
Chapter 6
Lagrange Codes

6.1 Introduction

Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [1]
credited with minimum degree polynomial interpolation amongst his many other
achievements. Polynomial interpolation may be applied straightforwardly using
Galois Fields and provides the basis for an extensive family of error-correcting codes.
For a Galois Field GF(2m), the maximum code length is 2m+1, consisting of 2m data
symbols and 2m parity symbols. Many of the different types of codes originated by
Goppa [3, 4] may be linked to Lagrange codes.

6.2 Lagrange Interpolation

The interpolation polynomial, p(z), is constructed such that the value of the poly-
nomial for each element of GF(2m) is equal to a data symbol xi also from GF(2m).
Thus,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(0) = x0
p(1) = x1
p(α1) = x2
p(α2) = x3
. . . . . . . . .

p(α2m−3) = x2m−2

p(α2m−2) = x2m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using the method of Lagrange, the interpolation polynomial is constructed as a
summation of 2m polynomials, each of degree 2m − 1. Thus,
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Table 6.1 GF(8) extension
field defined by
1 + α1 + α3 = 0

α0 = 1

α1 = α

α2 = α2

α3 = 1 + α

α4 = α + α2

α5 = 1 + α + α2

α6 = 1 + α2

p(z) =
2m−1∑
i=0

pi(z) (6.1)

where

pi(z) = xi
z

αi

j=2m−2∏
j=0,j �=i

z − αj

αi − αj
for i �= 0 (6.2)

and

p0(z) = x0

j=2m−2∏
j=0

z − αj

(−αj)
(6.3)

The idea is that each of the pi(z) polynomials has a value of zero for z equal to
each element ofGF(2m), except for the one element corresponding to i (namely αi−1

except for i = 0).
A simpler form for the polynomials pi(z) is given by

pi(z) = xi
(αi − αj)

αi(αi − 1)

z(z2
m−1 − 1)

z − αj
for i �= 0 (6.4)

and

p0(z) = −x0(z
2m−1 − 1) (6.5)

In an example using GF(23), where all the nonzero field elements may express as a
power of a primitive root α of the primitive polynomial 1 + x + x3, modulo 1 + x7.
The nonzero field elements are tabulated in Table6.1.



6.2 Lagrange Interpolation 139

All of the 8 polynomials pi(z) are given below

p0(z) = x0(z7 +1)
p1(z) = x1(z7 +z6 +z5 +z4 +z3 +z2 +z)
p2(z) = x2(z7 +αz6 +α2z5 +α3z4 +α4z3 +α5z2 +α6z)
p3(z) = x3(z7 +α2z6 +α4z5 +α6z4 +αz3 +α3z2 +α5z)
p4(z) = x4(z7 +α3z6 +α6z5 +α2z4 +α5z3 +αz2 +α4z)
p5(z) = x5(z7 +α4z6 +αz5 +α5z4 +α2z3 +α6z2 +α3z)
p6(z) = x6(z7 +α5z6 +α3z5 +αz4 +α6z3 +α4z2 +α2z)
p7(z) = x7(z7 +α6z6 +α5z5 +α4z4 +α3z3 +α2z2 +αz)

These polynomials are simply summed to produce the Lagrange interpolation poly-
nomial p(z)

p(z) = z7(x0 +x1 +x2 +x3 +x4 +x5 +x6 +x7)
+ z6(αx1 +α2x2 +α3x3 +α4x4 +α5x5 +α6x6 +x7)
+ z5(α2x1 +α4x2 +α6x3 +αx4 +α3x5 +α5x6 +x7)
+ z4(α3x1 +α6x2 +α2x3 +α5x4 +αx5 +α4x6 +x7)
+ z3(α4x1 +αx2 +α5x3 +α2x4 +α6x5 +α3x6 +x7)
+ z2(α5x1 +α3x2 +αx3 +α6x4 +α4x5 +α2x6 +x7)
+ z(α6x1 +α5x2 +α4x3 +α3x4 +α2x5 +αx6 +x7)
+ x0

(6.6)

This can be easily verified by evaluating p(z) for each element of GR(23) to produce

p(0) = x0
p(1) = x1
p(α) = x2
p(α2) = x3
p(α3) = x4
p(α4) = x5
p(α5) = x6
p(α6) = x7

6.3 Lagrange Error-Correcting Codes

The interpolation polynomial p(z) may be expressed in terms of its coefficients and
used as a basis for defining error-correcting codes.

p(z) =
2m−1∑
i=0

μiz
i (6.7)
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It is clear that an interpolation equation and a parity check equation are equivalent,
and for the 8 identities given by the interpolation polynomial we may define 8 parity
check equations:

x0 + p(0) = 0
x1 + p(1) = 0
x2 + p(α) = 0
x3 + p(α2) = 0
x4 + p(α3) = 0
x5 + p(α4) = 0
x6 + p(α5) = 0
x7 + p(α6) = 0

(6.8)

The 8 parity check equations become

x0+ μ0 = 0
x1+ μ1+ μ2+ μ3+ μ4+ μ5+ μ6+ μ7 = 0
x2+ αμ1+ α2μ2+ α3μ3+ α4μ4+ α5μ5+ α6μ6+ μ7 = 0
x3+ α2μ1+ α4μ2+ α6μ3+ αμ4+ α3μ5+ α5μ6+ μ7 = 0
x4+ α3μ1+ α6μ2+ α2μ3+ α5μ4+ αμ5+ α4μ6+ μ7 = 0
x5+ α4μ1+ αμ2+ α5μ3+ α2μ4+ α6μ5+ α3μ6+ μ7 = 0
x6+ α5μ1+ α3μ2+ αμ3+ α6μ4+ α4μ5+ α2μ6+ μ7 = 0
x7+ α6μ1+ α5μ2+ α4μ3+ α3μ4+ α2μ5+ αμ6+ μ7 = 0

(6.9)

A number of different codes may be derived from these equations. Using the first
4 equations, apart from the first, and setting x2 and x3 equal to 0, the following parity
check matrix is obtained, producing a (9, 5) code:

H9,5 =

⎡
⎢⎢⎣
1 0 1 1 1 1 1 1 1
0 0 α α2 α3 α4 α5 α6 1
0 0 α2 α4 α6 α α3 α5 1
0 1 α3 α6 α2 α5 α α4 1

⎤
⎥⎥⎦

Rearranging the order of the columns produces a parity check matrix, Ĥ identical to
the MDS (9, 5, 5) code based on the doubly extended Reed–Solomon code [7].

