
Chapter 17
Combined Error Detection
and Error-Correction

17.1 Analysis of Undetected Error Probability

Let the space of vectors over a field with q elements Fq of length n be denoted by Fn
q .

Let [n, k, d]q denote a linear code over Fq of length n symbols, dimension k symbols
and minimum Hamming distance d. We know that a code with minimum Hamming
distance d can correct t = �(d−1)/2� errors. It is possible for an [n, k, d = 2t+1]q
linear code, which has qn−k syndromes, to use a subset of these syndromes to correct
τ < t errors and then to use the remaining syndromes for error detection. For
convenience, let C denote an [n, k, d]q linear code with cardinality |C |, and let a
codeword of C be denoted by cl = (cl,0, cl,1, . . . , cl,n−1), where 0 ≤ l < |C |.

Consider a codeword ci , for some integer i , which is transmitted over a q-ary
symmetric channel with symbol transition probability p/(q − 1). At the receiver, a
length n vector y is received. This vector y is not necessarily the same as ci and,
denoting dH (a, b) as the Hamming distance between vectors a and b, the follow-
ing possibilities may occur assuming that nearest neighbour decoding algorithm is
employed:

1. (no error) dH ( y, ci ) ≤ τ and y is decoded as ci ;
2. (error) dH ( y, c j ) > τ for 0 ≤ j < |C |; and
3. (undetected error) dH ( y, c j ) ≤ τ for j �= i and y is decoded as c j

Definition 17.1 A sphere of radius t centered at a vector v ∈ F
n
q , denoted by Stq(v),

is defined as

Stq(v) = {w | wtH (v − w) ≤ t for all w ∈ F
n
q}. (17.1)

It can be seen that, in an error-detection-after-correction case, Sτ
q (c)may be drawn

around all |C | codewords of the code C . For any vector falling within Sτ
q (c), the

decoder returns c the corresponding codeword which is the center of the sphere. It
is worth noting that all these |C | spheres are pairwise disjoint, i.e.
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⋃

0≤i, j<|C |
i �= j

Sτ
q (ci ) ∩ Sτ

q (c j ) = ∅.

In a pure error-detection scenario, the radius of these spheres is zero and the proba-
bility of an undetected error is minimised. When the code is used to correct a given
number of errors, the radius increases and so does the probability of undetected error.

Lemma 17.1 The number of length n vectors over Fq of weight j within a sphere
of radius τ centered at a length n vector of weight i , denoted by N τ

q (n, i, j), is equal
to

N τ
q (n, i, j) =

eU∑

e=eL

δU∑

δ=δL

(
i

e

)(
e

δ

)(
n − i

j − i + δ

)
(q − 1) j−i+δ(q − 2)e−δ (17.2)

where eL = max(0, i − j), eU = min(τ, τ + i − j), δL = max(0, i − j) and
δU = min(e, τ + i − j − e, n − j).

Proof Let u be a vector of weight i and let sup(u) and sup(u) denote the support of
u, and the non-support of u, respectively, that is

sup(u) = {i | ui �= 0, for 0 ≤ i ≤ n − 1}
sup(u) = {0, 1, . . . , n − 1}\ sup(u).

A vector of weight j , denoted by v, may be obtained by adding a vector w, which
has e coordinates which are the elements of sup(u) and f coordinates which are the
elements of sup(u). In the case where q > 2, considering the coordinates in sup(u),
it is obvious that vector v = u + w can have more than i − e non-zeros in these
coordinates. Let δ, where 0 ≤ δ ≤ e, denote the number of coordinates for which
vi = 0 among sup(u) of v, i.e.

δ = | sup(u)\ (sup(u) ∩ sup(v)) |

Given an integer e, there are
(i
e

)
ways to generate e coordinates for which wi �= 0

where i ∈ sup(u). For each way, there are
( e
e−δ

)
(q − 2)e−δ ways to generate e − δ

non-zeros in the coordinates sup(u) ∩ sup(w) such that vi �= 0. It follows that
f = j − (i − e) − (e − δ) = j − i + δ and there are

( n−i
j−i+δ

)
(q − 1) j−i+δ ways to

generate f non-zero coordinates such that vi �= 0 where i ∈ sup(u). Therefore, for
given integers e and δ, we have

