
Chapter 19
Variations on the McEliece Public Key
Cryptoystem

19.1 Introduction and Background

In 1978, the distinguished mathematician Robert McEliece invented a public key
encryption system [8] based upon encoding the plaintext as codewords of an error-
correcting code from the family of Goppa [6] codes. In this system, the ciphertext,
sometimes termed the cryptogram, is formed by adding a randomly chosen error
pattern containing up to t bits to each codeword. One or more such corrupted code-
words make up the ciphertext. On reception, the associated private key is used to
invoke an error-correcting decoder based upon the underlying Goppa code to correct
the errored bits in each codeword, prior to retrieval of the plaintext from all of the
information bits present in the decoded codewords.

Since the original invention there have been a number of proposed improvements.
For example, in US Patent 5054066, Riek and McFarland improved the security of
the system by complementing the error patterns so as to increase the number of errors
contained in the cryptogram [14] and cited other variations of the original system.

This chapter is concerned with a detailed description of the original system plus
some refinementswhich enhance the bandwidth efficiency and security of the original
arrangement. The security strength of the system is discussed and analysed.

19.1.1 Outline of Different Variations of the Encryption
System

In the originally proposed system [8] a codeword is generated from plaintext mes-
sage bits by using a permuted, scrambled generator matrix of a Goppa code [6] of
length n symbols, capable of correcting t errors. This matrix is the public key. The
digital cryptogram is formed from codewords corrupted by exactly t randomly, or
t pseudorandomly, chosen bit errors. The security is provided by the fact that it is

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_19

465

466 19 Variations on the McEliece Public Key Cryptoystem

impossible to remove the unknown bit errors unless the original unpermuted Goppa
code, the private key, is known in which case the errors can be removed by correcting
them and then descrambling the information bits in the codeword to recover the orig-
inal message. Any attempt to descramble the information bits without removing the
errors first just results in a scrambled mess. In the original paper by McEliece [8],
the Goppa codeword length n is 1024 and t is 50. The number of possible error
combinations is 3.19 × 1085 equivalent to a secret key of length 284 bits given a
brute force attack. (There are more sophisticated attacks which reduce the equivalent
secret key length and these are discussed later in this chapter.)

In a variation of the original theme, after first partitioning the message into mes-
sage vectors of length k bits each and encoding thesemessage vectors into codewords,
the codewords are corrupted by a combination of bit errors and bit deletions to form
the cryptogram. The number of bit errors in each corrupted codeword is not fixed,
but is an integer s, which is randomly chosen, with the constraint that, s ≤ t. This
increases the number of possible error combinations, thereby increasing the security
of the system. As a consequence 2(t − s) bits may be deleted from each codeword
in random positions adding to the security of the cryptogram as well as reducing its
size, without shortening the message. In the case of the original example, above, with
t
2 ≤ s ≤ t the number of possible error combinations is increased to 3.36× 1085 and
the average codeword in the cryptogram is reduced to 999 bits from 1024 bits.

Most encryption systems are deterministic in which there is a one-to-one cor-
respondence between the message and the cryptogram with no random variations.
Security can be improved through the use of a truly, random integer generator, not
a pseudorandom generator to form the cryptogram. Consequently, the cryptogram
is not predictable or deterministic. Even with the same message and public key, the
cryptogram produced will be different each time and without knowledge of the ran-
dom errors and bit deletions, which may be determined only by using the structure
of the Goppa code, recovery of the original message is practically impossible.

The basic McEliece encryption system has little resistance to chosen-plaintext
(message) attacks. For example, if the same message is encrypted twice and the two
cryptograms are added modulo 2, the codeword of the permuted Goppa code cancels
out and the result is the sum of the two error patterns. Clearly the encryption method
does not provide indistinguishability under chosen-plaintext attack (IND-CPA), a
quality measure used by the cryptographic community.

However, an additional technique may be used which does provide (IND-CPA)
and results in semantically secure cryptograms. The technique is to scramble the
message twice by using a second scrambler. With scrambling the message using the
fixed non-singular matrix contained in the public key as well, a different scrambler is
used to scramble each message in addition. The scrambling function of this second
scrambler is derived from the random error vector which is added to the codeword
to produce the corrupted codeword after encoding using the permuted, scrambled
generator matrix of a Goppa code. As the constructed digital cryptogram is a function
of truly randomly chosen vectors, not pseudorandomly chosen vectors, or a fixed
vector, the security of this public key encryption system is enhanced compared to
the standard system. Even with an identical message and using exactly the same

19.1 Introduction and Background 467

public key, the resulting cryptograms will have no similarity at all to any previously
generated cryptograms. This is not true for the standard McEliece public key system
as each codeword will only differ in a maximum of 2t bit positions. Providing this
semantic security eliminates the risk from known plaintext attacks and is useful in
several applications such as in RFID, and these are discussed later in the chapter.

An alternative to using a second scrambler is to use a cryptographic hash function
such as SHA-256 [11] or SHA-3 [12] to calculate the hash of each t bit error pattern
and add, modulo 2, the first k bits of the hash values to the message prior to encoding.
Effectively the message is encrypted with a stream cipher prior to encoding.

Having provided additional message scrambling, it now becomes safe to represent
the generator matrix in reduced echelon form, i.e. a k × k identity matrix followed
by a (n − k) × k matrix for the parity bits. Consequently, the public key may be
reduced in size from a n × k matrix to a (n − k) × k matrix corresponding typically
to a reduction in size of around 65%. This is useful because one of the criticisms of
the McEliece system is the relatively large size of the public keys.

Most attacks on the McEliece system are blind attacks and rely on the assump-
tion that there are exactly t errors in each corrupted codeword. If there are more
than t errors these attacks fail. Consequently, to enhance the security of the system,
additional errors known only to intended recipients may be inserted into the digital
cryptogram so that each corrupted codeword contains more than t errors. A sophis-
ticated method of introducing the additional errors is not necessary since provided
there are sufficient additional errors to defeat decryption based on guessing the posi-
tions of the additional errors the message is theoretically unrecoverable from the
corrupted digital cryptogram even with knowledge of the private key. This feature
may find applications where a message needs to be distributed to several recipients
using the same or different public/private keys at the same time, possibly in a com-
mercial, competitive environment. The corrupted digital cryptograms may be sent
to each recipient arriving asynchronously, due to variable network delays and only
a relatively short secret key containing information of the additional error positions
needs to be sent at the same time to all recipients.

In another arrangement designed to enhance the security of the system, additional
errors are inserted into each codeword in positions defined by a position vector,
which is derived from a cryptographic hash of the previous message vector. Standard
hash functions may be used such as SHA-256 [11] or SHA-3 [12]. The first message
vector can use a position vector derived from a hash or message already known by
the recipient of the cryptogram.

These arrangements may be used in a wide number of different applications
such as active and passive RFID, secure barcodes, secure ticketing, magnetic cards,
message services, email applications, digital broadcasting, digital communications,
video communications and digital storage. Encryption and decryption is amenable
to high speed implementation operating at speeds beyond 1Gbit/s.

468 19 Variations on the McEliece Public Key Cryptoystem

19.2 Details of the Encryption System

The security strength of the McEliece public key encryption system stems from the
fact that a truly random binary error pattern is added to the encoded message as part
of the digital cryptogram. Even with the same message and the same public key a
different digital cryptogram is produced each time. Each message is encoded with
a scrambled, binary mapped, permuted, version of a GF(2m) Goppa code. Without
the knowledge of the particular Goppa code that is used, the error pattern cannot be
corrected and the message cannot be recovered. It is not possible to deduce which
particular Goppa code is being used from the public key, which is the matrix used
for encoding, because this matrix is a scrambled, permuted version of the original
encoding matrix of the Goppa code, plus the fact that for a given m there are an
extremely large number of Goppa codes [8].

Themessage information to be sent, if not in digital form, is digitally encoded into
binary form comprising a sequence of information bits. The method of encryption
is shown in Fig. 19.1. The message comprising a sequence of information bits is
formatted by appending dummy bits as necessary into an integral numberm of binary
message vectors of length k bits each. This is carried out by format into message
vectors shown in Fig. 19.1. Each message vector is scrambled and encoded into a
codeword, n bits long, defined by an error-correcting code which is derived from
a binary Goppa code and a scrambling matrix. The binary Goppa code is derived
from a non-binary Goppa code and the procedure is described below for a specific
example.

The encode using public key shown in Fig. 19.1 carries out the scrambling and
codeword encoding for each message vector by selecting rows of the codeword
generator matrix according to the message bits contained in the message vector. This
operation is described in more detail below for a specific example. The codeword
generator matrix to be used for encoding is defined by the public key which is stored
in a buffer memory, public key shown in Fig. 19.1. As shown in Fig. 19.1, a random
number generator generates a number s internally constrained to be less than or equal
to t and this is carried out by generate number of random errors (s). The parameter
t is the number of bit errors that the Goppa code can correct.

message input
format into
message vectors

add

 generate
random errors

position vector

 format
cryptogram

generate number of
random errors (s)

delete
 bits

encode
using
public key

2(t-s) erasures

public key

Fig. 19.1 Public key encryption system with s random bit errors and 2(t − s) bit deletions

19.2 Details of the Encryption System 469

+

-

high gain
amplifier

comparator binary representation of s

T T T

p bit shift register

TT

Fig. 19.2 Random integer generator of the number of added, random bit errors, s

The number of random errors s is input to generate random errorswhich for each
codeword, initialises an n bit buffer memory with zeros, and uses a random number
generator to generate s 1’s in s random positions of the buffer memory. The contents
of the n bit buffer are added to the codeword of n bits by add shown in Fig. 19.1.
The 1’s are added modulo 2 which inverts the codeword bits in these positions so
that these bits are in error. In Fig. 19.1, t − s erasures takes the input s, calculates
2(t−s) and outputs this value to position vector which comprises a buffer memory of
n bits containing a sequence of integers corresponding to a position vector described
below. The first 2(t − s) integers are input to delete bits which deletes the bits in
the corresponding positions of the codeword so that 2(t − s) bits of the codeword
are deleted. The procedure is carried out for each codeword so that each codeword
is randomly shortened due to deleted bits and corrupted with a random number of
bit errors in random positions. In Fig. 19.1, format cryptogram has the sequence of
shortened corrupted codewords as input and appends these together, together with
formatting information to produce the cryptogram.

The highest level of security is provided when the block generate number of
random errors (s) of Fig. 19.1 is replaced by a truly random number generator and
not a pseudorandom generator. An example of a random number generator is shown
in Fig. 19.2.