Ĥ(9,5,5) =

⎡
⎢⎢⎣
1 1 1 1 1 1 1 1 0
1 α α2 α3 α4 α5 α6 0 0
1 α2 α4 α6 α α3 α5 0 0
1 α3 α6 α2 α5 α α4 0 1

⎤
⎥⎥⎦

Correspondingly, we know that the code with parity check matrix, H9,5 derived
from the Lagrange interpolating polynomial is MDS and has a minimum Hamming
distance of 5. Useful, longer codes can also be obtained. Adding the first row of (6.9)
to the second equation of the above example and setting x0 equal to x1, a parity check
matrix for a (10, 6) code is obtained:
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H10,6 =

⎡
⎢⎢⎣
0 1 0 1 1 1 1 1 1 1
1 1 0 α α2 α3 α4 α5 α6 1
0 0 0 α2 α4 α6 α α3 α5 1
0 0 1 α3 α6 α2 α5 α α4 1

⎤
⎥⎥⎦

It is straightforward to map any code with GF(2m) symbols into a binary code by
simply mapping each GF(2m) symbol into a m×m binary matrix using the GF(2m)

table of field elements. If the codeword coordinate is αi, the coordinate is replaced
with the matrix, where each column is the binary representation of the GF(2m)

symbol:
[
αi αi+1 αi+2 . . . αi+m−1

]

Asan example forGF(23), if the codeword coordinate isα3, the symbol is replaced
with the binary matrix whose columns are the binary values of α3, α4, and α5 using
Table6.1.

⎡
⎣
1 0 1
1 1 1
0 1 1

⎤
⎦

In another example the symbol α0 produces the identity matrix
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦

The (10, 6) GF(8) code above forms a (30, 18) binary code with parity check
matrix

H30,18 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The minimum Hamming distance of this code has been evaluated and it turns out
to be 4. Methods for evaluating the minimum Hamming distance are described in
Chap.5. Consequently, extending the length of the code by one symbol has reduced
the dmin by 1. The dmin may be increased by 2 by adding an overall parity bit to the
first two symbols plus an overall parity bit to all bits to produce a (32, 18, 6) code
with parity check matrix

H32,18 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is a good code as weight spectrum analysis shows that it has the same
minimum Hamming distance as the best known (32, 18, 6) code [5]. It is interesting
to note that in extending the length of the code beyond the MDS length of 9 symbols
forGF(23), twoweak symbols are produced but these are counterbalanced by adding
an overall parity bit to these two symbols.

6.4 Error-Correcting Codes Derived from the Lagrange
Coefficients

In another approach, we may set some of the equations defining the Lagrange poly-
nomial coefficients to zero, and then use these equations to define parity checks for
the code. As an example, using GF(23), from Eq. (6.6) we may set coefficients μ7,
μ6, μ5, μ4 and μ3 equal to zero. The parity check equations become

x0 +x1 +x2 +x3 +x4 +x5 +x6 +x7 = 0
αx1 +α2x2 +α3x3 +α4x4 +α5x5 +α6x6 +x7 = 0
α2x1 +α4x2 +α6x3 +αx4 +α3x5 +α5x6 +x7 = 0
α3x1 +α6x2 +α2x3 +α5x4 +αx5 +α4x6 +x7 = 0
α4x1 +αx2 +α5x3 +α2x4 +α6x5 +α3x6 +x7 = 0

(6.10)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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and the corresponding parity check matrix is

H8,3 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 α α2 α3 α4 α5 α6 1
0 α2 α4 α6 α α3 α5 1
0 α3 α6 α2 α5 α α4 1
0 α4 α α5 α2 α6 α3 1

⎤
⎥⎥⎥⎥⎦

(6.11)

As a GF(23) code, this code is MDS with a dmin of 6 and equivalent to the extended
Reed–Solomon code. As a binary code with the following parity check matrix a
(24, 9, 8) code is obtained. This is a good code as it has the sameminimumHamming
distance as the best known (24, 9, 8) code [5].

H24,9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0
0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0
0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1

0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0
0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0
0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.5 Goppa Codes

So far codes have been constructed using the Lagrange interpolating polynomial
in a rather ad hoc manner. Goppa defined a family of codes [3] in terms of
the Lagrange interpolating polynomial, where the coordinates of each codeword
{c0, c1, c2, . . . c2m−1} with {c0 = x0, c1 = x1, c2 = x2, . . . c2m−1 = x2m−1} satisfy the
congruence p(z) modulo g(z) = 0 where g(z) is known as the Goppa polynomial.

Goppa codes have coefficients fromGF(2m) and provided g(z) has no roots which
are elements of GF(2m) (which is straightforward to achieve) the Goppa codes have
parameters (2m, k, 2m−k+1). These codes areMDS codes and satisfy the Singleton
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bound [8]. Goppa codes as binary codes, provided that g(z) has no roots which are
elements of GF(2m) and has no repeated roots, have parameters (2m, 2m −mt, dmin)
where dmin ≥ 2t + 1, the Goppa code bound on minimum Hamming distance. Most
binary Goppa codes have equality for the bound and t is the number of correctable
errors for hard decision, bounded distance decoding. Primitive binary BCH codes
have parameters (2m−1, 2m−mt−1, dmin), where dmin ≥ 2t+1 and so binaryGoppa
codes usually have the advantage over binaryBCHcodes of an additional information
bit for the sameminimumHamming distance.However, depending on the cyclotomic
cosets, many cases of BCH codes can be found having either k > 2m −mt − 1 for a
given t, or dmin > 2t + 1, giving BCH codes the advantage for these cases.

For a Goppa polynomial of degree r, there are r parity check equations derived
from the congruence p(z) modulo g(z) = 0. Denoting g(z) by

g(z) = grz
r + gr−1z

r−1 + gr−2z
r−2 + · · · + g1z + g0 (6.12)

2m−1∑
i=0

ci
z − αi

= 0 modulo g(z) (6.13)

Since (6.13) is modulo g(z) then g(z) is equivalent to 0, and we can add g(z) to the
numerator. Noting that

g(z) = (z − αi)qi(z) + rm (6.14)

where rm is the remainder, an element of GF(2m) after dividing g(z) by z − αi.
Dividing each term z − αi into 1 + g(z) produces the following:

g(z) + 1

z − αi
= qi(z) + rm + 1

z − αi
(6.15)

As rm is a scalar, we may simply pre-weight g(z) by 1
rm

so that the remainder
cancels with the other numerator term which is 1.

g(z)
rm

+ 1

z − αi
= qi(z)

rm
+

rm
rm

+ 1

z − αi
= qi(z)

rm
(6.16)

As a result of

g(z) = (z − αi)qi(z) + rm

when z = αi, rm = g(αi)
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Substituting for rm in (6.16) produces

g(z)
g(αi)

+ 1

z − αi
= qi(z)

g(αi)
(6.17)

Since g(z)
g(αi)

modulo g(z) = 0

1

z − αi
= qi(z)

g(αi)
(6.18)

The quotient polynomial qi(z) is a polynomial of degree r − 1, with coefficients
which are a function of αi and the Goppa polynomial coefficients. Denoting qi(z) as

qi(z) = qi,0 + qi,1z + qi,2z
2 + qi,3z

3 + · · · + qi,(r−1)z
r−1 (6.19)

Since the coefficients of each power of z sum to zero, the r parity check equations
are given by

2m−1∑
i=0

ciqi,j
g(αi)

= 0 for j = 0 to r − 1 (6.20)

If theGoppa polynomial has any roots which are elements ofGF(2m), sayαj, then the
codeword coordinate cj has to be permanently set to zero in order to satisfy the parity
check equations. Effectively, the code length is shortened by the number of roots
of g(z) which are elements of GF(2m). Usually, the Goppa polynomial is chosen to
have distinct roots which are not in GF(2m).