(
i

e

)(
e

δ

)(
n − i

j − i + δ

)
(q − 1) j−i+δ(q − 2)e−δ (17.3)

vectors w that produce wtH (v) = j . Note that
( e
e−δ

) = (e
δ

)
.
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It is obvious that 0 ≤ e, f ≤ τ and e + f ≤ τ . In the case of j ≤ i , the integer e
may not take the entire range of values from 0 to τ , it is not possible to have e < i− j .
On the other hand, for j ≥ i , the integer e ≥ 0 and thus, the lower limit on the value
of e is eL = max(0, i − j). The upper limit of e, denoted by eU , is dictated by the
condition e + f = τ . For j ≤ i , eU = τ since for any value of e, δ may be adjusted
such that wtH (v) = j . For the case j ≥ i , f ≥ 0 and for any value of e, there exists
at least one vector for which δ = 0, implying eU = τ − f = τ + i − j . It follows
that eU = min(τ, τ + i − j).

For a given value of e, δ takes certain values in the range between 0 and e such
that wtH (v) = j . The lower limit of δ is obvious δL = eL . The upper limit of δ

for j ≥ i case is also obvious, δU = e, since f ≥ 0. For the case j ≤ i , we
have e + f = e + ( j − i + δU ) ≤ τ , implying δU ≤ τ − e + i − j . In addition,
n − i ≥ j − i + δU and thus, we have δU = min(e, τ − e + i − j, n − j).

Corollary 17.1 For q = 2, we have

N τ
2 (n, i, j) =

�(τ+i− j)/2�∑

e=max(0,i− j)

(
i

e

)(
n − i

j − i + e

)
(17.4)

Proof For q = 2, it is obvious that δ = e and 00 = 1. Since e + f ≤ τ and
f = j − i + e, the upper limit of e, eL , becomes eL ≤ �(τ + i − j)/2�.
Theorem 17.1 For an [n, k, d = 2t + 1]q linear code C , the probability of unde-
tected error after correcting at most τ errors, where τ ≤ t , in a q-ary symmetric
channel with transition probability p/(q − 1), is given by

P (τ )
ue (C , p) =

n∑

i=d

Ai

i+τ∑

j=i−τ

N τ
q (n, i, j)

(
p

q − 1

) j

(1 − p)n− j (17.5)

where Ai is the number of codewords of weight i in C and N τ
q (n, i, j) is given in

Lemma 17.1.

Proof An undetected error occurs if the received vector falls within a sphere of
radius τ centered at any codeword C except the transmitted codeword. Without loss
of generality, as the code is linear, the transmission of the all zeros codeword may
be assumed. Consider ci a codeword of weight i > 0, all vectors within Sτ

q (ci ) have
weights ranging from i−τ to i+τ with respect to the transmitted all zeros codeword.
For each weight j in the range, there are N τ

q (n, i, j) such vectors in the sphere.

Following [2], if Bj denotes the number of codewords of weight j inC ⊥, the dual
code of C , A j may be written as

Am = 1

|C ⊥|
n∑

i=0

Bi Pq(n,m, i) (17.6)



438 17 Combined Error Detection and Error-Correction

where

Pq(n,m, i) =
m∑

j=0

(−1) j qm− j

(
n − m + j

j

)(
n − i

m − j

)
(17.7)

is a Krawtchouk polynomial. Using (17.6) and (17.7), the probability of undetected
error after error-correction (17.5) may be rewritten in terms of the weight of the
codewords in the dual code.

17.2 Incremental-Redundancy Coding System

17.2.1 Description of the System

The main area of applications is two-way digital communication systems with par-
ticular importance to wireless communication systems which feature packet digital
communications using a two-way communicationsmedium. Inwireless communica-
tions, each received packet is subject to multipath effects and noise plus interference
causing errors in some of the received symbols. Typically forward error-correction
(FEC) is provided using convolutional codes, turbo codes, LDPC codes, or algebraic
block codes and at the receiver a forward error-correction decoder is used to correct
any transmission errors. Any residual errors are detected using a cyclic redundancy
check (CRC) which is included in each transmitted codeword. The CRC is calculated
for each codeword that is decoded from the corresponding received symbols and if
the CRC is not satisfied, then the codeword is declared to be in error. If such an error is
detected, the receiver requests the transmitter by means of a automatic repeat request
(ARQ) either to retransmit the codeword or to transmit additional redundant symbols.
Since this is a hybrid form of error-correction coupled with error-detection feedback
through the ARQmechanism, it is commonly referred to as a hybrid automatic repeat
request (HARQ) system.