The differential amplifier with high gain amplifies the thermal noise generated by
the resistor terminated inputs. The output of the amplifier is the amplified random
noise which is input to a comparator which carries out binary quantisation. The
comparator output is 1 if the amplifier output is a positive voltage and 0 otherwise.
This produces 1’s and 0’s with equal probability at the output of the comparator.
The output of the comparator is clocked into a shift register having p shift register
stages, each of delay T . The clock rate is 1

T . After p clock cycles, the contents of the
shift register represent a number in binary which is the random number s having a
uniform probability distribution between 0 and 2p − 1.

One or more of the bits output from the shift register may be permanently set to
1 to provide a lower limit to the random number of errors s. As an example, if the
4th bit (counting from the least significant bits) is permanently set to 1 then s has a
uniform probability distribution between 23 = 8 and 2p − 1.

Similarly, the highest level of security is provided if the positions of the errors
generated by generate random errors of Fig. 19.1 is a truly random number generator
and not a pseudorandom generator. An example of an arrangement which generates

470 19 Variations on the McEliece Public Key Cryptoystem

m bit
input

+

-
T

comparatorhigh gain
amplifier

clocked
flip-flop

error positions
buffer memory

non linear
mapping

add

select taps

eliminate
repeats

shift register

Fig. 19.3 Random integer generator of error positions

truly random positions in the range of 0 to 2m − 1 corresponding to the codeword
length is shown in Fig. 19.3.

As shown in Fig. 19.3, the differential amplifier, with high gain amplifies the
thermal noise generated by the resistor terminated inputs. The output of the amplifier
is the amplified random noise which is input to a comparator which outputs a 1 if the
amplifier output is a positive voltage and a 0 otherwise. This produces 1’s and 0’s
with equal probability at the output of the comparator. The output of the comparator
is clocked into a flip-flop clocked at 1

T , with the same clock source as the shift register
shown in Fig. 19.3, shift register. The output of the flip-flop is a clocked output of truly
random 1’s and 0’s which is input to a nonlinear feedback shift register arrangement.

The output of the flip-flop is input to a modulo 2, adder add which is added to
the outputs of a nonlinear mapping of u selected outputs of the shift register. Which
outputs are to be selected correspond to the key which is being used. The parameter
u is a design parameter, typically equal to 8.

The nonlinear mapping nonlinear mapping shown in Fig. 19.3 has a pseudoran-
dom one-to-one correspondence between each of the 2u input states to each of the 2u

output states. An example of such a one to one correspondence, for u = 4 is given
in Table19.1. For example, the first entry, 0000, value 0 is mapped to 0011, value 3.

The shift register typically has a relatively large number of stages, 64 is a typical
number of stages and a number of tapped outputs, typically 8. The relationship
between the input of the shift register ain and the tapped outputs is usually represented
by the delay operator D. Defining the tap positions as wi, for i = 0 to imax, the input
to the nonlinear mapping nonlinear mapping shown in Fig. 19.3, defined as xi for
i = 0 to imax, is

xi = ainD
wi (19.1)

and the output yj after the mapping function, depicted as M is

yj = M[xi] = M[ainDwi] (19.2)

The input to the shift register is the output of the adder given by the sum of the
random input Rnd and the summed output of the mapped outputs. Accordingly,

19.2 Details of the Encryption System 471

Table 19.1 Example of
nonlinear mapping for u = 4

0000 → 0011

0001 → 1011

0010 → 0111

0011 → 0110

0100 → 1111

0101 → 0001

0110 → 1001

0111 → 1100

1000 → 1010

1001 → 0000

1010 → 1000

1011 → 0010

1100 → 0101

1101 → 1110

1110 → 0100

1111 → 1101

ain = Rnd +
imax∑

j=0

yj = Rnd +
imax∑

j=0

M[xi] = Rnd +
imax∑

j=0

M[ainDwi] (19.3)

It can be seen that the shift register input ain is a nonlinear function of delayed outputs
of itself added to the random input Rnd , and so will be a random binary function.

The positions of the errors are given by the output ofm-bit input shown inFig. 19.3,
an m bit memory register and defined as epos. Consider that the first m outputs of
the shift register are used as the input to m-bit input. The output of m-bit input is a
binary representation of a number given by

epos =
m−1∑

j=0

2j × ainD
j (19.4)

Since ain is a random binary function, epos will be an integer between 0 and
2m − 1 randomly distributed with a uniform distribution. As shown in Fig. 19.3,
these randomly generated integers are stored in memory in error positions buffer
memory after eliminate repeats has eliminated any repeated numbers, since repeated
integers will occur from time to time in any independently distributed random integer
generator.

The random bit errors and bit deletions can only be corrected with the knowledge
of the particular non-binary Goppa code, the private key, which is used in deriv-
ing the codeword generator matrix. Reviewing the background on Goppa codes:
Goppa defined a family of codes [6] where the coordinates of each codeword

472 19 Variations on the McEliece Public Key Cryptoystem

{c0, c1, c2, . . . c2m−1} with {c0 = x0, c1 = x1, c2 = x2, . . . c2m−1 = x2m−1} satisfy
the congruence p(z) modulo g(z) = 0 where g(z) is now known as the Goppa poly-
nomial and p(z) is the Lagrange interpolation polynomial.

Goppa codes have coefficients fromGF(2m) and provided g(z) has no roots which
are elements of GF(2m) (which is straightforward to achieve) the Goppa codes have
parameters (2m, k, 2m − k + 1). Goppa codes can be converted into binary codes.
Provided that g(z) has no roots which are elements of GF(2m) and has no repeated
roots, the binary code parameters are (2m, 2m − mt, dmin) where dmin ≥ 2t + 1, the
Goppa code bound on minimum Hamming distance. Most binary Goppa codes have
equality for the bound and t is the number of correctable errors.

For a Goppa polynomial of degree r, there are r parity check equations defined
from the congruence. Denoting g(z) by

g(z) = grz
r + gr−1z

r−1 + gr−2z
r−2 + · · · + g1z + g0 (19.5)

2m−1∑

i=0

ci
z − αi

= 0 modulo g(z) (19.6)

Since Eq. (19.6) is modulo g(z) then g(z) is equivalent to 0, and we can add g(z) to
the numerator. Dividing each term z − αi into 1 + g(z) produces the following

g(z) + 1

z − αi
= qi(z) + rm + 1

z − αi
(19.7)

where rm is the remainder, an element of GF(2m) after dividing g(z) by z − αi.
As rm is a scalar, g(z) may simply be pre-multiplied by 1

rm
so that the remainder

cancels with the other numerator term which is 1.

g(z)
rm

+ 1

z − αi
= qi(z)

rm
+

rm
rm

+ 1

z − αi
= q(z)

rm
(19.8)

As
g(z) = (z − αi)qi(z) + rm (19.9)

When z = αi, rm = g(αi).
Substituting for rm in Eq. (19.8) produces

g(z)
g(αi)

+ 1

z − αi
= qi(z)

g(αi)
(19.10)

Since g(z)
g(αi)

modulo g(z) = 0
1

z − αi
= qi(z)

g(αi)
(19.11)

19.2 Details of the Encryption System 473

The quotient polynomial qi(z) is a polynomial of degree r−1with coefficients which
are a function of αi and the Goppa polynomial coefficients. Denoting qi(z) as

qi(z) = qi,0 + qi,1z + qi,2z
2 + qi,3z

3 + · · · + qi,(r−1)z
r−1 (19.12)

Since the coefficients of each power of z sum to zero the r parity check equations
are given by

2m−1∑

i=0

ciqi,j
g(αi)

= 0 for j = 0 to r − 1 (19.13)

If the Goppa polynomial has any roots which are elements of GF(2m), say αj, then
the codeword coordinate cj has to be permanently set to zero in order to satisfy
the parity check equations. Effectively the codelength is shortened by the number
of roots of g(z) which are elements of GF(2m). Usually the Goppa polynomial is
chosen to have distinct roots which are not in GF(2m).

The security depends upon the number of bit errors added and in practical exam-
ples to provide sufficient security, it is necessary to use long Goppa codes of length
2048 bits, 4096 bits or longer. For brevity, the procedure will be described using an
example of a binary Goppa code of length 32 bits capable of correcting 4 bit errors. It
is important to note that all binary Goppa codes are derived from non-binary Goppa
codes which are designed first.

In this example, the non-binaryGoppa code consists of 32 symbols from theGalois
field GF(25) and each symbol takes on 32 possible values with the code capable of
correcting two errors. There are 28 information symbols and 4 parity check symbols.
(It should be noted that when the Goppa code is used with information symbols
restricted to binary values as in a binary Goppa code, twice as many errors can
be corrected). The non-binary Goppa code has parameters of a (32, 28, 5) code.
There are 4 parity check symbols defined by the 4 parity check equations and the
Goppa polynomial has degree 4. Choosing arbitrarily as the Goppa polynomial, the
polynomial 1 + z + z4 which has roots only in GF(16) and none in GF(32), we
determine qi(z) by dividing by z − αi.

qi(z) = z3 + αiz
2 + α2

i z + (1 + α3
i) (19.14)

The 4 parity check equations are

31∑

i=0

ci
g(αi)

= 0 (19.15)

31∑

i=0

ciαi

g(αi)
= 0 (19.16)

474 19 Variations on the McEliece Public Key Cryptoystem

31∑

i=0

ciα2
i

g(αi)
= 0 (19.17)

31∑

i=0

ci(1 + α3
i)

g(αi)
= 0 (19.18)

Using the GF(25) Table19.2 to evaluate the different terms for GF(25), the parity
check matrix is

H(32, 28, 5) =

⎡

⎢⎢⎣

1 1 α14 α28 α20 α25 . . . α10

0 1 α15 α30 α23 α29 . . . α9

0 1 α16 α1 α26 α2 . . . α8

1 0 α12 α24 α5 α17 . . . α5

⎤

⎥⎥⎦ (19.19)

To implement the Goppa code as a binary code, the symbols in the parity check
matrix are replaced with their m-bit binary column representations of each respective
GF(2m) symbol. For the (32, 28, 5) Goppa code above, each of the 4 parity symbols
will be represented as a 5-bit symbol from Table19.2. The parity check matrix will
now have 20 rows for the binary code. TheminimumHamming distance of the binary
Goppa code is improved from r + 1 to 2r + 1. Correspondingly, the example binary
Goppa code becomes a (32, 12, 9) code with parity check matrix:

H(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 1 . . . 1
0 0 0 1 0 0 . . . 0
0 0 1 1 1 0 . . . 0
0 0 1 0 1 1 . . . 0
0 0 1 1 0 1 . . . 1
0 1 1 0 1 1 . . . 0
0 0 1 1 1 0 . . . 1
0 0 1 0 1 0 . . . 0
0 0 1 0 1 1 . . . 1
0 0 1 1 0 0 . . . 1
0 1 1 1 1 0 . . . 1
0 0 1 0 1 0 . . . 0
0 0 0 0 1 1 . . . 1
0 0 1 0 0 0 . . . 1
0 0 1 0 1 0 . . . 0
1 0 0 0 1 1 . . . 1
0 0 1 1 0 1 . . . 0
0 0 1 1 1 0 . . . 1
0 0 1 1 0 0 . . . 0
0 0 0 1 0 1 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.20)

19.2 Details of the Encryption System 475

Table 19.2 GF(32) non-zero
extension field elements
defined by 1 + α2 + α5 = 0

α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = α4

α5 = 1 + α2

α6 = α + α3

α7 = α2 + α4

α8 = 1 + α2 + α3

α9 = α + α3 + α4

α10 = 1 + α4

α11 = 1 + α + α2

α12 = α + α2 + α3

α13 = α2 + α3 + α4

α14 = 1 + α2 + α3 + α4

α15 = 1 + α + α2 + α3 + α4

α16 = 1 + α + α3 + α4

α17 = 1 + α + α4

α18 = 1 + α

α19 = α + α2

α20 = α2 + α3

α21 = α3 + α4

α22 = 1 + α2 + α4

α23 = 1 + α + α2 + α3

α24 = α + α2 + α3 + α4

α25 = 1 + α3 + α4

α26 = 1 + α + α2 + α4

α27 = 1 + α + α3

α28 = α + α2 + α4

α29 = 1 + α3

α30 = α + α4

The next step is to turn the parity checkmatrix into reduced echelon form by using
elementary matrix row and column operations so that there are 20 rows representing
20 independent parity check equations for each parity bit. From the reduced echelon
parity check matrix, the generator matrix can be obtained straightforwardly as it is
the transpose of the reduced echelon parity check matrix. The resulting generator
matrix is:

476 19 Variations on the McEliece Public Key Cryptoystem

G(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.21)

It will be noticed that the generator matrix is in reduced echelon form and has 12
rows, one row for each information bit. Each row is the codeword resulting from that
information bit equal to a 1, all other information bits equal to 0.

The next step is to scramble the information bits by multiplying by a k × k non-
singular matrix, that is one that is invertible. As a simple example, the following
12 × 12 matrix is invertible.

NS12×12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 1 1 0 1 0 0 1 1 1
1 0 0 1 1 1 0 1 0 0 1 1
1 1 0 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 1 1 0 1 0 0
0 1 1 1 0 0 1 1 1 0 1 0
0 0 1 1 1 0 0 1 1 1 0 1
1 0 0 1 1 1 0 0 1 1 1 0
0 1 0 0 1 1 1 0 0 1 1 1
1 0 1 0 0 1 1 1 0 0 1 1
1 1 0 1 0 0 1 1 1 0 0 1
1 1 1 0 1 0 0 1 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.22)

The above is invertible using the following matrix:

NS−1
12×12 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.23)

19.2 Details of the Encryption System 477

The next step is to scramble the generator matrix with the non-singular matrix to pro-
duce the scrambled generator matrix given below. The code produced with this gen-
erator matrix has the same codewords as the generator matrix given bymatrix (19.21)
and can correct the same number of errors but there is a different mapping to code-
words from a given information bit pattern.

SG(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1
1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0
1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0
1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.24)

It may be seen that, for example, the first row of this matrix is the modulo 2 sum of
rows 1, 2, 3, 5, 8, 9 and 10 of matrix (19.21) in accordance with the non-singular
matrix (19.22).

The final step in producing the public key generatormatrix for the codewords from
the message vectors is to permute the columns of the matrix above. Any permutation
may be randomly chosen. For example we may use the following permutation:

27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.25)

so that for example column 0 of matrix (19.24) becomes column 24 of the per-
muted generator matrix and column 31 of matrix (19.24) becomes column 29 of the
permuted generator matrix. The resulting, permuted generator matrix is given below.

PSG(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1
0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1
0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0
1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1
1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1
0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1
0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.26)

With this particular example of the Goppa code, the message needs to be split into
message vectors of length 12 bits, adding padding bits as necessary so that there is
an integral number of message vectors. As a simple example of a plaintext message,
consider that the message consists of a single message vector with the information
bit pattern:

478 19 Variations on the McEliece Public Key Cryptoystem

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}

Starting with an all 0’s vector, where the information bit pattern is 1, the correspond-
ing row from the permuted, scrambled matrix, matrix (19.26) with the same position
is added modulo 2 to the result so far to produce the codeword which will form the
digital cryptogram plus added random errors. In this example, this codeword is gen-
erated from adding modulo 2, rows 2, 4, 5, 6 and 12 from the permuted, scrambled
matrix, matrix (19.26) to produce:

0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1
+ +
0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1
+ +
0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0
+ +
1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0
+ +
1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0
� �

0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0

(19.27)

The resulting codeword is:

{0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0}

This Goppa code can correct up to 4 errors, (t = 4), so a random number is chosen
for the number of bits to be in error (s) and 2(t−s) bits are deleted from the codeword
in pre-determined positions. The pre-determined positions may be given by a secret
key, a position vector, known only to the originator and intended recipient of the
cryptogram. It may be included as part of the public key, or may be contained in a
previous cryptogram sent to the recipient. An example of a position vector, which
defines the bit positions to be deleted is:

{19, 3, 27, 17, 8, 30, 11, 15, 2, 5, 19, . . . , 25}.

The notation being, for example, that if there are 2 bits to be deleted, the bit positions
to be deleted are the first 2 bit positions in the position vector, 19 and 3. As well as
the secret key, the position vector, the recipient needs to know the number of bits
deleted, preferably with the information provided in a secure way. One method is
for the message vector to contain, as part of the message, a number indicating the
number of errors to be deleted in the next codeword, the following codeword (not
the current codeword); the first codeword having a known, fixed number of deleted
bits.

The number of bit errors and the bit error positions are randomly chosen to be
in error. A truly random source such as a thermal noise source as described above
produces the most secure results, but a pseudorandom generator can be used instead,
particularly, if seeded from the time of day with a fine time resolution such as 1ms. If

19.2 Details of the Encryption System 479

the number of random errors chosen is too few, the security of the digital cryptogram
will be compromised. Correspondingly, the minimum number of errors chosen is a
design parameter depending upon the length of the Goppa code and t, the number
of correctable errors. A suitable choice for the minimum number of errors chosen in
practice lies between t

2 and 3t
4 .

For the example above, consider that the number of bit errors is 2 and these are
randomly chosen to be in positions 7 and 23 (starting the position index from 0). The
bits in these positions in the codeword are inverted to produce the result:

{0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}.

As there are 2 bits in error, 4 bits (2(t − s) = 2(4 − 2)) may be deleted. Using the
position vector example above, the deleted bits are in positions {19, 3, 27 and 17}
resulting in 28 bits,

{0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0}.

This vector forms the digital cryptogram which is transmitted or stored depending
upon the application.

The intended recipient of this cryptogram retrieves themessage in a series of steps.
Figure19.4 shows the decryption system. The retrieved cryptogram is formatted into
corrupted codewords by format into corrupted codewords shown in Fig. 19.4. In the
formatting process, the number of deleted bits in each codeword is determined from
the retrieved length of each codeword. The next step is to insert 0’s in the deleted bit
positions so that each corrupted codeword is of the correct length. This is carried out
using fill erased positionswith 0’s as input, the position vector stored in a buffermem-
ory as position vector in Fig. 19.4 and the number of deleted (erased) bits from for-
mat into corrupted codewords. For the example above, the recipient first receives or
otherwise retrieves the cryptogram {0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0}.
Knowing the number of deleted bits and their positions, the recipient inserts 0’s in
positions {19, 3, 27 and 17} to produce:

{0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}n

cryptogram
 input

 private
 key

 permute
 bits

 format
message

descramble
 message
 vectors

 format into
corrupted codewords

errors and erasures
 correction

fill erased bit
positions with
 0’s

position
vector

Fig. 19.4 Private key decryption system with s random bit errors and 2(t − s) bit deletions

480 19 Variations on the McEliece Public Key Cryptoystem

The private key contains the information of which Goppa code was used, the
inverse of the non-singular matrix used to scramble the data and the permutation
applied to codeword symbols in constructing the public key generator matrix. This
information is stored in private key in Fig. 19.4.

For the example, the private key is used to undo the permutation applied to code-
word symbols by applying the following permutation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10

(19.28)

so that, for example, bit 24 becomes bit 0 after permutation and bit 27 becomes bit
31 after permutation. The resulting, corrupted codeword is:

{0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1}

The permutation is carried out by permute bits shown in Fig. 19.4.
The next step is to treat the bits in the corrupted codeword asGF(25) symbols and

use the parity check matrix, matrix (19.19), from the private key to calculate the syn-
dromevalue for each rowof the parity checkmatrix to produceα28, α7, α13, andα19.
This is carried out by an errors and erasures decoder as a first step in correcting the
errors and erasures. The errors and erasures are corrected by errors and erasures
correction, which knows the positions of the erased bits from fill erased positions
with 0’s shown in Fig. 19.4.

In the example, the errors and erasures are corrected using the syndrome values
to produce the uncorrupted codeword. There are several published algorithms for
errors and erasures decoding [1, 13, 16]. Using, for example, the method described
by Sugiyama [16], the uncorrupted codeword is obtained:

{1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1}

The scrambled information data is the first 12 bits of this codeword:

{1 0 0 0 1 0 0 1 1 1 0 0}

The last step is to unscramble the scrambled data using matrix (19.23) to produce
the original message after formatting the unscrambled data:

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}

In Fig. 19.4, descramble message vectors take as input the matrix which is the inverse
of the non-singular matrix stored in private key and output the descramble message
vectors to format message.

19.2 Details of the Encryption System 481

In practice, much longer codes of length n would be used than described above.
Typically n is set equal to 1024, 2048, 4096 bits or longer. Longer codes are more
secure but the public key is larger and encryption and decryption take longer time.

Consider an example with n = 1024, correcting t = 60 bit errors with a randomly
chosen irreducible Goppa polynomial of degree 60, say, g(z) = 1+z+z2+z23+z60.

Setting the number of inserted bit errors s as a randomly chosen number from 40
to 60, the number of deleted bits correspondingly, is 2(t − s), ranging from 40 to 0
and the average codeword length is 994 bits. There are 9.12×1096 different bit error
combinations providing security, against naive brute force decoding, equivalent to a
random key of length 325 bits. Themessage vector length is 424 bits per codeword of
which 6 bits may be assigned to indicate the number of deleted bits in the following
codeword. It should be noted that there are more effective attacks than brute force
decoding as discussed in Sect. 19.5.