Consider an example of a Goppa (32, 28, 5) code. There are 4 parity check sym-
bols defined by the 4 parity check equations and the Goppa polynomial has degree 4.
Choosing somewhat arbitrarily the polynomial 1+ z+ z4 which has roots inGF(16)
but not in GF(32), we determine qi(z) by dividing by z − αi.

qi(z) = z3 + αiz
2 + α2

i z + (1 + α3
i ) (6.21)

The 4 parity check equations are

31∑
i=0

ci
g(αi)

= 0 (6.22)

31∑
i=0

ciαi

g(αi)
= 0 (6.23)

31∑
i=0

ciα2
i

g(αi)
= 0 (6.24)
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31∑
i=0

ci(1 + α3
i )

g(αi)
= 0 (6.25)

Using Table6.2 to evaluate the different terms forGF(25), the parity check matrix is

H(32, 28, 5) =

⎡
⎢⎢⎢⎢⎣

1 1 α14 α20 α25 . . . α10

0 1 α15 α22 α28 . . . α9

0 1 α16 α24 1 . . . α8

0 1 α17 α26 α3 . . . α7

⎤
⎥⎥⎥⎥⎦

(6.26)

To implement the Goppa code as a binary code, the symbols in the parity check
matrix are replaced with their m-bit binary column representations of each respective
GF(2m) symbol. For the (32, 28, 5) Goppa code above, each of the 4 parity symbols
will be represented as a 5 bit symbol from Table6.2. The parity check matrix will
now have 20 rows for the binary code. TheminimumHamming distance of the binary
Goppa code is improved from r + 1 to 2r + 1, namely from 5 to 9. Correspondingly,
the binary Goppa code becomes a (32, 12, 9) code with parity check matrix

Table 6.2 GF(32) nonzero
extension field elements
defined by 1 + α2 + α5 = 0

α0 = 1 α16 = 1 + α + α3 + α4

α1 = α α17 = 1 + α + α4

α2 = α2 α18 = 1 + α

α3 = α3 α19 = α + α2

α4 = α4 α20 = α2 + α3

α5 = 1 + α2 α21 = α3 + α4

α6 = α + α3 α22 = 1 + α2 + α4

α7 = α2 + α4 α23 = 1 + α + α2 + α3

α8 = 1 + α2 + α3 α24 = α + α2 + α3 + α4

α9 = α + α3 + α4 α25 = 1 + α3 + α4

α10 = 1 + α4 α26 = 1 + α + α2 + α4

α11 = 1 + α + α2 α27 = 1 + α + α3

α12 = α + α2 + α3 α28 = α + α2 + α4

α13 = α2 + α3 + α4 α29 = 1 + α3

α14 = 1 + α2 + α3 + α4 α30 = α + α4

α15 = 1 + α + α2 + α3 + α4
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H(32, 12, 9) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 . . . 1
0 0 0 0 0 . . . 0
0 0 1 1 0 . . . 0
0 0 1 1 1 . . . 0
0 0 1 0 1 . . . 1
0 1 1 1 0 . . . 0
0 0 1 0 1 . . . 1
0 0 1 1 1 . . . 0
0 0 1 0 0 . . . 1
0 0 1 1 1 . . . 1
0 1 1 0 1 . . . 1
0 0 1 1 0 . . . 0
0 0 0 1 0 . . . 1
0 0 1 1 0 . . . 1
0 0 1 1 0 . . . 0
0 1 1 1 0 . . . 0
0 0 1 1 0 . . . 0
0 0 0 1 0 . . . 1
0 0 0 0 1 . . . 0
0 0 1 1 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.27)

6.6 BCH Codes as Goppa Codes

Surprisingly, the family of Goppa codes includes as a subset the family of BCH codes
with codeword coefficients fromGF(2m) and parameters (2m −1, 2m −1− t, t+1).
As binary codes, using codeword coefficients {0, 1}, the BCH codes have parameters
(2m − 1, 2m − 1 − mt, 2t + 1).

For a nonbinary BCH code to correspond to a Goppa code, the Goppa polynomial,
g(z), is given by

g(z) = zt (6.28)

There are t parity check equations relating to the codeword coordinates
{c0, c1, c2, . . . , c2m−2} and these are given by

2m−2∑
i=0

ci
z − αi

= 0 modulo zt (6.29)

Dividing 1 by z − αi starting with αi produces

1

z − αi
= α−i + α−2iz + α−3iz2 + α−3iz3 + · · · + α−tizt−1 + α−(t+1)izt

z − αi
(6.30)
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As α−(t+1)izt modulo zt = 0, the t parity check equations are given by

2m−2∑
i=0

ci(α
−i + α−2iz + α−3iz2 + α−4iz3 + · · · + α−tizt−1) = 0 (6.31)

Every coefficient of z0 through to zt−1 is equated to zero, producing t parity check
equations. The corresponding parity check matrix is

H(2m−1, 2m−t, t+1) =

⎡
⎢⎢⎢⎢⎣

1 α−1 α−2 α−3 α−4 . . . α−(2m−2)

1 α−2 α−4 α−6 α−8 . . . α−2(2m−2)

1 α−3 α−6 α−9 α−12 . . . α−3(2m−2)

. . . . . . . . . . . . . . .

1 α−t α−2t α−3t α−4t . . . α−t(2m−2)

⎤
⎥⎥⎥⎥⎦

(6.32)

To obtain the binary BCH code, as before, the GF(2m) symbols are replaced with
their m-bit binary column representations for each corresponding GF(2m) value for
each symbol. As a result, only half of the parity check equations are independent and
the dependent equations may be deleted. To keep the same number of independent
parity check equations as before, the degree of the Goppa polynomial is doubled.
The Goppa polynomial is now given by

g(z) = z2t (6.33)

The parity check matrix for the binary Goppa BCH code is

H(2m−1, 2m−mt, 2t+1) =

⎡
⎢⎢⎢⎢⎣

1 α−1 α−2 α−3 α−4 . . . α−(2m−2)

1 α−3 α−6 α−9 α−12 . . . α−3(2m−2)

1 α−5 α−10 α−15 α−20 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

1 α−2t−1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2)

⎤
⎥⎥⎥⎥⎦

For binary codes, any parity check equation may be squared and the resulting
parity check equation will still be satisfied. As a consequence, only one parity check
equation is needed for each representative from each respective cyclotomic coset.
This is clearer with an example.