The two known forms of HARQ are Chase combining and incremental redun-
dancy (IR). Chase combining is a simplified form of HARQ, wherein the receiver
simply requests retransmission of the original codeword and the received symbols
corresponding to the codeword are combined together prior to repeated decoding
and detection. IR provides for a transmission of additional parity symbols extending
the length of the codeword and increasing the minimum Hamming distance, dmin

between codewords. This results in a lower error rate following decoding of the
extended codeword. The average throughput of such a system is higher than a fixed
code rate system which always transmits codewords of maximum length and redun-
dancy. In HARQ systems, it is a prerequisite that a reliable means be provided to
detect errors in each decoded codeword. A system is described below which is able
to provide an improvement to current HARQ systems by providing a more reliable
means of error detection using the CRC and also provides for an improvement in
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ni = ni−1 + ri

n = nM

n1

r2
r1

rM

k−m

Fig. 17.1 Codeword format for conventional incremental-redundancy ARQ schemes

throughput by basing the error detection on the reliability of the detected codeword
without the need to transmit the CRC.

Figure17.1 shows the generic structure of the transmitted signal for a punctured
codeword system. The transmitted signal comprises the initial codeword followed by
additional parity symbols which are transmitted following each ARQ request up to a
total ofM transmissions for each codeword. All of the different types of codes used in
HARQ systems: convolutional codes, turbo codes, LDPC codes, and algebraic codes
can be constructed to fit into this generic codeword structure. As shown in Fig. 17.1,
the maximum length of each codeword is nM symbols transmitted in a total of M
transmissions resulting from the reception of M − 1 negative ACK’s (NACK’s).
The first transmission consists of m information symbols encoded into a total of
n1 symbols. There are r1 parity symbols in addition to the CRC symbols. This is
equivalent to puncturing the maximum length codeword in the last nM −n1 symbols.
If this codeword is not decoded correctly, a NACK is received by the transmitter,
(indicated either by the absence of an ACK being received or by a NACK signal
being received), and r2 parity symbols are transmitted as shown in Fig. 17.1.

The detection of an incorrect codeword is derived from the CRC in conventional
HARQsystems.After the decoding of the received codeword, theCRC is recalculated
and compared to the CRC symbols contained in the decoded codeword. If there is
no match, then an incorrect codeword is declared and a NACK is conveyed to the
transmitter. Following the second transmission, the decoder has a received codeword
consisting of n1 + r2 symbols which are decoded. The CRC is recalculated and
compared to the decodedCRCsymbols. If there is still nomatch, aNACK is conveyed
to the transmitter and the third transmission consists of the r3 parity symbols and
the net codeword consisting of n1 + r2 + r3 symbols is decoded, and so on. The IR
procedure ends eitherwhen anACK is received by the transmitter orwhen a codeword
of total length nM symbols has been transmitted in a total of M transmissions.

Most conventional HARQ systems first encode the m information symbols plus
CRC symbols into a codeword of length nM symbols, where CM = [nM , k, dM ]
denotes this code. The code CM is then punctured by removing the last nM − nM−1
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n = nM

n1

r1
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Fig. 17.2 Codeword format for the incremental-redundancy ARQ scheme without a CRC

symbols to produce a code CM−1 = [nM−1, k, dM−1], the code CM−1 is then punc-
tured by removing the last nM−1 − nM−2 symbols to produce a code CM−2, and so
forth until a code C1 = [n1, k, d1] is obtained. In this way, a sequence of codes
C1 = [n1, k, d1], C2 = [n2, k, d2], . . ., CM = [nM , k, dM ] is obtained. In the first
transmission stage, a codeword C1 is transmitted, in the second transmission stage,
the punctured parity symbols of C2 is transmitted and so on as shown in Fig. 17.1.

An alternative IR code construction method is to produce a sequence of codes
using a generator matrix formed from a juxtaposition of the generator matrices of a
nested block code. In this way, no puncturing is required.