As another example with n = 2048 and correcting t = 80 bit errors with a
randomly chosen irreducible Goppa polynomial of degree 80, an example being
g(z) = 1 + z + z3 + z17 + z80.

Setting the number of inserted bit errors s as a randomly chosen number from 40
to 80, the number of deleted bits correspondingly, is 2(t−s), ranging from 80 to 0 and
the average codeword length is 2008 bits. There are 2.45 × 10144 different bit error
combinations providing security, against naive brute force decoding, equivalent to a
random key of length 482 bits. The message vector length is 1168 bits per codeword
ofwhich 7 bitsmay be assigned to indicate the number of deleted bits in the following
codeword.

In a hybrid arrangement where the sender and recipient share secret information,
additional bits in error may be deliberately added to the cryptogram using a secret
key, the position vector to determine the positions of the additional error bits. The
number of additional bits in error is randomly chosen between 0 and n − 1. The
recipient needs to know the number of additional bits in error (as well as the position
vector), preferably with this information provided in a secure way. One method is for
the message vector to contain, as part of the message, the number of additional bits in
error in the next codeword that is the following codeword (not the current codeword).
It is arranged that the first codeword has a known, fixed number of additional bits in
error.

As each corrupted codeword contains more than t bits in error, it is theoreti-
cally impossible, even with the knowledge of the private key to recover the original
codewords free from errors and to determine the unknown bits in the deleted bit posi-
tions. It should be noted that this arrangement defeats attacks based on information
set decoding, which is discussed later. The system is depicted in Fig. 19.5.

This encryption arrangement is as shown in Fig. 19.1 except that the system
accommodates additional errors added by generate additional errors shown in
Fig. 19.5 using a random integer generator between 0 and n−1 generated by generate
random number of additional errors. Any suitable random integer generator may be
used. For example, the random integer generator design shown in Fig. 19.2 may be
used with the number of shift register stages p now set equal to m, where n = 2m.

482 19 Variations on the McEliece Public Key Cryptoystem

message input
format into
message vectors

add

 generate
random errors

position vector

 format
cryptogram

generate number of
random errors (s)

delete
 bits

encode
using
public key

2(t-s) erasures

 generate random
number of additional
 errors

 generate additional
 errors

public key

Fig. 19.5 Public key encryption systemwith s random bit errors, 2(t−s) bit deletions and a random
number of additional errors

Additional errors may be added in the same positions as random errors, as this
provides for a simpler implementation or may take account of the positions of the
random errors. However, there is no point in adding additional bit errors to bits which
will be subsequently deleted.

As shown in Fig. 19.5, the number of additional errors is communicated to the
recipient as part of themessage vector in the preceding codewordwith the information
included with the message. This is carried out by format into message vectors shown
in Fig. 19.5. In this case, usually 1 or 2 more message vectors in total will be required
to convey the information regarding numbers of additional errors and the position
vector (if this has not been already communicated to the recipient). Clearly, there
are alternative arrangements to communicate the numbers of additional errors to the
recipient such as using a previously agreed sequence of numbers or substituting a
pseudorandom number generator for the truly random number generator (generate
random number of additional errors shown in Fig. 19.5) with a known seed.

Using the previous example above, with the position vector:

{19, 3, 27, 17, 8, 30, 11, 15, 2, 5, 19, . . . , 25}

The errored bits are in positions 7 and 23 (starting the position index from 0) and
the deleted bits are in positions {19, 3, 27 and 17}. The encoded codeword prior to
corruption is:

{0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0}

The number of additional bits in error is randomly chosen to be 5, say. As the first 4
positions (index 0–3) in the position vector are to be deleted bits, starting from index
4, the bits in codeword positions {8, 30, 11, 15, and 2} are inverted in addition to
the errored bits in positions 7 and 23. The 32 bit corrupted codeword is produced:
{0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0}.

19.2 Details of the Encryption System 483

The bits in positions {19, 3, 27 and 17} are deleted to produce the 28 bit corrupted
codeword:

{0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0}

The additional bits in error are removed by the recipient of the cryptogram prior to
errors and erasures correction as shown in Fig. 19.6. The number of additional bits in
error in the following codewords is retrieved from the descrambled message vectors
by format message shown in Fig. 19.6 and input to number of additional errorswhich
outputs this number to generate additional errors which is the same as in Fig. 19.5.
The position vector is stored in a buffer memory in position vector and outputs this to
generate additional errors. Each additional error is corrected by the adder add, shown
in Fig. 19.6, which adds, modulo 2, a 1 which is output from generate additional
errors in the same position of each additional error. Retrieval of the message from
this point follows correction of the errors and erasures, descrambling and formatting
as described for Fig. 19.5.

Using the number of deleted bits and the position vector, 0’s are inserted in the
deleted bit positions to form the 32 bit corrupted codeword:

{0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0}

After the addition of the output from generate additional errors the bits in positions
{8, 30, 11, 15, and 2} are inverted, thereby correcting the 5 additional errors to form
the less corrupted codeword:

{0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}

As in the first approach, this corrupted codeword is permuted, the syndromes calcu-
lated and the errors plus erasures corrected to retrieve the original message:

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}

cryptogram
 input

 format into
corrupted codewords

 generate additional
 errors

 private
 key

 permute
 bits

 format
message

descramble
 message
 vectors

errors and erasures
 correction

number of additional
 errors

fill erased bit
positions with
 0’s

position
vector

add

Fig. 19.6 Private key decryption system with s random bit errors, 2(t − s) bit deletions and a
random number of additional errors

484 19 Variations on the McEliece Public Key Cryptoystem

SHA-256
hash functionmessage

vector

m bit
input

position vector
buffer memory

non linear
mapping

add

select taps

eliminate
repeats

shift register

Fig. 19.7 Position vector generated by hash of message vector and nonlinear feedback shift register

In a further option, the position vector, instead of being a static vector, may
be derived from a cryptographic hash of a previous message vector. Any standard
cryptographic hash function may be used such as SHA-256 [11] or SHA-3 [12] as
shown in Fig. 19.7. The message vector of length k bits is hashed using SHA-256 or
SHA-3 to produce a binary hash vector of length 256 bits.

For example, the binary hash vector may be input to a nonlinear feedback shift
register consisting of shift register having p stages, typically 64 stages with outputs
determined by select taps enabling different scrambling keys to be used by selecting
different outputs. The nonlinear feedback shift register arrangement to produce a
position vector in error positions buffer memory is the same as that of Fig. 19.3
whose operation is described above.

As the hash vector is clocked into the nonlinear feedback shift register of Fig. 19.7,
a derived position vector is stored in error positions buffer memory, and used for
encrypting the message vector as described above. The current message vector is
encrypted using a position vector derived from the hash of the previous message
vector. As the recipient of the cryptogram has decrypted the previous message vec-
tor, the recipient of the cryptogram can use the same hash function and nonlinear
feedback shift register to derive the position vector in order to decrypt the current
corrupted codeword. There are a number of arrangements that may be used for the
first codeword. For example, a static position vector, known only to the sender and
recipient of the cryptogram could be used or alternatively a position vector derived
from a fixed hash vector known only to the sender and recipient of the cryptogram
or the hash of a fixed message known only to the sender and recipient of the cryp-
togram. A simpler arrangement may be used where the shift register has no feedback
so that the position vector is derived directly from the hash vector. In this case the
hash function needs to produce a hash vector ≥n, the length of the codeword.

As discussed earlier, the original McEliece system is vulnerable to chosen-
plaintext attacks. If the same message is encrypted twice, the difference between
the two cryptograms is just 2t bits or less, the sum of the two error patterns. This
vulnerability is completely solved by encrypting or scrambling the plaintext prior to
the McEliece system, using the error pattern as the key. To do this, the random error
pattern needs to be generated first before the codeword is constructed by encoding
with the scrambled generator matrix.

19.2 Details of the Encryption System 485

This scrambler which is derived from the error vector, for each message vector,
may be implemented in a number of ways. The message vector may be scrambled
by multiplying by a k × k non-singular matrix derived from the error vector.

Alternatively, themessage vectormaybe scrambled by treating themessage vector
as a polynomial m1(x) of degree k − 1 and multiplying it by a circulant polynomial
p1(x) modulo 1 + xk which has an inverse [7]. The circulant polynomial p1(x) is
derived from the error vector. Denoting the inverse of the circulant polynomial p1(x)
as q1(x) then

p1(x)q1(x) = 1modulo 1 + xk (19.29)

Accordingly the scrambled message vector is m1(x)p1(x) which is encoded into a
codeword using the scrambled generator matrix. Each message vector is scrambled
in a different way as the error patterns are random and different from corrupted
codeword to corrupted codeword. The corrupted codewords form the cryptogram.

On decoding of each codeword, the corresponding error vector is obtained with
retrieval of the scrambled message vector. Considering the above example, the circu-
lant polynomial p1(x) is derived from the error vector and the inverse q1(x) is calcu-
lated using Euclid’s method [7] from p1(x). The original message vector is obtained
by multiplying the retrieved scrambled message vectorm1(x)p1(x) by p1(x) because

m1(x)p1(x)q1(x) = m1(x)modulo 1 + xk (19.30)

Another method of scrambling each message vector using a scrambler derived
from the error vector is to use two nonlinear feedback shift registers as shown in
Fig. 19.8. The first operation is for the error vector, which is represented as a s-bit
sequence is input to a modulo 2 adder add whose output is input to shift register A as
shown in Fig. 19.8. The nonlinear feedback shift registers are the same as in Fig. 19.3
with operation as described above but select tapswill usually have a different setting
and nonlinear mapping also will usually have a different mapping, but this is not
essential. After clocking the s-bit error sequence into the nonlinear feedback shift
register, shift register A shown in Fig. 19.8 will essentially contain a random binary
vector. This vector is used by define taps to define which outputs of shift register B
are to be input to nonlinear mapping B whose outputs are added modulo 2 to the
message vector input to form the input to shift register B shown in Fig. 19.8. The
scrambling of the message vector is carried out by a nonlinear feedback shift register
whose feedback connections are determined by a random binary vector derived from
the error vector, the s-bit error sequence.