The cyclotomic cosets of 31, expressed as negative integers for convenience, are
as follows

C0 = {0}
C−1 = {−1,−2,−4,−8,−16}
C−3 = {−3,−6,−12,−24,−17}
C−5 = {−5,−10,−20,−9,−18}
C−7 = {−7,−14,−28,−25,−19}
C−11 = {−11,−22,−13,−26,−21}
C−15 = {−15,−30,−29,−27,−23}
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To construct the GF(32) nonbinary (31, 27) BCH code, the Goppa polynomial is
g(z) = z4 and there are 4 parity check equations with parity check matrix:

H(31,27,5) =

⎡
⎢⎢⎣
1 α−1 α−2 α−3 α−4 . . . α−30

1 α−2 α−4 α−6 α−8 . . . α−29

1 α−3 α−6 α−9 α−12 . . . α−28

1 α−4 α−8 α−12 α−16 . . . α−27

⎤
⎥⎥⎦ (6.34)

As a binary code with binary codeword coefficients, the parity check matrix has only
two independent rows. To construct the binary parity check matrix, each GF(32)
symbol is replacedwith its 5-bit column vector so that each parity symbolwill require
5 rows of the binary parity check matrix. The code becomes a (31, 21, 5) binary code.
The parity check matrix for the binary code after removing the dependent rows is
given by

H(31,21,5) =
[
1 α−1 α−2 α−3 α−4 . . . α−30

1 α−3 α−6 α−9 α−12 . . . α−28

]
(6.35)

To maintain 4 independent parity check equations for the binary code, the Goppa
polynomial is doubled in degree to become g(z) = z8. Replacing each GF(32)
symbol with its 5-bit column vector will produce a (31, 11) binary code. The parity
check matrix for the binary code is given by:

H(31, 11, ,9) =

⎡
⎢⎢⎣
1 α−1 α−2 α−3 α−4 . . . α−30

1 α−3 α−6 α−9 α−12 . . . α−28

1 α−5 α−10 α−15 α−20 . . . α−26

1 α−7 α−14 α−21 α−28 . . . α−24

⎤
⎥⎥⎦ (6.36)

Looking at the cyclotomic cosets for 31, it will be noticed that α−9 is in the same
coset as α−5, and for codewords with binary coefficients, we may use the Goppa
polynomial g(z) = z10 with the corresponding parity check matrix

H(31, 11, 11) =

⎡
⎢⎢⎣
1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30

1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28

1 α−7 α−14 α−21 α−28 α−4 α−11 . . . α−24

1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22

⎤
⎥⎥⎦ (6.37)

Alternatively, we may use Goppa polynomial g(z) = z8 with parity check matrix
given by (6.36). The result is the same code. From this analysis we can see why the
dmin of this BCH code is greater by 2 than the BCH code bound because the degree
of the Goppa polynomial is 10.

To find other exceptional BCH codes we need to look at the cyclotomic cosets to
find similar cases where a row of the parity check matrix is equivalent to a higher
degree row. Consider the construction of the (31, 6, 2t + 1) BCH code which will
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have 5 parity check equations. From the cyclotomic cosets for 31, it will be noticed
that α−13 is in the same coset as α−11, and so we may use the Goppa polynomial
g(z) = z14 and obtain a (31, 6, 15) binary BCH code. The BCH bound indicates a
minimumHamming distance of 11. Another example is evident from the cyclotomic
cosets of 127 where α−17 is in the same coset as α−9. Setting the Goppa polynomial
g(z) = z30 produces the (127, 71, 19) BCH code, whilst the BCH bound indicates a
minimum Hamming distance of 17.

To see the details in the construction of the parity check matrix for the binary
BCH code, we will consider the (31, 11, 11) code with parity check matrix given by
matrix (6.37). Each GF(32) symbol is replaced with the binary representation given
by Table6.2, as a 5-bit column vector, where α is a primitive root of the polynomial
1 + x2 + x5.

The binary parity check matrix that is obtained is given by matrix (6.38).

H(31, 11, 11) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 1 1 . . . 0
0 1 0 1 1 1 0 . . . 1
0 0 0 1 0 1 0 . . . 0
0 0 1 0 1 0 1 . . . 0
0 1 0 1 0 1 1 . . . 0

1 0 1 1 0 1 0 . . . 0
0 1 0 0 1 1 0 . . . 0
0 1 0 1 1 0 1 . . . 0
0 0 1 0 0 1 1 . . . 1
0 1 1 1 0 1 1 . . . 0

1 1 0 1 1 0 0 . . . 1
0 1 0 1 1 1 1 . . . 0
0 1 0 0 1 0 0 . . . 1
0 0 1 1 0 1 0 . . . 0
0 1 1 1 0 0 0 . . . 0

1 1 0 0 1 1 1 . . . 0
0 0 0 0 1 1 0 . . . 1
0 1 1 0 1 0 1 . . . 0
0 0 1 0 0 0 1 . . . 1
0 1 1 1 1 1 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.38)

Evaluating the minimum Hamming distance of this code confirms that it is 11, an
increase of 2 over the BCH bound for the minimum Hamming distance.
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6.7 Extended BCH Codes as Goppa Codes

In a short paper in 1971 [4], Goppa showed how a binary Goppa code could be
constructed with parameters (2m + (m − 1)t, 2m − t, 2t + 1). Each parity check
symbol, m bits long has a Forney concatenation [2], i.e. an overall parity bit on each
symbol. In a completely novel approach by Goppa, each parity symbol, apart from
1 bit in each symbol, is external to the code as if these are additional parity symbols.
These symbols are also independent of each other extending the length of the code
and, importantly, increasing the dmin of the code. Sugiyama et al. [9, 10] described a
construction technique mixing the standard Goppa code construction with the Goppa
external parity check construction. We give below a simpler construction method
applicable to BCH codes and to more general Goppa codes.