Figure17.2 shows the structure of the transmitted signal. The transmitted signal
format is the same as Fig. 17.1 except that noCRCsymbols are transmitted. The initial
codeword consists only of the m information symbols plus the r1 parity symbols.
Additional parity symbols are transmitted following each ARQ request up to a total
of M transmissions for each codeword. All of the different types of codes used in
HARQ systems: convolutional codes, turbo codes, LDPC codes, and algebraic codes
may be used in this format including the sequence of codes based on a nested block
code construction.

Figure17.3 shows a variation of the system where the k information symbols,
denoted by vector u, are encoded with the forward error-correction (FEC) encoder
into nM symbols denoted as cM which are stored in the transmission controller. In the
first transmission, n1 symbols are transmitted. At the end of the i th stage, a codeword
of total length ni symbols has been transmitted. This corresponds to a codeword of
length nM symbols punctured in the last nM −ni symbols. In Fig. 17.3, the codeword
of length ni is represented as a vector v, which is then passed through the channel to
produce y′ and buffered in the Received buffer as ywhich is forward error-correction
(FEC) decoded in the FEC decoder which produces the most likely codeword c1 and
the next most likely codeword c2.
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Fig. 17.3 The incremental-redundancy ARQ scheme with adjustable reliability without using a
CRC

Let us consider that the IR system has had i transmissions so that a total of ni
symbols have been received and the total length of the transmitted codeword is ni
symbols.

c1 is denoted as

c1 = c10 + c11x + c12x
2 + c13x

3 + c14x
4 + · · · + c1(ni−1)x

ni−1 (17.8)

and c2 is denoted as

c2 = c20 + c21x + c22x
2 + c23x

3 + c24x
4 + · · · + c2(ni−1)x

ni−1 (17.9)

and the received symbols y are denoted as

y = y0 + y1x + y2x
2 + y3x

3 + y4x
4 + · · · + y(ni−1)2x

ni−1 (17.10)

For each decoded codeword, c1 and c2, the squared Euclidean distances d2
E ( y, c1)

and d2
E ( y, c2) respectively are calculated between the codewords and the received

symbols y stored in the Received buffer.
d2
E ( y, c1) is given by

d2
E ( y, c1) =

ni−1∑

j=0

(y j − c1 j )
2 (17.11)

d2
E ( y, c2) is given by

d2
E ( y, c2) =

ni−1∑

j=0

(y j − c2 j )
2 (17.12)
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The function of the Reliability estimator shown in Fig. 17.3 is to determine how
much smaller is d2

E ( y, c1) compared to d2
E ( y, c2) in order to estimate the likelihood

that the codeword c1 is correct. The Reliability estimator calculates the squared
Euclidean distances d2

E ( y, c1) and d2
E ( y, c2), and determines the difference Δ given

by

Δ = d2
E ( y, c2) − d2

E ( y, c1) (17.13)

Δ is compared to a threshold which is calculated from the minimum Hamming
distance of the first code in the sequence of codes, the absolute noise power, and
a multiplicative constant, termed κ . As shown in Fig. 17.3, Δ is compared to the
threshold by the Comparator. If Δ is not greater than the threshold, c1 is considered
to be insufficiently reliable, and the output of the comparator causes the ACK/NACK
generator to convey a NACK to the transmitter for more parity symbols to be trans-
mitted. If Δ is greater than or equal to the threshold then c1 is considered to be
correct, the output of the comparator causes the ACK/NACK generator to convey an
ACK to the transmitter and in turn, the ACK/NACK generator causes the switch to
close and c1 is switched to the output û. The ACK causes the entire IR procedure to
begin again with a new vector u. The way that Δ works as an indication of whether
the codeword c1 is correct or not. If c1 is correct, then d2

E ( y, c1) is a summation
of squared noise samples only because the signal terms cancel out. The codeword
c2 differs from c1 in a number of symbol positions equal to at least the minimum
Hamming distance of the current code, dmin . With the minimum squared Euclidean
distance between symbols defined as d2

S , Δ will be greater or equal to dmin × d2
S plus

a noise term dependent on the signal to noise ratio. If c1 is not correct d2
E ( y, c1) and

d2
E ( y, c2) will be similar and Δ will be small.
If more parity symbols are transmitted because Δ is less than the threshold, the

dmin of the code increases with each increase of codeword length and provided c1 is
correct, Δ will increase accordingly.

The Reliability measure shown in Fig. 17.3 uses the squared Euclidean distance
but it is apparent that equivalent soft decision metrics including cross-correlation and
log likelihood may be used to the same effect.