The corresponding descrambler is shown in Fig. 19.9. Following decoding of
each corrupted codeword, having correcting the random errors and bit erasures, the
scrambled message vector is obtained and the error vector is in the form of the s-bit
error sequence. As in the scrambler, the s bit error sequence is input to a modulo
2 adder add whose output is input to shift register A as shown in Fig. 19.9. After
clocking the s-bit error sequence into the nonlinear feedback shift register, shift
register A shown in Fig. 19.9 will contain exactly the same binary vector as shift
register A of Fig. 19.8. Consequently, exactly the same outputs of shift register B to

486 19 Variations on the McEliece Public Key Cryptoystem

add
message vector

 s bit
error sequence

non linear
mapping

add

scrambled
message vector

non linear
mapping B

select taps

shift register B

define taps

shift register A

Fig. 19.8 Message vector scrambling by nonlinear feedback shift register with taps defined by s-bit
error pattern

 s bit
error sequence

non linear
mapping

add

non linear
mapping B

add

descrambled
message vector

 scrambled
message vector

select taps

shift register B

define taps

shift register A

Fig. 19.9 Descrambling independently each scrambledmessage vector by nonlinear feedback shift
register with taps defined by s-bit error pattern

be input to non linearmapping Bwill be defined by define taps.Moreover, comparing
the input of shift register B of the scrambler Fig. 19.8 to the input of shift register B
of the descrambler Fig. 19.9 it will be seen that the contents are identical and equal
to the scrambled message vector.

19.2 Details of the Encryption System 487

Consequently, the same selected shift register outputs will be identical and with
the same nonlinear mapping nonlinear mapping B the outputs of nonlinear mapping
B in Fig. 19.9 will be identical to those that were the outputs of nonlinear mapping B
in Fig. 19.8. The result of the addition of these outputs modulo 2 with the scrambled
message vector is to produce the original message vector at the output of add in
Fig. 19.9.

This is carried out for each scrambled message vector and associated error vector
to recover the original message.

In some applications, a reduced size cryptogram is essential perhaps due to limited
communications or storage capacity. For these applications, a simplification may be
used in which the cryptogram consists of only one corrupted codeword containing
random errors, the first codeword. The following codewords are corrupted by only
deleting bits. The number of deleted bits is 2t bits per codeword using a position
vector as described above.

For example, with n = 1024, and the Goppa code correcting t = 60 bit errors,
there are 2t bits deleted per codeword so that apart from the first corrupted codeword,
each corrupted codeword is only 904 bits long and conveys 624 message vector bits
per corrupted codeword.

A similar approach is to hash the error vector of the first corrupted codeword
and use this hash value as the key of a symmetric encryption system such as the
Advanced Encryption Standard (AES) [10] and encrypt any following information
this way. Effectively, this is AES encryption operating with a random session key
since the error pattern is chosen randomly as in the classic, hybrid encryption system.

19.3 Reducing the Public Key Size

In the originalMcEliece system, the public key is the k×n generatormatrixwhich can
be quite large. For example with n = 2048 and k = 1148, the generator matrix needs
to be representedby1148×2048 = 2.35×106 bits.Representing the generatormatrix
in reduced echelon form reduces the generatormatrix to k×(n−k) = 1.14×106 bits.
In the n = 32 example above, the generatormatrix is the 12×32matrix,PSG(32, 12, 9),
given by Eq. (19.26). Rows of this matrix may be added together using modulo 2
arithmetic so as to produce a matrix with k independent columns. This matrix is a
reduced echelon matrix, possibly permuted to obtain k independent columns, and
may be straightforwardly derived by using the Gauss–Jordan variable elimination
procedure. With permutations, there are a large number of possible solutions which
may be derived and candidate column positions may be selected, either initially in
consecutive order to determine a solution, or optionally, selected in random order to
arrive at other solutions.

Consider as an example the first option of selecting candidate column positions
in consecutive order. For the PSG(32, 12, 9) matrix (19.26), the following permuted
reduced echelon generator matrix is produced:

488 19 Variations on the McEliece Public Key Cryptoystem

PSGR(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.31)

The permutation defined by the following input and output bit position sequences is
used to rearrange the columns of the permuted, reduced echelon generator matrix.

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.32)

This permutation produces a classical reduced echelon generator matrix [7], denoted
as Q(32, 12, 9):

Q(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.33)

Codewords generated by this matrix are from a systematic code [7] with the first
12 bits being information bits and the last 20 bits being parity bits. Correspond-
ingly, the matrix above,Q(32, 12, 9) consists of an identity matrix followed by a matrix
denoted as QT(32, 12, 9) which defines the parity bits part of the generator matrix.
The transpose of this matrix is the parity check matrix of the code [7]. As shown in
Fig. 19.10, the public key consists of the parity check matrix, less the identity sub-
matrix, and a sequence of n numbers representing a permutation of the codeword bits
after encoding. By permuting the codewords with the inverse permutation, the result-
ing permuted codewords will be identical to codewords produced by PSG(32, 12, 9),
the public key of the original McEliece public key system [8]. However, whilst the
codewords are identical, the information bits will not correspond.

The permutation is defined by the following input and output bit position
sequences.

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.34)

19.3 Reducing the Public Key Size 489

scramble k bit
message vectors

 generate
random errors

format into k bit
message vectors

message input

 format
cryptogram

assemble n bit codewords
from n-k parity bits
and k message bits

public key

encode parity
bits using
public key

parity check
 matrix

generate number of
random errors (s)

add

permutation
sequence

Fig. 19.10 Reduced size public key encryption system

As the output bit position sequence is just a sequence of bits in natural order, the
permutation may be defined only by the input bit position sequence.

In this case, the public key consists of an n position permutation sequence and in
this example the sequence chosen is:

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (19.35)

and the k × (n− k) matrix,QT(32, 12, 9), which in this example is the 12× 20 matrix:

QT(32, 12, 9) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19.36)

The public key of this system is much smaller than the public key of the original
McEliece public key system, since as discussed below, there is no need to include
the permutation sequence in the public key.

490 19 Variations on the McEliece Public Key Cryptoystem

The message is split into message vectors of length 12 bits adding padding bits
as necessary so that there is an integral number of message vectors. Each message
vector, after scrambling, is encoded as a systematic codeword usingQT(32, 12, 9), part
of the public key. Each systematic codeword that is obtained is permuted using the
permutation (19.35), the other part of the public key. The resulting codewords are
identical to codewords generated using the generator matrixPSG(32, 12, 9) (19.26), the
corresponding public key of the original McEliece public key system, but generated
by different messages.

It should be noted that it is not necessary to use the exact permutation sequence
that produces codewords identical to that produced by the original McEliece public
key system for the same Goppa code and input parameters. As every permutation
sequence has an inverse permutation sequence, any arbitrary permutation sequence,
randomly generated or otherwise, may be used for the permutation sequence part
of the public key. The permutation sequence that is the inverse of this arbitrary
permutation sequence is absorbed into the permutation sequence used in decryption
and forms part of the private key. The security of the system is enhanced by allowing
arbitrary permutation sequences to be used and permutation sequences do not need
to be part of the public key.

The purpose of scrambling each message vector using the fixed scrambler shown
in Fig. 19.10 is to provide a one-to-one mapping between the 2k possible message
vectors and the 2k scrambled message vectors such that the reverse mapping, which
is provided by the descrambler, used in decryption, produces error multiplication if
there are any errors present. For many messages, some information can be gained
even if the message contains errors. The scrambler and corresponding descrambler
prevents information being gained this way from the cryptogram itself or by means
of some error guessing strategy for decryption by an attacker. The descrambler is
designed to have the property that it produces descrambled message vectors that
are likely to have a large Hamming distance between vectors for input scrambled
message vectors which differ in a small number of bit positions.

There are a number of different techniques of realising such a scrambler and
descrambler. One method is to use symmetric key encryption such as the Advanced
Encryption Standard (AES) [10] with a fixed key.

An alternative means is provided by the scrambler arrangement shown in
Fig. 19.11. The same arrangement may be used for descrambling but with differ-
ent shift register taps and is shown in Fig. 19.12. Denoting each k bit message vector
as a polynomial m(x) of degree k − 1:

m(x) = m0 + m1x + m2x
2 + m3x

3 · · · + mk−1x
k−1 (19.37)

and denoting the tap positions determined by define taps of Fig. 19.11 byμ(x)where

μ(x) = μ0 + μ1x + μ2x
2 + μ3x

3 · · · + μk−1x
k−1 (19.38)

where the coefficients μ0 through to μk−1 have binary values of 1 or 0.

19.3 Reducing the Public Key Size 491

scrambled
message vector

shift register B
 with k stages

message
 vector

define taps

shift register A
 with k stages

add

Fig. 19.11 Scrambler arrangement

descrambled
output vector

shift register B
 with k stages

input
vector

define taps

shift register A
 with k stages

add

Fig. 19.12 Descrambler arrangement

The output of the scrambler, denoted by the polynomial, scram(x), is the scram-
bled message vector given by the polynomial multiplication

scram(x) = m(x).μ(x) modulo (1 + xk) (19.39)

The scrambled message vector is produced by the arrangement shown in Fig. 19.11
after shift register A with k stages and shift register B with k stages have been clocked
2k times and is present at the input of shift register B with k stages whose last stage
output is connected to the adder, adder input. The input of shift register B with k
stages corresponds to the scrambled message vector for the next additional k clock
cycles, with these bits defining the binary coefficients of scram(x). The descrambler
arrangement is shown in Fig. 19.12 and is an identical circuit to that of the scrambler
but with different tap settings. The descrambler is used in decryption.

For k = 12 an example of a good scrambler polynomial, μ(x) is

μ(x) = 1 + x + x4 + x5 + x8 + x9 + x11 (19.40)

For brevity, the binary coefficients may be represented as a binary vector. In this
example, μ(x) is represented as {1 1 0 0 1 1 0 0 1 1 0 1}. This is a good scrambler

492 19 Variations on the McEliece Public Key Cryptoystem

polynomial because it has a relatively large number of taps (seven taps) and its
inverse, the descrambler polynomial also has a relatively large number of taps (seven
taps). The corresponding descrambler polynomial, θ(x) is

θ(x) = 1 + x + x3 + x4 + x7 + x8 + x11 (19.41)

which may be represented by the binary vector {1 1 0 1 1 0 0 1 1 0 0 1}. It is straight-
forward to verify that

μ(x) × θ(x) = 1 + x2 + x3 + x4 + x5 + x6 + x8 + x10

+ x14 + x15 + x16 + x17 + x18 + x20 + x22

= 1 modulo (1 + xk)
(19.42)

and so
scram(x) × θ(x) = m(x) modulo (1 + xk) (19.43)

As a simple example of a message, consider that the message consists of a single
message vector with the information bit pattern {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1} and
so:

m(x) = x + x3 + x11 (19.44)

This is input to the scrambling arrangement shown in Fig. 19.11. The scrambled
message output is scram(x) = m(x) × μ(x) given by

scram(x) = (1 + x + x4 + x5 + x8 + x9 + x11).(x + x3 + x5 + x11)
= x + x2 + x5 + x6 + x9 + x10 + x12

+ x3 + x4 + x7 + x8 + x11 + x12 + x14

+ x11 + x12 + x15 + x16 + x19 + x20 + x22

modulo (1 + x12)
= 1 + x + x5 + x6 + x9

(19.45)

and the scrambling arrangement shown in Fig. 19.11 produces the scrambledmessage
bit pattern {1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0}.