Consider a binary BCH code constructed as a Goppa codewith Goppa polynomial
g(z) = z2t but extended by including an additional root α0, an element of GF(2m).
The Goppa polynomial is now g(z) = (z2t+1 + α0z2t). The parity check equations
are given by

2m−2∑
i=0

ci
z − αi

= 0 modulo g(z) αi �= α0 (6.39)

Substituting for rm and q(z), as in Sect. 6.5

1

z − αi
modulo g(z) = g(z) + g(αi)

g(αi)(z − αi)
(6.40)

For the extended binary BCH code with Goppa polynomial g(z) = (z2t+1 + αz2t)
the parity check equations are given by

∑2m−2
i=1

ci
z−αi = ∑2m−2

i=1 ci
(

z2t

αi2t(αi+α0)
+ z2t−1

αi2t + z2t−2

αi(2t−1) + z2t−3

αi(2t−2) + · · · + 1
αi

)

= 0

(6.41)

Equating each coefficient of powers of z to zero and using only the independent
parity check equations (as it is a binary code) produces t + 1 independent parity
check equations with parity check matrix

H(2m−2, 2m−2−mt−m) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α−1 α−2 α−3 . . . α−(2m−2)

α−3 α−6 α−9 . . . α−3(2m−2)

α−5 α−10 α−15 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) . . . α−(2t−1)(2m−2)

α−2t

α+α0

α−4t

α2+α0

α−6t

α3+α0
. . . α−2t(2m−2)

α2m−2+α0

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.42)
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The last row may be simplified by noting that

1 + α−2t
0 α2t

(α0 + α)α2t
= α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.43)

Rearranging produces

1

(α0 + α)α2t
= α−2t

0 α2t

(α0 + α)α2t
+ α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.44)

and

α−2t

(α0 + α)
= α−2t

0

(α0 + α)
+ α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.45)

The point here is because of the above equality, the last parity check equation in
(6.42) may be replaced with a simpler equation to produce the same Cauchy style
parity check given by Goppa in his 1971 paper [4]. The parity check matrix becomes

H(2m−2, 2m−2−mt−m) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α−1 α−2 α−3 . . . α−(2m−2)

α−3 α−6 α−9 . . . α−3(2m−2)

α−5 α−10 α−15 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) . . . α−(2t−1)(2m−2)

1
α+α0

1
α2+α0

1
α3+α0

. . . 1
α2m−2+α0

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.46)

The justification for this is that from (6.45), the last row of (6.42) is equal to a scalar
weighted linear combination of the rows of the parity checkmatrix(6.46), so that these
rows will produce the same code as the parity check matrix (6.42). By induction,
other roots of GF(2m) may be used to produce similar parity check equations to
increase the distance of the code producing parity check matrices of the form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α−1 α−2 α−3 α−4 . . . α−(2m−2)

α−3 α−6 α−9 α−12 . . . α−3(2m−2)

α−5 α−10 α−15 α−20 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2)

1
α+α0

1
α2+α0

1
α3+α0

1
α4+α0

. . . 1
α2m−2+α0

1
α+α1

1
α2+α1

1
α3+α1

1
α4+α1

. . . 1
α2m−2+α1

. . . . . . . . . . . . . . .
1

α+αs0−1

1
α2+αs0−1

1
α3+αs0−1

1
α4+αs0−1

. . . 1
α2m−2+αs0−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.47)

The parity symbols given by the last s0 rows of this matrix are in the Cauchy matrix
style [7] and will necessarily reduce the length of the code for each root of the
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Goppa polynomial which is an element of GF(2m). However, Goppa was the first
to show [4] that the parity symbols may be optionally placed external to the code,
without decreasing the length of the code. For binary codes the length of the code
increases as will be shown below. Accordingly, with external parity symbols, the
parity check matrix becomes

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α−1 α−2 α−3 α−4 . . . α−(2m−2) 0 0 0 0
α−3 α−6 α−9 α−12 . . . α−3(2m−2) 0 0 0 0
α−5 α−10 α−15 α−20 . . . α−5(2m−2) 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2) 0 0 0 0
1

α+α0

1
α2+α0

1
α3+α0

1
α4+α0

. . . 1
α2m−2+α0

1 0 0 0
1

α+α1

1
α2+α1

1
α3+α1

1
α4+α1

. . . 1
α2m−2+α1

0 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

α+αs0−1

1
α2+αs0−1

1
α3+αs0−1

1
α4+αs0−1

. . . 1
α2m−2+αs0−1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.48)

As an example of the procedure, consider the (31, 11, 11) binary BCH code described
in Sect. 6.6. We shall add one external parity symbol to this code according to the
parity check matrix in (6.48) and eventually produce a (36, 10, 13) binary BCH code.
Arbitrarily, we shall choose α0 = 1. This means that the first column of the parity
check matrix for the (31, 11, 11) code given in (6.38) is deleted and there is one
additional parity check row. The parity check matrix for this (35, 10, 12) extended
BCH code is given below. Note we will add later an additional parity bit in a Forney
concatenation of the external parity symbol to produce the (36, 10, 13) code as a last
step.

H(35, 10, 12) =

⎡
⎢⎢⎢⎢⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1

α+1
1

α2+1
1

α3+1
1

α4+1
1

α5+1
1

α6+1 . . . 1
α29+1 1

⎤
⎥⎥⎥⎥⎦

(6.49)

Evaluating the last row by carrying out the additions, and inversions, referring to the
table of GF(32) symbols in Table6.2 produces the resulting parity check matrix

H(35, 10, 12) =

⎡
⎢⎢⎢⎢⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
α−13 α−26 α−2 α−21 α−29 α−4 . . . α−14 1

⎤
⎥⎥⎥⎥⎦

(6.50)

The next step is to determine the binary parity check matrix for the code by replacing
eachGF(32) symbol by its corresponding 5-bit representation using Table6.2, but as
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a 5-bit column vector. Also we will add an additional parity check row to implement
the Forney concatenation of the external parity symbol. The resulting binary parity
check matrix in (6.51) is obtained. Evaluating the minimum Hamming distance of
this code using one of the methods described in Chap.5 verifies that it is indeed 13.

Adding the external parity symbol has increased the minimumHamming distance
by 2, but at the cost of one data symbol. Instead of choosing α0 = 1, a good idea
is to choose α0 = 0, since 0 is a multiple root of the Goppa polynomial g(z) = z10

which caused the BCH code to be shortened from length 2m to 2m − 1 in the first
place. (The length of a Goppa code with Goppa polynomial g(z) having no roots in
GF(2m) is 2m). The resulting parity check matrix is given in (6.52).

