For example, adding Lg f =−(1/2ξ )(∂μ Aμ)2

to (10.348) leads to an equation of motion ∂μ Fμ
ν = jν−∂ν ∂μ Aμ , so that (discarding

all surface terms by locality), one obtains

−iω(δϕα(x, t)) =
∫
R3

d3yω([∂ 2
0 A0(y,0),ϕα(x, t)]). (10.396)

In the proof of the Goldstone Theorem, the massless Goldstone bosons do emerge,
but they turn out to lie in some “unphysical subspace” of Hω (which, for local
gauges, is not a Hilbert space but has zero- and negative norm states).
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Notes

In a philosophical context, the notion of emergence is usually traced to J.S. Mill
(1843), who drew attention to ‘a distinction so radical, and of so much importance,
as to require a chapter to itself’, namely the one between what Mill calls the prin-
ciple of the ‘Composition of Causes’, according to which the joint effect of several
causes is identical with the sum of their separate effects, and the negation of this
principle. For example, in the context of his overall materialism, Mill believed that
although all ‘organised bodies’ are composed of material parts,

‘the phenomena of life, which result from the juxtaposition of those parts in a certain man-
ner, bear no analogy to any of the effects which would be produced by the action of the
component substances considered as mere physical agents. To whatever degree we might
imagine our knowledge of the properties of the several ingredients of a living body to be
extended and perfected, it is certain that no mere summing up of the separate actions of
those elements will ever amount to the action of the living body itself.’
Mill (1952 [1843], p. 243)

Mill launched what is now called British Emergentism (Stephan, 1992; McLaugh-
lin, 2008; O’Connor & Wong, 2012), a school of thought which seems to have ended
with C.D. Broad, who has our sympathy over Mill because of the doubt he expresses
in our quotation in the preamble. Among the British Emergentists, the most modern
views seem to have been those of S. Alexander, who, as paraphrased in O’Connor
& Wong (2012), was committed to a view of emergence as

‘the appearance of novel qualities and associated, high-level causal patterns which cannot be
directly expressed in terms of the more fundamental entities and principles. But these pat-
terns do not supplement, much less supersede, the fundamental interactions. Rather, they
are macroscopic patterns running through those very microscopic interactions. Emergent
qualities are something truly new (. . . ), but the world’s fundamental dynamics remain un-
changed.’

Alexander’s idea that emergent qualities ‘admit no explanation’ and had ‘to be ac-
cepted with the “natural piety” of the investigator foreshadowed the later notion
of explanatory emergence. Indeed, philosophers distinguish between ontological
and epistemological reduction or emergence, but ontological emergence seems a
relic from the days of vitalism and other immature understandings of physics and
(bio)chemistry (including the formation of chemical compounds, which Broad and
some of his contemporaries still saw as an example of emergence in the strongest
possible sense, i.e., falling outside the scope of the laws of physics). Recent liter-
ature, including the present chapter, is concerned with epistemological emergence,
of which explanatory emergence is a branch. For example, Hempel wrote:

‘The concept of emergence has been used to characterize certain phenomena as ‘novel’, and
this not merely in the psychological sense of being unexpected, but in the theoretical sense
of being unexplainable, or unpredictable, on the basis of information concerning the spatial
parts or other constituents of the systems in which the phenomena occur, and which in this
context are often referred to as “wholes”.’ (Hempel, 1965, p. 62)

See also Batterman (2002), Bedau & Humpreys (2008), Norton (2012), Silberstein
(2002), Wayne & Arciszewski (2009), and many other surveys of emergence.
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§10.1. Spontaneous symmetry breaking: The double well

The facts we use about the double-well Hamiltonian may be found in Garg (2000)
or Landau & Lifshitz (1977) at a heuristic level (but with correct conclusions), or,
rigorously, in Reed & Simon (1978), Simon (1985), Helffer (1988), and Hislop &
Sigal (1996). Theorem 10.2 is Theorem XIII.47 in Reed & Simon (1978).
§10.2. Spontaneous symmetry breaking: The flea

The flea perturbation and its effect on the ground state were first described in
Jona-Lasinio, Martinelli, & Scoppola (1981a,b), who used methods from stochas-
tic mechanics. See also Claverie & Jona-Lasinio (1986). Using more conventional
methods, their results were reconfirmed and analyzed further by e.g. Combes, Duc-
los, & Seiler (1983), Graffi, Grecchi, & Jona-Lasinio (1984), Helffer & Sjöstrand
(1985), Simon (1985), Helffer (1988), and Cesi (1989). The “Flea on the Elephant”
terminology used by Simon (1985) motivated the title of Landsman & Reuvers
(2013), who, as will be explained in the next chapter, identified the proper host
animal as a cat. All pictures in this section are taken from the latter paper (and
were prepared by the second author). For the Eyring–Kramers formula see Berglund
(2011) for mathematicians or Hänggi, Talkner, & Borkovec (1990) for physicists.
§10.3. Spontaneous symmetry breaking in quantum spin systems