Referring to Fig. 19.10, the next stage is to use the parity check matrix part of
the public key to calculate the parity bits from the information bits. Starting with
an all 0’s vector, where the information bit pattern is a 1, the corresponding row
from QT(32, 12, 9) (19.36) with the same position is added modulo 2 to the result so
far to produce the parity bits which with the information bits will form the digital
cryptogram plus added random errors after permuting the order of the bits. In this
example, this codeword is generated from adding modulo 2, rows 1, 2, 6, 7 and 10
of QT(32, 12, 9) to produce:

19.3 Reducing the Public Key Size 493

0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
+ + + + + + + + + + + + + + + + + + + +
1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
+ + + + + + + + + + + + + + + + + + + +
0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
+ + + + + + + + + + + + + + + + + + + +
1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
+ + + + + + + + + + + + + + + + + + + +
1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
� � � � � � � � � � � � � � � � � � � �

1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1

(19.46)

The resulting systematic code, codeword is:

{1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1}

The last step in constructing the final codeword which will be used to construct
the cryptogram is to apply an arbitrary preset permutation sequence. Referring to
Fig. 19.10, the operation assemble n bit codewords from n-k parity bits and kmessage
bits simply takes each codeword encoded as a systematic codeword and applies the
preset permutation sequence.

In this example, the permutation sequence that is used is not chosen arbitrarily
but is the permutation sequence that will produce the same codewords as the original
McEliece public key system for the same Goppa code and input parameters. The
permutation sequence is:

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (19.47)

The notation is that the 10th bit should move to the 12th position, the 11th bit
should move to the 14th position, the 12th bit should move to the 10th position,
the 13th bit should move to the 11th position, the 14th bit should move to the 13th
position and all other bits remain in their same positions.

Accordingly, the permuted codeword becomes:

{1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1}

and this will be the input to the adder, add of Fig. 19.1.
The Goppa code used in this example can correct up to 4 errors, (t = 4), and a

random number is chosen for the number of bits to be in error, (s) with s ≤ 4.
A truly random source such as a thermal noise source as described above pro-

duces the most secure results, but a pseudorandom generator can be used instead,
particularly if seeded from the time of day with fine time resolution such as 1mS. If
the number of random errors chosen is too few, the security of the digital cryptogram
will be compromised. Correspondingly, the minimum number of errors chosen is a
design parameter depending upon the length of the Goppa code and t, the number
of correctable errors. A suitable choice for the minimum number of errors chosen in
practice lies between t

2 and t. If the cryptogram is likely to be subject to additional

494 19 Variations on the McEliece Public Key Cryptoystem

errors due to transmission over a noisy or interference prone medium such as wire-
less, or stored and read using an imperfect reader such as in barcode applications,
then these additional errors can be corrected as well as the deliberately introduced
errors provided the total number of errors is no more than t errors.

For such applications typically the number of deliberate errors is constrained to
be between t

3 and 2t
3 .

For the example above, consider that the number of bit errors is 3 and these are
randomly chosen to be in positions 4, 11 and 27 (starting the position index from 0).
The bits in these positions in the codeword are inverted to produce the result

{1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1}

The dcryptogram is this corrupted codeword, which is transmitted or stored depend-
ing upon the application.

The intended recipient of this cryptogram retrieves the message in a series of
steps. Figure19.13 shows the system used for decryption. The retrieved cryptogram
is formatted into corrupted codewords by format into corrupted codewords shown
in Fig. 19.4. For the example above, the recipient first receives or otherwise retrieves
the cryptogram, which may contain additional errors.

{1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1}.

It is assumed in this example that no additional errors have occurred although with
this particular example one additional error can be accommodated.

The private key contains the information of which Goppa code was used and a
first permutation sequence which when applied to the retrieved, corrupted codewords
which make up the cryptogram produces corrupted codewords of the Goppa code
with the bits in the correct order. Usually, the private key also contains a second

 private
 key

error correction
 decoder

 format into
corrupted codewords

 format
message

descramble
information
 bits

permute corrupted
codeword bitscryptogram

 input

 permute
codeword bits

Fig. 19.13 Private key decryption system

19.3 Reducing the Public Key Size 495

permutation sequence which when applied to the error-corrected Goppa codewords
puts the scrambled information bits in natural order. Sometimes the private key also
contains a third permutation sequence which when applied to the error vectors found
in decoding the corrupted corrected Goppa codewords puts the bit errors in the same
order that theywerewhen inserted during encryption. All of this information is stored
in private key in Fig. 19.13. Other information necessary to decrypt the cryptogram,
such as the descrambler required may also be stored in the private key or be implicit.

There are two permutation sequences stored as part of the private key and the
decryption arrangement is shown in Fig. 19.13. The corrupted codewords retrieved
from the received or read cryptogram are permuted with a first permutation sequence
which will put the bits in each corrupted codeword in the same order as the Goppa
codewords. In this example, the first permutation sequence stored as part of the
private key is:

24 11 3 23 2 17 20 8 13 30 31 14 15 22 7 1 9 6 21 4 10 5 28 26 19 16 25 0 27 12 18 29 (19.48)

This defines the following permutation input and output sequences:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10

(19.49)

so that for example bit 23 becomes bit 3 after permutation and bit 30 becomes bit 9
after permutation. The resulting, permuted corrupted codeword is:

{1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0}

The permutation is carried out by permute corrupted codeword bits shown in
Fig. 19.13 with the first permutation sequence input from private key.

Following the permutation of each corrupted codeword, the codeword bits are
in the correct order to satisfy the parity check matrix, matrix (19.19) if there were
no codeword bit errors. (In this case all of the syndrome values would be equal
to 0). The next step is to treat each bit in each permuted corrupted codeword as a
GF(25) symbolwith a 1 equal toα0 and a 0 equal to 0 and use the parity checkmatrix,
matrix (19.19), stored as part of private key to calculate the syndrome values for each
row of the parity check matrix. The syndrome values produced in this example, are
respectively α30, α27, α4, andα2. In Fig. 19.13 error-correction decoder calculates
the syndromes as a first step in correcting the bit errors.

The bit errors are corrected using the syndrome values to produce an error free
codeword from the Goppa code for each permuted corrupted codeword. There
are many published algorithms for correcting bit errors for Goppa codes, but the
most straightforward is to use a BCH decoder as described by Retter [13] because
Berlekamp–Massey may then be used to solve the key equation. After decoding, the
error free permuted codeword is obtained:

496 19 Variations on the McEliece Public Key Cryptoystem

{1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0}

and the error pattern, defined as a 1 in each error position is

{0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0}.

As shown in Fig. 19.13 permute codeword bits takes the output of error-correction
decoder and applies the second permutation sequence stored as part of the private
key to each corrected codeword.

Working through the example, consider that the following permutation input and
output sequences is applied to the error free permuted codeword (the decoded code-
word of the Goppa code).

27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.50)

The result is that the scrambled message bits correspond to bit positions:

{0 1 2 3 4 5 6 7 8 9 12 14}

from the encryption procedure described above. The scrambled message bits may be
repositioned in bit positions:

{0 1 2 3 4 5 6 7 8 9 10 11}

by absorbing the required additional permutations into a permutation sequence
defined by the following permutation input and output sequences:

27 15 4 2 19 21 17 14 7 16 29 11 20 8 1 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.51)

The second permutation sequence which corresponds to this net permutation and
which is stored as part of the private key, private key shown in Fig. 19.13 is:

24 14 3 23 2 17 20 8 13 30 31 11 15 22 7 1 9 6 21 4 12 5 28 26 19 16 25 0 27 10 18 29 (19.52)

The second permutation sequence is applied by permute codeword bits. Since
the encryption and decryption permutation sequences are all derived at the same
time in forming the public key and private key from the chosen Goppa code, it is
straightforward to calculate and store the net relevant permutation sequences as part
of the private key.

19.3 Reducing the Public Key Size 497

Continuing working through the example, applying the second permutation
sequence to the error free permuted codeword produces the output of permute code-
word bits. The first 12 bits of the resultwill be the binary vector, {1 1 0 0 0 1 1 0 0 1 0 0}
and it can be seen that this is identical to the scrambled message vector produced
from the encryption operation. Represented as a polynomial the binary vector is
1 + x + x5 + x6 + x9.

As shown in Fig. 19.13, the next step is for the k information bits of each per-
muted error free codeword to be descrambled by descramble information bits.
In this example, descramble information bits is carried out by the descrambler
arrangement shown in Fig. 19.12 with define taps corresponding to polynomial
1 + x + x3 + x4 + x7 + x8 + x11.

The output of the descrambler in polynomial form is (1+ x + x5 + x6 + x9).(1+
x + x3 + x4 + x7 + x8 + x11) modulo 1 + x12. After polynomial multiplication, the
result is (x + x3 + x11) corresponding to the message

{0 1 0 1 0 0 0 0 0 0 0 1}

It is apparent that this is the same as the original plaintextmessage prior to encryption.
With each cryptogram restricted to contain s errors, the cryptosystem as well

as providing security, is able automatically to correct t − s errors occurring in the
communication of the cryptogram as shown in Fig. 19.14. It makes no difference
to the decryption arrangement of Fig. 19.13, whether the bit errors were introduced
deliberately during encryption or were introduced due to errors in transmitting the
cryptogram. A correct message is output after decryption provided the total number
of bit errors is less than or equal to t, the error-correcting capability of the Goppa
code used to construct the public and private keys.

As an illustration, a (512, 287, 51) Goppa code of length 512 bits with message
vectors of length 287 bits can correct up to 25 bit errors, (t = 25). With s = 15,
15 bit errors are added to each codeword during encryption. Up to 10 additional bit
errors can occur in transmission of each corrupted codeword and the message will
be still recovered correctly from the received cryptogram.

message input

encrypt with
 s < t errors

communications
medium with
transmission errors

public key

decrypt correcting
 t errors

private key

message output

Fig. 19.14 Public key encryption system correcting communication transmission errors

498 19 Variations on the McEliece Public Key Cryptoystem

The system will also correct errors in the reading of cryptograms stored in data
media. As an example a medium to long range ISO 18000 6BRFID system operating
in the 860–930MHzwith 2048 bits of user data can be read back from a tag. A (2048,
1388, 121) Goppa code of length 2048 bits with message vectors of length 1388 bits
can correct 60 errors, (t = 60). With s = 25, 25 bit errors are added to the codeword
during encryption and this is written to each passive tag as a cryptogram, stored in
non-volatile memory. As well as providing confidentiality of the tag contents, up to
35 additional bit errors can be tolerated in reading each passive tag, thereby extending
the operational range. The plaintext message, the encrypted tag payload information
of 1388 bits will be recovered more reliably with each scanning of the tag.