H(36, 10, 13) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 . . . 0 0 0 0 0 0 0
1 0 1 1 1 0 . . . 1 0 0 0 0 0 0
0 0 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 0 0 0 0 0 0 0
1 0 1 0 1 1 . . . 0 0 0 0 0 0 0

0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
1 0 0 1 1 0 . . . 0 0 0 0 0 0 0
1 0 1 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 0 1 1 . . . 1 0 0 0 0 0 0
1 1 1 0 1 1 . . . 0 0 0 0 0 0 0

1 0 1 1 0 0 . . . 1 0 0 0 0 0 0
1 0 1 1 1 1 . . . 0 0 0 0 0 0 0
1 0 0 1 0 0 . . . 1 0 0 0 0 0 0
0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
1 1 1 0 0 0 . . . 0 0 0 0 0 0 0

1 0 0 1 1 1 . . . 0 0 0 0 0 0 0
0 0 0 1 1 0 . . . 1 0 0 0 0 0 0
1 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 0 0 1 . . . 1 0 0 0 0 0 0
1 1 1 1 1 0 . . . 1 0 0 0 0 0 0

1 1 1 1 0 1 . . . 1 1 0 0 0 0 0
1 0 0 0 0 1 . . . 1 0 1 0 0 0 0
0 1 0 0 1 0 . . . 0 0 0 1 0 0 0
0 0 1 0 0 1 . . . 0 0 0 0 1 0 0
0 0 0 1 0 0 . . . 1 0 0 0 0 1 0
0 0 0 0 0 0 . . . 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.51)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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H(36, 11) =

⎡
⎢⎢⎢⎢⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 1

⎤
⎥⎥⎥⎥⎦

(6.52)

The problem with this is that the minimum Hamming distance is still 11 because
the last row of the parity check matrix is the same as the first row, apart from the
external parity symbol because 0 is a root of the Goppa polynomial. The solution
is to increase the degree of the Goppa polynomial but still retain the external parity
symbol. Referring to the cyclotomic cosets of 31, see (6.35), we should use g(z) = z12

to produce the parity check matrix

H(36, 11) =

⎡
⎢⎢⎢⎢⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1 α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1

⎤
⎥⎥⎥⎥⎦

(6.53)

As before, the next step is to determine the binary parity check matrix for the code
from this matrix by replacing each GF(32) symbol by its corresponding 5 bit rep-
resentation using Table6.2 as a 5 bit column vector. Also we will add an additional
parity check row to implement the Forney concatenation of the external parity sym-
bol. The resulting binary parity check matrix is obtained

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 1 1 . . . 0 0 0 0 0 0 0
0 1 0 1 1 1 0 . . . 1 0 0 0 0 0 0
0 0 0 1 0 1 0 . . . 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 1 0 1 1 . . . 0 0 0 0 0 0 0

1 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 0 0 1 1 0 . . . 0 0 0 0 0 0 0
0 1 0 1 1 0 1 . . . 0 0 0 0 0 0 0
0 0 1 0 0 1 1 . . . 1 0 0 0 0 0 0
0 1 1 1 0 1 1 . . . 0 0 0 0 0 0 0

1 1 0 1 1 0 0 . . . 1 0 0 0 0 0 0
0 1 0 1 1 1 1 . . . 0 0 0 0 0 0 0
0 1 0 0 1 0 0 . . . 1 0 0 0 0 0 0
0 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 1 1 0 0 0 . . . 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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H(37, 11, 13) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 1 1 . . . 0 0 0 0 0 0 0
0 0 0 0 1 1 0 . . . 1 0 0 0 0 0 0
0 1 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 0 1 0 0 0 1 . . . 1 0 0 0 0 0 0
0 1 1 1 1 1 0 . . . 1 0 0 0 0 0 0

1 0 0 1 1 0 1 . . . 1 1 0 0 0 0 0
0 0 1 0 1 0 1 . . . 1 0 1 0 0 0 0
0 1 0 0 0 1 0 . . . 1 0 0 1 0 0 0
0 1 1 1 0 0 1 . . . 0 0 0 0 1 0 0
0 0 1 0 0 1 0 . . . 0 0 0 0 0 1 0
0 0 0 0 0 0 0 . . . 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.54)

Weight spectrum analysis of this code confirms that the dmin is indeed 13. One or
more Cauchy style parity check equations may be added to this code to increase the
dmin of the code. For example, with one more parity check equation again with the
choice of α0 = 1, the parity check matrix for the (42,10) code is

H(42, 10) =

⎡
⎢⎢⎢⎢⎢⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0 0
α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1 0
α−18 α−5 α−29 α−10 α−2 α−27 . . . α−17 0 1

⎤
⎥⎥⎥⎥⎥⎦

(6.55)

Replacing each GF(32) symbol by its corresponding 5 bit representation using
Table6.2 as a 5-bit column vector and adding an additional parity check row to
each external parity symbol produces the binary parity check matrix for the (42, 10,
15) code.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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H(42, 10, 15) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 . . . 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 . . . 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 . . . 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 . . . 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 . . . 0 1 1 1 1 1 1 0 0 0 0 0 0

0 1 0 0 1 0 . . . 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 0 . . . 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.56)

Weight spectrum analysis of this code confirms that the dmin is indeed 15. In this con-
struction the information bit coordinate corresponding to α0 = 1 is deleted, reducing
the dimension of the code by 1. This is conventional practice when the Goppa poly-
nomial g(z) contains a root that is in GF(2m). However, on reflection, this is not
essential. Certainly, in the parity check symbol equations of the constructed code,
therewill be one parity check equationwhere the coordinate ismissing, but additional
parity check equations may be used to compensate for the missing coordinate(s).

Consider the (42, 10) code above, given by parity check matrix (6.55) without
the deletion of the first coordinate. The parity check matrix for the (42, 11) code
becomes

H(42, 11) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0 0
1 α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1 0
0 α−18 α−5 α−29 α−10 α−2 α−27 . . . α−17 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.57)

It will be noticed that the first coordinate is not in the last parity check equation.
Constructing the binary code as before by replacing each GF(32) symbol by its cor-
responding 5-bit representation using Table6.2 as a 5-bit column vector and adding
an additional parity check row to each external parity symbol produces a (42, 11,
13) binary code. There is no improvement in the dmin of the (42, 11, 13) binary
code compared to the (37, 11, 13) binary code despite the 5 additional parity bits.
However, weight spectrum analysis of the (42, 11, 13) binary code shows that there
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is only 1 codeword of weight 13 and only 3 codewords of weight 14. All of these
low weight codewords contain the first coordinate which is not surprising. Two more
parity check equations containing the first coordinate need to be added to the parity
check matrix to compensate for the coordinate not being in the last equation of the
parity check symbol matrix (6.57).

It turns out that the coordinate in question can always be inserted into the overall
parity check equation to each external parity symbolwithout any loss, so that only one
additional parity check equation is required for each root of g(z) that is in GF(2m).

This produces the following binary parity check matrix for the (43, 11, 15) code.