In the system shown in Fig. 17.4 a CRC is transmitted in the first transmitted
codeword. The m information symbols, shown as vector u in Fig. 17.4 are encoded
with the CRC encoder to form a total of k symbols, shown as vector x. The k
symbols are encoded by the FEC encoder into nM symbols denoted as cM which
are stored in the transmission controller. In the first transmission, n1 symbols are
transmitted. At the end of the i th stage, a codeword of total length ni symbols has
been transmitted. This corresponds to a codeword of length nM symbols punctured
in the last nM − ni symbols. In Fig. 17.4, the codeword of length ni is represented
as a vector v, which is then passed through the channel to produce y′ and buffered
in the Received buffer as y, which is forward error-correction (FEC) decoded in the
FEC decoder. The FEC decoder produces L codewords with decreasing reliability
as measured by the squared Euclidean distance between each codeword and the
received symbols or as measured by an equivalent soft decision metric such as cross-
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Fig. 17.4 The incremental-redundancy ARQ scheme with adjustable reliability using a CRC

correlation between each codeword and the received symbols. The L codewords are
input to CRC checking which determines the most reliable codeword, c j , which
satisfies the CRC and the next most reliable codeword, cl , which satisfies the CRC.
The Reliability estimator shown in Fig. 17.4 determines the difference, Δ, of the
squared Euclidean distances between codewords c j and cl and the corresponding
received symbols.

Δ is given by

Δ = d2
E ( y, cl) − d2

E ( y, c j ) (17.14)

Δ is compared to a threshold which is calculated from the minimum Hamming
distance of the first code in the sequence of codes, the absolute noise power, and a
multiplicative constant termed κ . As shown in Fig. 17.4,Δ is compared to the thresh-
old by the comparator. If Δ is not greater than the threshold, c j is considered to be
insufficiently reliable, and the output of the comparator causes the ACK/NACK gen-
erator to convey aNACK to the transmitter for more parity symbols to be transmitted.
If Δ is greater than or equal to the threshold then c j is considered to be correct, the
output of the comparator causes the ACK/NACK generator to convey an ACK to the
transmitter and in turn, the ACK/NACK generator causes the switch to close and c j
is switched to the output û. The ACK causes the entire IR procedure to begin again
with a new vector u.

The Reliability measure shown in Fig. 17.4 uses the squared Euclidean distance
but it is apparent that equivalent soft decision metrics including cross correlation and
log likelihood ratios may be used to the same effect.
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17.2.1.1 Code Generation Using Nested Block Codes

If C is a cyclic code, then there exists a generator polynomial g(x) ∈ F2[x] and a
parity-check polynomial h(x) ∈ F2[x] such that g(x)h(x) = xn1 − 1. Two cyclic
codes, C1 with g1(x) as the generator polynomial and C2 with g2(x) as the generator
polynomial, are said to be chained or nested, if g1(x)|g2(x), and we denote them by
C1 ⊃ C2. With reference to this definition, it is clear that narrow-sense BCH codes
of the same length form a chain of cyclic codes. Given a chain of two codes, using
a code construction method known as Construction X, a construction method first
described by Sloane et al. [5], the code with larger dimension can be lengthened to
produce a code with increased length and minimum distance.

A generalised form of Construction X involves more than two codes. Let Bi be
an [n1, ki , di ] code, given a chain of M codes, B1 ⊃ B2 ⊃ · · · ⊃ BM , and a set
of auxiliary codes Ai = [n′

i , k
′
i , d

′
i ], for 1 ≤ i ≤ M − 1, where k ′

i = k1 − ki , a
code CX = [n1 + ∑M−1

i=1 n′
i , k1, d] can be constructed, where d = min{dM , dM−1 +

d ′
M−1, dM−2 + d ′

M−2 + d ′
M−1, . . . , d1 + ∑M−1

i=1 d ′
i }.

Denoting z as a vector of length n1 formed by the first n1 coordinates of a codeword
of CX . A codeword of CX is a juxtaposition of codewords ofBi and Ai , where

( bM | 0 | 0 | . . . | 0 | 0 ) if z ∈ BM ,
( bM−1 | 0 | 0 | . . . | 0 | aM−1 ) if z ∈ BM−1,
( bM−2 | 0 | 0 | . . . | aM−2 | aM−1 ) if z ∈ BM−2,

...
...

