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Abstract The epidemic spreading over a network has been studied for years by ap-
plying the mean-field approach in both homogeneous case, where each node may get
infected by an infected neighbor with the same rate, and heterogeneous case, where
the infection rates between different pairs of nodes are also different. Researchers
have discussed whether the mean-field approaches could accurately describe the
epidemic spreading for the homogeneous cases but not for the heterogeneous cases.
In this paper, we explore if and under what conditions the mean-field approach
could perform well when the infection rates are heterogeneous. In particular, we
employ the Susceptible-Infected-Susceptible (SIS) model and compare the average
fraction of infected nodes in the metastable state, where the fraction of infected
nodes remains stable for a long time, obtained by the continuous-time simulation
and the mean-field approximation. We concentrate on an individual-based mean-field
approximation called the N-intertwined Mean Field Approximation (NIMFA), which
is an advanced approach considered the underlying network topology. Moreover,
for the heterogeneity of the infection rates, we consider not only the independent
and identically distributed (i.i.d.) infection rate but also the infection rate correlated
with the degree of the two end nodes. We conclude that NIMFA is generally more
accurate when the prevalence of the epidemic is higher. Given the same effective
infection rate, NIMFA is less accurate when the variance of the i.i.d. infection rate
or the correlation between the infection rate and the nodal degree leads to a lower
prevalence. Moreover, given the same actual prevalence, NIMFA performs better
in the cases: 1) when the variance of the i.i.d. infection rates is smaller (while the
average is unchanged); 2) when the correlation between the infection rate and the
nodal degree is positive. Our work suggests the conditions when the mean-field
approach, in particular NIMFA, is more accurate in the approximation of the SIS
epidemic with heterogeneous infection rates.
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1 Introduction

By considering the system components as nodes and the interactions or relations in
between nodes as links, networks have been used to describe the biological, social
and communication systems. On such networks or complex systems, viral spreading
models have been used to describe processes e.g. epidemic spreading and information
propagation [8, 10, 13, 20]. The Susceptible-Infected-Susceptible (SIS) model is one
of the most studied models. In the SIS model, each infected node infects each of its
susceptible neighbors with an infection rate . The infected node can be recovered
with a recovery rate 8. Both processes are independent Poisson processes. The ratio
72 B/§ is called effective infection rate, and when 7 is larger than the epidemic
threshold 7., the epidemic spreads out with a nonzero fraction of infected nodes in
the metastable state. The average fraction of infected nodes y.. in the metastable
state, ranging in [0, 1], indicates how severe the influence of the virus is: the larger
the fraction y., is, the more severely the network is infected.

In this paper, we concentrate on deriving the average fraction y. of infected
nodes in the metastable state. Although the continuous-time Markov theory can
be used to obtain the exact value of y., the number of states is too large to be
solved in a large network [12]. Hence, the derivation of the average fraction y..
of infected nodes in the metastable state mostly relies on mean-field theoretical
approaches. The first approach to study the SIS model in complex networks is
a degree-based mean-field (DBMF) theory, also called heterogeneous mean-field
(HMF) approximation, proposed by Pastor-Satorras et al. [14], which assumes that all
nodes with the same degree are statistically equivalent, i.e. the infection probabilities
of those nodes are the same. An individual-based mean-field (IBMF) approximations,
called the N-Intertwined Mean-Field Approximation (NIMFA), of the SIS model is
then introduced [19] with the only assumption that the state of neighboring nodes is
statistically independent. NIMFA, taking the network topology into account, turns
out to be more precise on different types of networks for the classic SIS model with
the homogeneous infection rates[7] while comparing to the DBMF approximation.
However, as discussed in [4, 15, 22], the infection rates could be heterogeneous,
i.e. the infection rates between different pairs of nodes could also be different. The
accuracy of NIMFA with heterogeneous infection rates has not yet been discussed.

In this paper, we explore the influence of the heterogeneous infection rates on the
precision of NIMFA. In particular, we compare the average fraction y.., of infected
nodes as a function of the effective infection rate T computed by NIMFA to that ob-
tained by the continuous-time simulations of the exact SIS model when the infection
rates are heterogeneous but the recovery rate is the same for all nodes. In fact, the
effective infection rate 7 refers to the average infection rate divided by the recovery
rate in the SIS model with heterogeneous infection rates. We set the average infection
rate to 1 and tune the recovery rate d to control the effective infection rate 7. We
consider both the independent and identically distributed (i.i.d.) and the correlated
heterogeneous infection rates in different network topologies.
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2 Preliminary