H(43, 11, 15) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 . . . 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 . . . 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 . . . 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 . . . 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 . . . 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 . . . 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.58)
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⎡
⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 . . . 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

It will be noticed that the last but one row is the Forney concatenation on the last
GF(32) symbol of parity check matrix (6.57), the overall parity check on parity bits
36–41. Bit 0 has been added to this equation. Also, the last row of the binary parity
check matrix is simply a repeat of bit 0. In this way, bit 0 has been fully compensated
for not being in the last row of parity check symbol matrix (6.57).

BCH codes extended in length in this way can be very competitive compared to
the best known codes [5]. The most efficient extensions of BCH codes are for g(z)
having only multiple roots of z = 0 because no additional deletions of information
bits are necessary nor are compensating parity check equations necessary. However,
n does need to be a Mersenne prime, and the maximum extension is 2 symbols with
2m + 2 additional, overall parity bits, increasing the dmin by 4. Where n is not a
Mersenne prime the maximum extension is 1 symbol with m + 1 additional, overall
parity bits, increasing the dmin by 2.

However regardless of n being a Mersenne prime or not, multiple symbol exten-
sions may be carried out if g(z) has additional roots from GF(2m), increasing the
dmin by 2 for each additional root. The additional root can also be z = 0.

As further examples, a (37, 11, 13) code and a (43, 11, 15) code can be constructed
in this way by extending the (31, 11, 11) BCH code. Also a (135, 92, 13) code and
a (143, 92, 15) code can be constructed by extending the (127, 92, 11) BCH code.
A (135, 71, 21) code and a (143, 71, 23) code can be constructed by extending the
(127, 71, 19) BCH code.

For more than 2 extended symbols for Mersenne primes, or more than 1 extended
symbol for non-Mersenne primes, it is necessary to use mixed roots of g(z) from
GF(2m) and have either deletions of information bits or compensating parity check
equations or both. As examples of these code constructions there are:

• An example of a non Mersenne prime, the (76, 50, 9) code constructed from the
BCH (63, 51, 5) code with additional roots of g(z) at z = 0 and α0 deleting the
first information bit.

• The (153, 71, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0 andα1 with 2 additional, compensating parity check bits.

• The (151, 70, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0 andα1 with the first coordinate deleted reducing the dimension
by 1 and one additional, compensating parity check bit.

• The (160, 70, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0, α1 andα2 with the first coordinate deleted reducing the
dimension by 1 and with 2 additional, compensating parity check bits.

• The (158, 69, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0, α1, α2 andα3 with the first 2 coordinates deleted reducing
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the dimension by 2 and one additional, compensating parity check bit. All of these
codes are best known codes [5].

6.8 Binary Codes from MDS Codes

The Goppa codes and BCH codes, which are a subset of Goppa codes, when con-
structed as codes with symbols from GF(q) are all MDS codes and are examples of
generalised Reed–Solomon codes [7]. MDS codes are exceptional codes and there
are not many construction methods for these codes. For (n, k) MDS codes the repe-
tition code, having k = 1, can have any length of n independently of the field size q.
For values k = 3 and k = q−1 and with q even the maximum value of n is n = q+2
[7]. For all other cases, the maximum value of n is n = q + 1 with a construction
known as the doubly extended Reed–Solomon codes. The parity check matrix for a
(q + 1, k) doubly extended Reed–Solomon code is

HRS+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 . . . 1 1 0
1 α1 α2 α3 α4 α5 α6 . . . αq−2 0 0
1 α2

1 α2
2 α2

3 α2
4 α2

5 α2
6 . . . α2

q−2 0 0
1 α3

1 α3
2 α3

3 α3
4 α3

5 α3
6 . . . α3

q−2 0 0
1 α4

1 α4
2 α4

3 α4
4 α4

5 α4
6 . . . α4

q−2 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 α
q−k
1 α

q−k
2 α

q−k
3 α

q−k
4 α

q−k
5 α

q−k
6 . . . α

q−k
q−2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.59)

where the q elements of GF(q) are {0, 1, α1, α2, α3, . . . , αq−1}.
As the codes are MDS, the minimum Hamming distance is q + 2 − k, forming a

family of (q + 1, k, q + 2 − k) codes meeting the Singleton bound [8].
The MDS codes may be used as binary codes simply by restricting the data

symbols to values of {0 and 1} to produce a subfield subcode. Alternatively for
GF(2m) each symbol may be replaced with a m × m binary matrix to produce the
family of ((2m + 1)m,mk, 2m + 2− k) of binary codes. As an example, with m = 4
and k = 12, the result is a (68, 48, 5) binary code. This is not a very competitive code
because the equivalent best known code [5], the (68, 48, 8) code, has much better
minimum Hamming distance.

However, using the Forney concatenation [2] on each symbol almost doubles
the minimum Hamming distance with little increase in redundancy and produces
the family of ((2m + 1)(m + 1),mk, 2(2m + 1 − k) + 1) of binary codes. With
the same example values for m and k the (85, 48, 11) binary code is produced.
Kasahara [6] noticed that it is sometimes possible with this code construction to add
an additional information bit by adding the all 1’s codeword to the generatormatrix of
the code. Equivalently expressed, all of the codewordsmay be complementedwithout
degrading the minimum Hamming distance. It is possible to go further depending
on the length of the code and the minimum Hamming distance. Since the binary
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parity of each symbol is always even, then if m + 1 is an odd number, then adding
the all 1’s pattern to each symbol will produce weight of at least 1 per symbol. For
the (85, 48, 11) constructed binary code m+ 1 = 5, an odd number and the number
of symbols is 17. Hence, adding the all 1’s pattern (i.e. 85 1’s) to each codeword
will produce a minimum weight of at least 17. Accordingly, a (85, 49, 11) code is
produced. Adding an overall parity bit to each codeword increases the minimum
Hamming distance to 12 producing a (86, 49, 12) code and shortening the code
by deleting one information bit produces a (85, 48, 12) code. This is a good code
because the corresponding best known code is also a (85, 48, 12) code. However,
the construction method is different because the best known code is derived from the
(89, 56, 11) cyclic code.