The translation-non-invariant ground states mentioned after Proposition 10.5 are
discussed e.g. in Example 6.2.56 in Bratteli & Robinson (1997). See also Liu &
Emch (2005), which was in important source for this section, and Ruetsche (2011)
for a discussion of the definition of SSB through non-implementability. For order
parameters see e.g. Sewell (2002), §3.3. A proof of Proposition 10.8 may be found
in Bratteli & Robinson (1997), Proposition 6.2.15.
§10.4. Spontaneous symmetry breaking for short-range forces

The idea of SSB goes back to Heisenberg(1928). The C*-algebraic approach in
quantum spin systems with short-range forces is reviewed in Bratteli & Robin-
son (1997); see also Nachtergaele (2007). Theorem 10.10 is due to Araki (1974);
see also Simon (1993), Theorem IV.5.6, and Bratteli & Robinson (1997), Theorem
6.2.18. In Definition 10.9, Araki required Ωω to be separating for πω(A)′′ instead of
ω to be αt -invariant, but in the presence of (10.53) and hence (10.53) these condi-
tions are equivalent. The fact that (for short-range forces) global Gibbs states defined
by (10.43) satisfy the KMS condition follows from Theorem 10.10, but this was the
starting point of Haag, Hugenholtz, & Winnink (1967); see Winnink (1972).

Uniqueness of KMS states for one-dimensional quantum spin systems with short-
range forces at any positive temperature (which also holds for the classical case, e.g.
the one-dimensional Ising model) has been proved by Araki (1975). See also Mattis
(1965) and Altland & Simons (2010) for some of the underlying physical intuition.
§10.5. Ground state(s) of the quantum Ising chain

Theorem 10.11.1 was first established in Pfeuty (1970) by explicit calculation,
based on Lieb, Schultz, & Mattis (1961). For more information on the quantum Ising
model (also in higher dimension) see e.g. Karevski (2006), Sachdev (2011), Suzuki
et al (2013), and Dutta et al (2015). Uniqueness of the ground state of the quantum
Ising model with B �= 0 holds in any dimension d, as first shown by Campanino,
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Klein & Perez (1991) on the basis of Perron–Frobenius type arguments similar to
those for Schrödinger operators. The singular case B = 0 leads to a violation of the
strict positivity conditions necessary to apply the Perron–Frobenius Theorem, and
this case indeed features a degenerate ground state even when N < ∞.

The overall picture of SSB described in this section arose from the work of Horsch
& von der Linden (1988), Kaplan, Horsch, & von der Linden (1989), Kaplan, von
der Linden, & Horsch (1990), and especially Koma & Tasaki (1993, 1994). See also
van Wezel (2007, 2008), van Wezel & van den Brink (2007), and Fraser (2016).

The analogy between the quantum Ising chain and the double-well potential may
not be surprising physically, since the latter was originally derived from the former:
in potassium dihydrogen phosphate, i.e. KH2PO4, each proton of the hydrogen bond
would reside in one of the two minima of an effective double-well potential origi-
nating in the oxygen atoms, if it were not for tunneling, parametrized by the field B,
which at small values yields a symmetric ground state (De Gennes, 1963).
§10.6. Exact solution of the quantum Ising chain: N < ∞

The general set-up to this solution is due to Lieb, Schultz, & Mattis (1961), and
was adapted to the quantum Ising by Pfeuty (1970), with further details by Karevski
(2006). The complex solution q0 was already noted by Lieb et al. The energy split-
ting in higher dimensions does not seem to be known, but Koma & Tasaki (1994,
eq. (1.5)) expect similar behaviour as in d = 1.
§10.7. Exact solution of the quantum Ising chain: N = ∞

The solution described in this section is due to Araki & Matsui (1985), where
further details may be found; this is a highlight of modern mathematical physics!
Theorem 10.20 is due to Araki (1987), although such results have a long history
going back to Shale & Stinespring (1964, 1965). For a very clear exposition see
Ruijsenaars (1987). See also Evans & Kawahigashi (1998), Chapter 6.