19.4 Reducing the Cryptogram Length Without
Loss of Security

In many applications a key encapsulation system is used. This is a hybrid encryption
system in which a public key cryptosystem is used to send a random session key to
the recipient and a symmetric key encryption system, such as AES [10] is used to
encrypt the following data. Typically a session key is 256 bits long. To provide the
same 256 bit security level a code length of 8192 bits needs to be used, with a code
rate of 0.86. Security analysis of the McEliece system is provided in Sect. 19.5. The
Goppa code is the (8192, 7048, 177) code. There are 7048 information bits available
in each codeword, but only 256 bits are needed to communicate the session key. The
code could be shortened in the traditional manner by truncating the generator matrix
but this will leave less room to insert the t errors thereby reducing the security. The
obvious question is can the codeword be shortened without reducing the security?

Niederreiter [9] solved this problem by transmitting only the n−k bits of the syn-
drome calculated from the error pattern. Niederreiter originally proposed in his paper
a system using Generalised Reed–Solomon codes but this scheme was subsequently
broken with an attack by Sidelnikov and Shestakov [15]. However their attack fails
if binary Goppa codes are used instead of Generalised Reed–Solomon codes and the
Niederreiter system is now associated with the transmission of the n − k parity bits
as syndromes of the McEliece system.

It is unfortunate that only a tiny fraction of the 2n−k syndromes correspond to
correctable error patterns. For the (8192, 7048, 177)Goppa code, it turns out that there
are 2697 correctable syndromes out of the total of 21144 syndromes. The probability
of an arbitrary syndrome being decoded is 2−447, around 3 × 10−135. This is the
limitation of the Niederreiter system. The plaintext message has to bemapped into an
error pattern consisting of t bits uniformly distributed over n bits. Any deterministic
method of doing this will be vulnerable to a chosen-plaintext attack. Of course
the Niederreiter system can be used to send random messages, first generated as a
random error pattern, as in a random session key. However, additional information
really needs to be sent aswell, such as aMAC, timestamp, sender ID, digital signature
or other supplementary information.

19.4 Reducing the Cryptogram Length Without Loss of Security 499

Message Vector
Formatter

Message input

Encryption Module
Codeword
Shortener

Encryption Key
Hash Module

Random Error
Pattern Generator

Error Pattern
Partitioner

Random Number
Generator Shortened

Cipher text
output

Add

Me

A

B,C

Me,
P(Me)+P(A)

Me+B,
P(Me)+P(A)+C

M Public Key
Encoder

A, Me,
P(Me)+P(A)

Fig. 19.15 Public key encryption system with shortened codewords

One solution is to use the system shown in Fig. 19.15. The plaintext message, M,
consisting of a 256 bit random session key concatenated with 512 bits of supple-
mentary information such as a MAC, time stamp and sender ID is encrypted in the
encryption module with a key that is a cryptographic hash, such as SHA-3 [12], of
the error pattern. The encrypted message is Me. The error pattern consists of t bit
errors randomly distributed over n bits. This bit pattern is partitioned into three parts,
A, B and C as shown in Fig. 19.16. Using the (8192, 7048, 177) Goppa code, part A
covers the first 6280 bits, part B covers the next 768 bits and part C covers the last
1144 bits, the parity bits.

The public key encoder consists of the public key generator matrix in reduced
echelon form which is used to encode information bits consisting of part A, con-
catenated with Me as shown in Fig. 19.15. After encoding, the n − k parity bits of
the codeword are P(A) + P(Me). The codeword is then shortened by removing the
first 6280 bits of the codeword. The error pattern parts B and C are added to the
shortened codeword of length 1912 bits to form the ciphertext of length 1912 bits.
The format of the various parts of the error pattern, the hash derivation, encryption
and codeword are shown in Fig. 19.16.

The principle that this system uses, is that the syndrome of any codeword is zero
and that the cryptosystem is linear. The codeword resulting from the encoding of A
is {A 0 . . . 0 P(A)}, where P(A) are the parity bits. The sum of syndromes from
sections, of this codeword must be zero. Hence:

Syndrome(A) + 0 . . . 0 + P(A) = 0

500 19 Variations on the McEliece Public Key Cryptoystem

Hash function

Message
M

Encrypt

Encrypted
Message

Me

 Error Pattern
 A

B C

MeA
Parity Bits

P(A)+P(Me)

A, Encrypted Message Me encoded as codeword

Me + B P(A)+P(Me)+C

Sum and truncate to produce codeword plus errors without
error pattern A

Fig. 19.16 Format of the shortened codeword and error pattern

As the base field is 2,

Syndrome(A) = P(A)

Consequently, by including P(A) instead of the error bits, part A in the ciphertext
results in the same syndrome being calculated in the decoder, namely P(A)+P(B)+

19.4 Reducing the Cryptogram Length Without Loss of Security 501

Me + B P(A)+P(Me)+C

 Error Pattern
 A

B C

Hash function

Me +B Decrypt
Decrypted
message

M
++

B

Calculate Syndrome

Determine Error Pattern

Permute bits

Permute bits

0's

Fig. 19.17 Decryption method for the shortened ciphertext

502 19 Variations on the McEliece Public Key Cryptoystem

P(C). Removing error pattern, part A shortens the ciphertext whilst including P(A)

instead requires no additional bits in the ciphertext. Since it is necessary to derive
the complete error pattern of length n bits in order to decrypt the ciphertext, there is
no loss of security from shortening the ciphertext.

The method used to decrypt the ciphertext by using the private key is shown in
Fig. 19.17. The received ciphertext is padded with leading zeros to restore its length
to 8192 bits. This is then permuted to be in the same order as the Goppa code and the
parity check matrix of the Goppa code is used to calculate the syndrome. A Goppa
code error-correcting decoder is then used to find the permuted error pattern A, B
and C from this syndrome. The most straightforward error-correcting decoder to use
is based on Retter’s decoding method [13]. This involves calculating a syndrome
having 2(n − k) parity bits from the parity check matrix of g2(z) where g(z) is the
Goppa polynomial of the code, then using the Berlekamp–Massey method to solve
the key equation as in a standard BCH decoder to find the error bit positions. It is
because the codewords are binary codewords and the base field is 2, that the Goppa
code codewords satisfy the parity checks of g2(z) as well as the parity checks of
g(z), since 12 = 1.

As shown in Fig. 19.17, once the error pattern is determined, it is inverse permuted
to produce A, B and C which is hashed to produce the decryption key needed to
decrypt Me back into the plaintext message M. Part B of the derived error pattern is
added to theMe + B contained in the received ciphertext to produceMe as shown in
Fig. 19.17.

19.5 Security of the Cryptosystem

If we consider the parameters that Professor McEliece originally chose, a code of
length 1024 bits correcting 50 errors and 524 information bits, then a brute force
attack may be based on guessing the error pattern, adding this to the cryptogram and
checking if the result is a valid codeword. Checking if the result is a codeword is
easy. By using elementary matrix operations on the public key, the generator matrix,
we can turn it into a reduced echelon matrix whose transpose is the parity check
matrix. We simply use this parity check matrix to calculate the syndrome of the n bit
input vector. If the syndrome is equal to zero then the input vector is a codeword.

The maximum number of syndromes that need to be calculated is equal to the
number of different error patterns which is

(n
t

) = (1024
50

) = 3.1985 ≈ 2284. This may
be described as being equivalent to a symmetric key encryption system with a key
length of 284 bits.

However, there are much more efficient ways of determining the error pattern
in the cryptogram. An attack called information set decoding [2] as described by
Professor McEliece in his original paper [8], may be used. For any (n, k, d) code, k
columns of the generator matrix may be randomly selected and using Gauss–Jordan
elimination of the rows, there is a probability that a permuted, reduced echelon
generator matrix will be obtained which generates the same codeword as the original

19.5 Security of the Cryptosystem 503

code. The k × k sub-matrix resulting from the k selected columns needs to be full
rank and the probability of this depends on the particular code. For Goppa codes
the probability turns out to be the same as the probability of a randomly chosen
k × k binary matrix being full rank. This probability is 0.2887 as described below
in Sect. 19.5.1.

Given a cryptogram containing t errors an attacker can select k bits randomly, con-
struct the corresponding permuted, reduced echelon generator matrix with a chance
of 0.29. The attacker then uses the matrix to generate a codeword and finds the
Hamming distance between this codeword and the cryptogram. If the Hamming
distance is exactly t then the cryptogram has been cracked.

For this to happen all of the k selected bits from the cryptogram need to be error
free. The probability of this is:

k−1∏

i=0

n − t − i

n − i
= (n − t)!(n − k)!

(n − t − k)!n!

Including the chance of 0.29 that the selected matrix has rank k, the average number
of selections of k bits from the cryptogram before the cryptogram is cracked, Nck is
given by

Nck = (n − t − k)!n!
0.29(n − t)!(n − k)! (19.53)

For the original code parameters (1024, 524, 101), Nck = 4.78 × 1016 ≈ 255.
This is equivalent to a symmetric key encryption system with a key length of 55

bits, a lot less than 284 bits, the base 2 logarithm of the number of error combinations.
Using a longer codeoffersmuchmore security. For example using codeparameters

(2048, 1300, 137), Nck = 1.45× 1031 ≈ 2103, equivalent to a symmetric key length
of 103 bits.

For code parameters (8192, 5124, 473), with a Goppa code which corrects 236
errors, it turns out that Nck = 5.60 × 10103 ≈ 2344, equivalent to a symmetric key
length of 344 bits.

The success of this attack depends upon the code rate. The effect of the code rate,
R and the security as expressed in the equivalent symmetric key length in bits is
shown in Fig. 19.18 for a code length of 2048 bits. The code rate, R that maximises
Nck for a given n is tabulated in Table19.3, together with t the number of correctable
errors and the equivalent symmetric key length in bits.

19.5.1 Probability of a k× k Random Matrix Being Full
Rank

The probability of a randomly chosen k×k binarymatrix being full rank is a classical
problem related to the erasure correcting capability of random binary codes [4, 5].