Looking at constructing binary codes from MDS codes by simply restricting the
data symbols to values of {0 and 1}, consider the example of the extended Reed–
Solomon code of length 16 using GF(24) with 2 parity symbols. The code is the
MDS (16, 14, 3) code. The parity check matrix is

H(16,14) =
[
1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 0
1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12 1

]
(6.60)

With binary codeword coordinates, denoted as ci the first parity check equation from
the first row of the parity check matrix is

14∑
i=0

ciα
i = 0 (6.61)

Squaring both sides of this equation produces

14∑
i=0

c2i α
2i = 0 (6.62)

As the codeword coordinates are binary, c2i = ci and so any codeword satisfying the
equations of (6.58) satisfies all of the following equations by induction from (6.60)

H(16,14) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 0
1 α2 α4 α6 α8 α10 α12 α14 α1 α3 α5 α7 α9 α11 α13 0
1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12 1
1 α4 α8 α12 α1 α5 α9 α13 α2 α4 α10 α14 α3 α7 α11 0
1 α6 α12 α3 α9 1 α6 α12 α3 α9 1 α6 α12 α3 α9 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.63)

There are 4 consecutive zeros of the parent Reed–Solomon code from the first 4 rows
of the parity check matrix indicating that the minimum Hamming distance may be 5
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Table 6.3 GF(16) extension
field defined by
1 + α1 + α4 = 0

α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = 1 + α

α5 = α + α2

α6 = α2 + α3

α7 = 1 + α + α3

α8 = 1 + α2

α9 = α + α3

α10 = 1 + α + α2

α11 = α + α2 + α3

α12 = 1 + α + α2 + α3

α13 = 1 + α2 + α3

α14 = 1 + α3

for the binary code. However, comparing the last column of this matrix with (6.57)
indicates that this column is not correct.

Constructing the binary check matrix from the parity check equations, (6.58)
using Table6.3 substituting the respective 4 bit vector for each column vector of
each nonzero GF(16) symbol, (0 in GF(16) is 0000) produces the following binary
check matrix

H(16, 8) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.64)

Weight spectrum analysis indicates the minimum Hamming distance of this code
is 4 due to a single codeword of weight 4,{0, 5, 10, 15}. Deleting the last column of
the parity check matrix produces a (15, 8, 5) code. Another approach is needed to
go from the MDS code to a binary code without incurring a loss in the minimum
Hamming distance.

It is necessary to use the generalised Reed–Solomon MDS code. Here, each col-
umn of the parity check matrix is multiplied by a nonzero element of the GF(2m)

field defined as {μ0, μ1, μ2, μ3, . . . , μ2m}. It is not necessary for these to be dis-
tinct, just to have a multiplicative inverse. The parity check matrix for the (q+ 1, k)
generalised Reed–Solomon MDS code is
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HGRS+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν0 ν1 ν2 ν3 ν4 ν5 . . . νq−2 νq−1 0
ν0 ν1α1 ν2α2 ν3α3 ν4α4 ν5α5 . . . νq−2αq−2 0 0
ν0 ν1α

2
1 ν2α

2
2 ν3α

2
3 ν4α

2
4 ν5α

2
5 . . . νq−2α

2
q−2 0 0

ν0 ν1α
3
1 ν2α

3
2 ν3α

3
3 ν4α

3
4 ν5α

3
5 . . . νq−2α

3
q−2 0 0

ν0 ν1α
4
1 ν2α

4
2 ν3α

4
3 ν4α

4
4 ν5α

4
5 . . . νq−2α

4
q−2 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ν0 ν1α
q−k
1 ν2α

q−k
2 ν3α

q−k
3 ν4α

q−k
4 ν5α

q−k
5 . . . νq−2α

q−k
q−2 0 νq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is clear that as a nonbinary code with codeword coefficients from GF(2m), the
distance properties will remain unchanged as the generalised Reed–Solomon is still
an MDS code. Depending on the coordinate position each nonzero element value
has a unique mapping to another nonzero element value. It is as subfield subcodes
that the generalised Reed–Solomon codes have an advantage. It should be noted that
Goppa codes are examples of a generalised Reed–Solomon code.

Returning to the relatively poor (16, 8, 4) binary code derived from the (16, 14, 3)
MDS code, consider the generalised (16, 14, 3) Reed–Solomon code with parity
check matrix.

H(16,14) =
[

ν0 ν1 ν2 ν3 ν4 ν5 ν6 . . . ν13 ν14 ν15
ν0 ν1α

1 ν2α
2 ν3α

3 ν4α
4 ν5α

5 ν6α
6 . . . ν13α

13 ν14α
14 0

]
(6.65)

Setting the vector ν to

{α12, α4, α3, α9, α4, α1, α8, α6, α3, α6, α1, α2, α2, α8, α9, α12}

Constructing the binary check matrix from these parity check equations using
Table6.3 by substituting the respective 4 bit vector for each column vector of each
nonzeroGF(16) symbol, (0 inGF(16) is 0000) produces the following binary check
matrix

H(16, 8, 5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1
1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1
1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1
1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1

1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0
1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.66)

Weight spectrum analysis indicates that theminimumHamming distance of this code
is 5 and achieves the aim of deriving a binary code from anMDS code without loss of
minimum Hamming distance. Moreover, the additional symbol of 1, the last column
in (6.59), may be appended to produce the following check matrix for the (17, 9, 5)
binary code:
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H(17, 9, 5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0

1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1
1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0
1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.67)

Not surprisingly, this code has the same parameters as the best known code [5]. The
reader will be asking, how is the vector ν chosen?

Using trial and error methods, it is extremely difficult, and somewhat tiresome to
find a suitable vector ν, even for such a short code. Also weight spectrum analysis
has to be carried out for each trial code.

The answer is that the vector ν is constructed from an irreducible Goppa poly-
nomial of degree 2 with g(z) = α3 + z + z2. Referring to Table6.3, the reader may
verify using all elements of GF(16), that ν is given by g(αi)

−1 for i = 0 to 15.
Unfortunately the technique is only valid for binary codes with minimum Ham-

ming distance of 5 and alsom has to be even.Weight spectrum analysis has confirmed
that the (65, 53, 5), (257, 241, 5), (1025, 1005, 5) and (4097, 4073, 5) codes can be
constructed in this way from doubly extended, generalised Reed–Solomon, MDS
codes.

6.9 Summary

It has been shown that interpolation plays an important, mostly hidden role in alge-
braic coding theory. The Reed–Solomon codes, BCH codes, and Goppa codes are all
codes that may be constructed via interpolation. It has also been demonstrated that all
of these codes form part of a large family of generalisedMDS codes. The encoding of
BCH and Goppa codes has been explored from the viewpoint of classical Lagrange
interpolation. It was shown in detail how Goppa codes are designed and constructed
starting from first principles. The parity check matrix of a BCH code was derived as
a Goppa code proving that BCH codes are a subset of Goppa codes. Following from
this result and using properties of the cyclotomic cosets it was explained how the
minimum Hamming distance of some BCH codes is able to exceed the BCH bound
producing outstanding codes. It was shown how these exceptional BCH codes can
be identified and constructed. A little known paper by Goppa was discussed and as
a result it was shown how Goppa codes and BCH codes may be extended in length
with additional parity check bits resulting in increased minimum Hamming distance
of the code. Several examples were given of the technique which results in some
outstanding codes. Reed–Solomon codes were explored as a means of constructing
binary codes resulting in improvements to the database of best known codes.
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