The reason the one-sided chain Λ =N is problematic is that although the bosonic
algebra⊗ j∈NM2(C) and its fermionic counterpart CAR(�2(N)) are well defined, and
are isomorphic through the Jordan–Wigner transformation (10.102) - (10.103), the
limiting dynamics has no simple form on either A or F , because the Fourier trans-
form of �2(N) is the Hardy space H2(−π,π) of L2-functions with positive Fourier
coefficents, instead of the usual L2(−π,π). Unlike on L2, The energies sgnk of the
fermionic quasiparticles do not define a multiplication operator on H2.
§10.8. Spontaneous symmetry breaking in mean-field theories

The Poisson structure on S(B) was introduced by Bona (1988) and more gen-
erally by Duffield & Werner (1992a); see also Bona (2000). Theorem 10.22 and
Corollary 10.23 are due to Duffield & Werner (1992a). The symplectic leaves of the
given Poisson structure on S(B) (for which notion see e.g. Marsden & Ratiu (1994)
or Landsman (1998a)) were determined by Duffield & Werner (1992a): Two states
ρ and σ lie in the same symplectic leaf of S (B) iff ρ(a) = σ(uau∗) for some uni-
tary u ∈ B. If ρ and σ are pure, this is the case iff the GNS-representations πρ(B)
and πσ (B) are unitarily equivalent, cf. Thm. 10.2.6 in Kadison & Ringrose (1986).
In general the implication holds only in one direction: if ρ and σ lie in the same
leaf, then they have unitarily equivalent GNS-representations.
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Our survey of equilibrium states of homogeneous mean-field models is based on
Fannes, Spohn, & Verbeure (1980) and Bona (1989). For rigorous results on the
Curie–Weiss model see Chayes et al (2008) and Ioffe & Levit (2013). Numerical
evidence for the restoration of Butterfield’s Principle may be found in Botet, Julien
& Pfeuty (1982) and Botet & Julien (1982), which are up to N ∼ 150, and Vidal et
al (2004), which reaches N = 1000. Note that experimental samples have N < 10.

In the context of the BCS model of superconductivity in the strong coupling
limit), the Hamiltonian, ĥθ in (10.287) or hω in (10.294) is called the Bogoliubov–
Haag Hamiltonian, after Bogoliubov (1958) and Haag (1962). Further contribu-
tions to mean-field theories include Thirring & Wehrl (1967), Thirring (1968), Hepp
(1972), Hepp & Lieb (1973), van Hemmen (1978), Rieckers (1984), Morchio &
Strocchi (1987), Duffner & Rieckers (1988), Bona (1988, 1989, 2000), Unnerstall
(1990a, 1990b), and Sewell (2002). For a nice proof of Theorem 10.25, which orig-
inates in Fannes, Spohn, &Verbeure (1980) and Bona (1989), see Gerisch (1993).

Even in the absence of a global KMS condition for ω̂β , one is justified in in-
terpreting the primary states (ωβ

θ )
∞ as pure thermodynamic phases of the given

infinite quantum system, whose thermodynamics is described by the “phase space”
S(Mn(C)). Though somewhat against the spirit of Bohrification (according to which
the commutative C*-algebra C(Mn(C)) is the right one to look at), the argument
can be strengthened by enlarging A to A⊗C(Mn(C)) (where the choice of the ten-
sor product does not matter, since C(Mn(C)) is commutative and hence nuclear, see
§C.13). This larger C*-algebra was introduced by Bona (1990), who proved:

Theorem 10.30. 1. There is a unique time-evolution α on A⊗C(Mn(C)) such that
for any primary permutation-invariant state ω on A and a ∈ A one (strongly) has

lim
N→∞

πω

(
eithΛN ae−ithΛN

)
= πω(αt(a)). (10.397)

2. The states ω̂β and ωβ
θ in (10.286), which are defined on A, extend to the tensor

product A⊗C(Mn(C)) as ω̂β ⊗μβ and ωβ
θ ⊗δθ , respectively, and as such satisfy

the KMS condition at inverse temperature β with respect to the dynamics α .

§10.9. The Goldstone Theorem

There is a large amount of literature on the Goldstone Theorem, both heuris-
tic and rigorous. The former started with Goldstone, Salam, & Weinberg (1962),
whereas the latter originates in Kastler, Robinson, & Swieca (1966); see also Buch-
holz et al (1992). For a survey, see Strocchi (2008, 2012), whose approach (based on
Morchio & Strocchi, 1987) we follow. See also Berzi (1979, 1981), Landau, Perez,
& Wreszinski (1981), Fannes, Pule, & Verbeure (1982), and Wreszinski (1987).
§10.10. The Higgs mechanism

The original reference is Higgs (1964ab). Our discussion is based on Lusanna
& Valtancoli (1996ab) and Struyve (2011), both of whom derive the physical vari-
ables in the abelian Higgs model. See also Rubakov (2002), Strocchi (2008), where
Theorem 10.29 may be found, and Stöltzner (2014) for some history and sociology.
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