504 19 Variations on the McEliece Public Key Cryptoystem

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

S
ec

ur
ity

 (b
its

)

Code rate

McEliece security 2048

Fig. 19.18 Effect of code rate on security for a code length of 2048 bits

Table 19.3 Optimum code
rate giving maximum security
as a function of code length

n R t Security (bits)

512 0.6309 21 33.0

1024 0.6289 38 57.9

2048 0.6294 69 103.5

4096 0.6279 127 187.9

8192 0.6287 234 344.6

16384 0.6292 434 637.4

For the binary case it is straightforward to derive the probability, Pk of a k × k
randomly chosen matrix being full rank by considering the process of Gauss–Jordan
elimination. Starting with the first column of the matrix, the probability of finding a
1 in at least one of the rows is (1 − 1

2)
k .

Selecting one of these non-zero bit rows, the bit in the second column will be
arbitrary and considering the first two bits there are 21 linear combinations. As there
are 22 combinations of two bits, the chances of not finding an independent 2-bit
combination in the remaining k − 1 rows are 1

2k−1 . Assuming an independent row
is found, we next consider the third column and the first three bits. There are 22

linear combinations of 3 bits from the two previously found independent rows and
there are a total possible 23 combinations of 3 bits. The probability of not finding an
independent 3-bit pattern in any of the remaining k − 2 rows is (2

2

23)
k−2 = 1

2k−2 .

19.5 Security of the Cryptosystem 505

Table 19.4 Probability of a
random binary k × k matrix
having full rank

k Pk

5 0.298004

10 0.289070

15 0.288797

20 0.288788

50 0.288788

Proceeding in this way to k rows, it is apparent that Pk is given by

Pk =
k−1∏

i=0

1 −
(
1 − 1

2

)k−i

=
k−1∏

i=0

1 − 1

2k−i
(19.54)

The probability of Pk as a function of k is tabulated in Table19.4. The asymptote of
0.288788 is reached for k exceeding 18.

19.5.2 Practical Attack Algorithms

Practical attack algorithms of course need to factor in the processing cost of Gauss–
Jordan elimination compared to the problem of constructing different generator
matrices. A completely different set of k coordinates does not need to be selected
each time to generate a different generator matrix as discussed in [2]. Also, even if the
k selected columns of the generator matrix do not have full rank, usually discarding
and adding one or two columns will produce a full rank matrix. It can be shown that
on average only 1.6 additional columns are necessary to achieve full rank. Canteaut
and Chabaud [3] showed that by including the cryptogram as an additional row in
the generator matrix of the (n, k, 2t + 1) code, a code is produced with parameters
(n, k+1, t) for which there is only a single codeword with weight t, the original error
pattern in the cryptogram. In this case algorithms for finding low-weight codewords
may be deployed to break the cryptogram. However these low-weight codeword
search algorithms are all very similar to the original algorithm aimed at searching for
a codeword of the (n, k, 2t+1) code with Hamming distance t from the cryptogram.
The conclusions of the literature are that information set decoding is an efficient
method of attacking the McEliece system but that from a practical viewpoint the
system is unbreakable provided the code is long enough. Bernstein et al. [2] give rec-
ommended code lengths and their corresponding security, providing similar results
to that of Table19.3.

The standard McEliece system is vulnerable to chosen-plaintext attacks. The
encoder is the public key, usually publically available, and the attacker can simply
guess the plaintext, construct the corresponding ciphertext and compare this to the

506 19 Variations on the McEliece Public Key Cryptoystem

target ciphertext. In addition, if the same plaintext message is encrypted twice the
sum of the two ciphertexts is a n bit vector of 2t bits or less.

The standard McEliece system is also vulnerable to chosen-ciphertext attack.
Assuming a decryption oracle is available, the attacker inverts two bits randomly in
the ciphertext and sends the result to the decryption oracle. With probability t(n−t)

n(n−1) ,
a different ciphertext will be produced containing exactly t errors and the decryption
oracle will output the plaintext, breaking the system.

Encrypting the plaintext using a key derived from the error pattern, as described
above, defeats all of these attacks.

19.6 Applications

Public key encryption is attractive in a wide range of different applications, partic-
ularly those involving communications because the public keys may be exchanged
initially using clear textmessages followed by information encrypted using the public
keys. The private keys remain private because they do not need to be communicated
and the public keys are of no help to an eavesdropper.

An example of an application for the iPhone and iPad using the McEliece public
key encryption system is the S2S app pictured in Fig. 19.19. In this app, files are
encrypted with users’ public keys and stored in the cloud so that they may be shared.
Sharing is by means of links that index the encrypted files on the cloud and each user
uses their private key to decrypt the shared files.

If the same type of application was implemented using symmetric key encryp-
tion, it would be necessary for users to share passwords with all of the associated
risks that entails. Using public key encryption avoids these risks. Another applica-
tion example is the secure Instant Messaging (IM) system, PQChat for the iPhone,
iPad and Android devices. There is an option button which shows messages in their
received encrypted format, as shown in Fig. 19.20. The application is called PQChat
and the name stands for Post-Quantum Chat as the McEliece cryptosystem is rela-
tively immune to attack by a quantum computer, unlike the public key encryption
systems in common use today, such as Rivest Shamir Adleman, (RSA) and Elgamal.

As with other public key methods, the system may be used for mutual authentica-
tion. Party X sends a randomly chosen nonce x1, together with a timestamp to Party
Y using Party Y’s public key. Party Y returns a randomly chosen nonce y1, timestamp
and hash(hash(x1, y1)) to Party X using Party X’s public key. Party X replies with
an encrypted timestamp and acknowlegement, using symmetric key cryptography
with encryption key hash(x1, y1), the preimage of hash(hash(x1, y1)), to Party Y.
The session key hash(x1, y1) is used for further exchanges of information, for the
duration of the session. A cryptographic hash function is used such as SHA-3 [12]
which also has good, second preimage resistance.

It is assumed that the private keys have been kept secret and the association of IDs
with public keys has been independently verified. In this case, Party X knows Party Y
holds the private key of Y and is the only one able to learn x1. Party Y knows Party

19.6 Applications 507

Fig. 19.19 S2S application
for sharing encrypted files

X holds the private key of X and is the only one able to learn y1. Consequently Party
X and Party Y are the only ones with knowledge of x1 and y1. Using the preimage
of hash(hash(x1, y1)) as the session key provides added assurance as both x1 and y1
need to be known in order to generate the key, hash(x1, y1). The timestamps prevent
replay attacks being used.

508 19 Variations on the McEliece Public Key Cryptoystem

Fig. 19.20 PQChat secure
instant messaging app
featuring McEliece
cryptosystem (with view as
received, enabled)

19.7 Summary

A completely novel type of public key cryptosystem was invented by Professor
Robert McEliece in 1978 and this is based on error-correcting codes using Goppa
codes. Other well established public key cryptosystems are based on the difficulty
of determining logarithms in finite fields which, in theory, can be broken by quan-
tum computers. Despite numerous attempts by the crypto community, the McEliece
system remains unbroken to this day and is one of the few systems predicted to
survive attacks by powerful computers in the future. In this chapter, some variations

19.7 Summary 509

to the McEliece system have been described including a method which destroys the
deterministic link between plaintext messages and ciphertexts, thereby providing
semantic security. Consequently, this method nullifies the chosen-plaintext attack,
of which the classic McEliece is vulnerable. It is shown that the public key size can
be reduced and by encrypting the plaintext with a key derived from the ciphertext
random error pattern, the security of the system is improved since an attacker has to
determine the exact same error pattern used to produce the ciphertext. This defeats a
chosen-ciphertext attack in which two random bits of the ciphertext are inverted. The
standard McEliece system is vulnerable to this attack. The security of the McEliece
systemhas been analysed and a shortened ciphertext systemhas been proposedwhich
does not suffer from any consequent loss of security due to shortening. This is impor-
tant because to achieve 256 bits of security, the security analysis has shown that the
system needs to be based on Goppa codes of length 8192 bits. Key encapsulation and
short plaintext applications need short ciphertexts in order to be efficient. It is shown
that the ciphertext may be shortened to 1912 bits, provide 256 bits of security and
an information payload of 768 bits. Some examples of interesting applications that
have been implemented on a smartphone in commercial products, such as a secure
messaging app and secure cloud storage app, have been described in this chapter.

References

1. Berlekamp, E.R.: Algebraic Coding Theory, Revised edn. Aegean Park Press, Laguna Hills
(1984). ISBN 0 894 12063 8

2. Bernstein, D., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In:
Buchmann, J., Ding, J. (eds.) PQCrypto, pp. 31–46 (2008)

3. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum weight words in a linear
code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511.
IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

4. Cooper, C.: On the distribution of rank of a random matrix over a finite field. Random Struct.
Algorithms 17, 197–212 (2000)

5. Dumer, I., Farrell, P.: Erasure correction performance of linear block codes. In: Cohen, G.,
Litsyn, S., Lobstein, A., Zemor, G. (eds.) Lecture Notes in Computer Science, vol. 781, pp.
316–326. Springer, Berlin (1993)

6. Goppa, V.D.: A new class of linear error-correcting codes. Probl. Inf. Transm. 6, 24–30 (1970)
7. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland,

Amsterdam (1977)
8. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep.

42–44, 114–116 (1978)
9. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf.

Theory 15, 159–166 (1986)
10. Publications FIPS. Advanced Encryption Standard (AES). FIPS PUB 197 (2001)
11. Publications FIPS. Secure Hash Standard (SHS). FIPS PUB 180-3 (2008)
12. PublicationsFIPS. SHA-3StandardPermutationBasedHash andExtendableOutput Functions.

FIPS PUB 202 (2015)
13. Retter, C.T.: Decoding Goppa codes with a BCH decoder. IEEE Trans. Inf. Theory IT 21,

112–112 (1975)
14. Riek, J., McFarland, G.: Error correcting public key cryptographic method and program. US

Patent 5054066 (1988)

510 19 Variations on the McEliece Public Key Cryptoystem

15. Sidelnikov, V., Shestakov, S.: On insecurity of cryptosystems based on generalized Reed-
Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)

16. Sugiyama, Y., Kasahara, M., Namekawa, T.: An erasures-and-errors decoding algorithm for
Goppa codes. IEEE Trans. Inf. Theory IT 22, 238–241 (1976)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third partymaterial in this bookare included in the book’sCreativeCommons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

book’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	19 Variations on the McEliece Public Key Cryptoystem
	19.1 Introduction and Background
	19.1.1 Outline of Different Variations of the Encryption System

	19.2 Details of the Encryption System
	19.3 Reducing the Public Key Size
	19.4 Reducing the Cryptogram Length Without Loss of Security
	19.5 Security of the Cryptosystem
	19.5.1 Probability of a k timesk Random Matrix Being Full Rank
	19.5.2 Practical Attack Algorithms

	19.6 Applications
	19.7 Summary
	References