( b2 | 0 | a2 | . . . | aM−2 | aM−1 ) if z ∈ B2,
( b1 | a1 | a2 | . . . | aM−2 | aM−1 ) if z ∈ B1,

where bi ∈ Bi and ai ∈ Ai .

17.2.1.2 Example of Code Generation Using Nested Block Codes

There exists a chain of extended BCH codes of length 128 bits,

B1 = [128, 113, 6] ⊃ B2 = [128, 92, 12] ⊃ B3 = [128, 78, 16] ⊃
B4 = [128, 71, 20].

Applying Construction X to [128, 113, 6] ⊃ [128, 92, 12] with an [32, 21, 6]
extended BCH code as auxiliary code, a [160, 113, 12] code is obtained, giving

[160, 113, 12] ⊃ [160, 92, 12] ⊃ [160, 78, 16] ⊃ [160, 71, 20].

Additionally, using a [42, 35, 4] shortened extended Hamming code as the auxiliary
code in applying Construction X to [160, 113, 12] ⊃ [160, 78, 16], giving
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[202, 113, 16] ⊃ [202, 92, 16] ⊃ [202, 78, 16] ⊃ [202, 71, 20].

Finally, applying Construction X to [202, 113, 16] ⊃ [202, 71, 20] with the short-
ened extended Hamming code [49, 42, 4] as the auxiliary code, giving

[251, 113, 20] ⊃ [251, 92, 20] ⊃ [251, 78, 20] ⊃ [251, 71, 20].

The resulting sequence of codes which are used in this example are [128, 113, 6],
[160, 113, 12], [202, 113, 16] and [251, 113, 20].

The generator matrix of the last code, the [251, 113, 20] code is given by

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I71 −R4 0 0 0

I7 −R3 GA3

0 I14 −R2 GA2

I21 −R1 GA1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17.15)

On the left hand side of the double bar, the generator matrix of the code B1 is
decomposed along the chainB1 ⊃ B2 ⊃ B3 ⊃ B4. The matricesGAi , for 1 ≤ i ≤
3 are the generator matrices of the auxiliary codes Ai .

This generatormatrix is used to generate each entire codeword of lengthnM = 251
bits, but these bits are not transmitted unless requested. The first 128 bits of each
entire codeword are selected to form the codeword of the code [128, 113, 6] and are
transmitted first, bit 0 through to bit 127. The next transmission (if requested by the
IR system) consists of 32 parity bits. These are bit 128 through to bit 159 of the
entire codeword. These 32 parity bits plus the original 128 bits form a codeword
of the [160, 113, 12] code. The next transmission (if requested by the IR system)
consists of 42 parity bits. These are bit 160 through to bit 201 of the entire code-
word. These 42 parity bits plus the previously transmitted 160 bits form a codeword
from the [202, 113, 16] code. The last transmission (if requested by the IR sys-
tem) consists of 49 parity bits. These are the last 49 bits, bit 202 through to bit
250, of the entire codeword. These 49 parity bits plus the previously transmitted
202 bits form a codeword from the [251, 113, 20] code. The sequence of increasing
length codewords with each transmission (if requested by the IR system) has a min-
imum Hamming distance which starts with 6, increases from 6 to 12, then to 16 and
finally, to 20. In turn this will produce an increasing reliability given by Eq. (17.13)
or (17.14) depending on the type of system.
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A completely different method of generating nested codes is to use the external
parity checks, augmentation method first suggested by Goppa in which independent
columns are added incrementally to the parity-checkmatrix. Themethod is described
in detail in Chap.6 and can be applied to any Goppa or BCH code.

In order to be used in the HARQ systems, a FEC decoder is needed that will
decode these nested block codes. One such universal decoder is the modified Dorsch
decoder described in Chap. 15 and results using this decoder are presented below.

17.2.1.3 List Decoder for Turbo and LDPC Codes

If LDPC or turbo codes are to be used, the HARQ system needs a decoder that pro-
vides several codewords at its output in order that the difference between the squared
Euclidean distances (or an equivalent soft decision metric) of the most likely trans-
mitted codeword and the next most likely transmitted codeword may be determined
and compared to the threshold. For turbo codes, the conventional decoder is not a
list decoder but Narayanan and Stuber [3] show how a list decoder may be provided
for turbo codes. Similarly for LDPC codes, Kristensen [1] shows how a list decoder
may be provided for LDPC codes.

17.2.1.4 Performance Results Using the Nested Codes

Computer simulations using the nested codes constructed above have been carried
out featuring all three HARQ systems. These systems include the traditional HARQ
system using hard decision checks of the CRC and the two new systems featuring
the soft decision, decoded codeword/received vector check, with or without a CRC.
All of the simulations of the three systems have been carried out using a modified
Dorsch decoder as described in Chap.15. Themodified Dorsch decoder can be easily
configured as a list decoder with hard and soft decision outputs.

For each one of the nested codes, the decoder exhibits almost optimummaximum
likelihood performance by virtue of its delta correlation algorithm corresponding to
a total of 106 codewords, that are closest to the received vector, being evaluated each
time there is a new received vector to input. Since the decoder knows which of the
nested codes it is decoding, it is possible to optimise the settings of the decoder for
each code.

For the CRC cases, an 8 bit CRC polynomial (1 + x)(1 + x2 + x5 + x6 + x7)
was used, the 8 CRC bits being included in each codeword. It should be noted that
in calculating the throughput these CRC bits are not counted as information bits.
In the CRC cases, there are 105 information bits per transmitted codeword. In the
computer simulations, an ACK is transmitted if Δ is greater than threshold or there
have been M IR transmissions, otherwise a NACK is transmitted.

The traditional HARQ system using a CRC is compared to the new system not
using a CRC in Figs. 17.5 and 17.6. The comparative frame error rate (FER) perfor-
mance is shown in Fig. 17.5 and the throughput is shown in Fig. 17.6 as a function

http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 17.5 The error rate performance in comparison to the classical HARQ scheme using a CRC

of the average Eb
No

ratio. The traditional CRC approach shows good throughput, but
exhibits an early error-floor of the FER, which is caused by undetected error events.
The FER performance shows the benefit of having increased reliability of error detec-
tion compared to the traditional CRC approach. Two threshold settings are provided
using the multiplicative constant κ and the effects of these are shown in Figs. 17.5
and 17.6. It is apparent from the graphs that the threshold setting may be used to
trade-off throughput against reduced FER. The improvements in both throughput
and FER provided by the new HARQ systems compared to the conventional HARQ
system, featuring a hard decision CRC check, are evident from Figs. 17.5 and 17.6.

The comparative FER performance and throughput with a CRC compared to not
using a CRC is shown in Figs. 17.7 and 17.8 for the new system where the threshold
is fixed by κ = 1. The new system using a CRC shows an improvement in FER,
Fig. 17.7, over the entire range of average Eb

No
and an improvement in throughput,

Fig. 17.8, also over the entire range of average Eb
No

compared to the traditional HARQ
approach using a CRC.
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Fig. 17.6 The throughput performance without using a CRC in comparison to the classical HARQ
scheme using a CRC
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Fig. 17.7 The error rate performance using a CRC in comparison to the classical HARQ scheme
using a CRC
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Fig. 17.8 The throughput performance with a CRC in comparison to the classical HARQ scheme
using a CRC

17.3 Summary

This chapter has discussed the design of codes and systems for combined error
detection and correction, primarily aimed at applications featuring retransmission of
data packets which have not been decoded correctly. Several such Hybrid Automatic
ReQuest, HARQ, systems have been described including a novel system variation
which uses a retransmission metric based on a soft decision; the Euclidean distance
between the decoded codeword and the received vector. It has been shown that a
cyclic redundancy check, CRC, is not essential for this system and need not be
transmitted.

It has also been shown how to construct the generator matrix of a nested set of
block codes of length 251 bits by applying Construction X three times in succession
starting with an extended BCH (128, 113, 6) code. The resulting nested codes have
been used as the basis for an incremental-redundancy system whereby the first 128
bits transmitted is a codeword from the BCH code, followed by the transmission of a
further 32 bits, if requested, producing a codeword froma (160, 113, 12) code. Further
requests for additional transmitted bits finally result in a codeword from a (251, 113,
20) code, each time increasing the chance of correct decoding by increasing the
minimumHamming distance of the net received codeword. Performance graphs have
been presented showing the comparative error rate performances and throughputs of
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the new HARQ systems compared to the standard HARQ system. The advantages of
lower error floors and increased throughputs are evident from the presented graphs.
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