2.1 The N-Intertwined Mean-Field Approximation

The N-Intertwined Mean-Field Approximation (NIMFA) is so far one of the most
accurate approximations of the SIS model that takes into account the influence of the
network topology. For the classic SIS model with the homogeneous infection rate 3
and recovery rate 0. The single governing equation for a node i in NIMFA is

dv,'(l)
dr

=—06vi(t)+ B(1—vi(t Zau (D

where v;(1) is the infection probability of node i at time #, and a;; = 1 or 0 denotes if
there is a link or not between node i and node j. The governing equation (1) can be
extended to the heterogeneous case:

dv;
Vdft) =—0vi(t)+ (L —v(z Z Bijaijv;(t) 2)

where f;; = Bj; is the infection rate between node i and j. In the steady state,
defined by %(t) =0 where V(t) = [vi(t) v2(t) --- vy (t)]T, lim; e v;(t) = vjeo and

2=
limy e V() = Voo, We have

(%diag(l —Vijew) BA—1)Veo =0 3)
where A is the N X N adjacency matrix with elements @;;, I is the N x N identity
matrix, diag(v;(r)) is the diagonal matrix with elements v;(¢),v,(t),....,vy(¢) and B
is the infection rate matrix with elements 3; ;. The trivial, i.e. all-zero, solution of (3)
indicates the absorbing state where all nodes are susceptible. The non-zero solution
of V., in (3), if exists, points to the existence of a metastable state with a non-zero
fraction of infected nodes. Or else, the metastable state can be figured as 0 or not
existing. We are interested in actually the metastable state in this paper.

2.2 The i.i.d. heterogeneous infection rates

In this paper, we keep the average infection rate to 1 and tune the recovery rate é to
control the effective infection rate 7. In the case of the i.i.d. heterogeneous infection
rates, we aim to explore how the heterogeneous infection rates influence the accuracy
of NIMFA when the variance of the infection rate varies. We choose the infection-rate
distribution that is frequently observed in real-world and importantly the variance is
tunable with a fixed mean so that we can systematically explore how the accuracy of
NIMFA changes with the broadness of the i.i.d. infection rate.

We consider the log-normal distribution, of which we can keep the mean un-
changed and tune the variance in a large range. The log-normal distribution [18]
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B ~ Log-N(B; L, 0), of which the probability density function (PDF) is, for § > 0

_ v (mp-up?
Bovar T\ (207

has a power-law tail for a large range of 8 provided o is sufficiently large. The
log-normal distribution has been widely observed in real-world, where interaction
frequencies between nodes are usually considered as infection rates. Wang et al. [21]
find that by employing the log-normal distributed infection rates, their epidemic
model can accurately fit the infection data of 2003 SARS; we also find that the
infection rates in an airline network follow the log-normal distribution [15].

In [15], we find that, if the epidemic does not die out, the larger the variance of
the i.i.d. infection rate is, the smaller the average fraction y., of infected nodes is. We
will show that this conclusion can actually explain the observation about how the
accuracy of NIMFA changes with the variance of the i.i.d. infection rates at a given
effective infection rate 7 in this paper.

f8(Bs1,0) )

2.3 The correlated heterogeneous infection rates

For correlated heterogeneous infection rates, we build a correlated infection-rate
scenario and a reference one. In the correlated infection-rate scenario, we assume

Bij = c(did;)* (5)

where d; and d; are the degree of node i and node j respectively, c is selected so that
the average infection rate is 1 and « indicates the correlation strength. As discussed in
[17], such a correlation between the infection rate and the nodal degree is motivated
by the real-world datasets. In this case, the infection rate of each link is determined
by the given network topology and «. For the reference scenario, we shuffle the
infection rates from all the links as generated in the first scenario and redistribute
them randomly to all the links. In this way, we keep the distribution of infection rates
but effectively remove the correlation between the infection rates and nodal degrees.
For simplicity, we name this reference scenario as the uncorrelated infection-rate
scenario. Though the i.i.d. infection rates are also uncorrelated, we can tune the
variance of the infection rate in the case of the i.i.d. infection rates while keeping
the distribution and the mean of the infection rates. However, in the scenario of
uncorrelated infection rates in this paper, the distribution of the infection rate changes
with the parameter ¢, hence the variance of the heterogeneous infection rates cannot
be systematically tuned.

A positive o > 0 (or negative ¢ < 0), suggests a positive (or negative) correlation
between infection rates and nodal degrees. Too large or small values of ¢ could
not be realistic. For example, [3, 9, 11] suggest that & is around 0.5 or 0.8 in their
datasets. Hence, we select o« = —0.25,—0.5,—1 for the negative correlation and
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a = 0.25,0.5,1 for the positive correlation. Different values of o also offer the
possibility to explore how NIMFA performs with different correlation strengths.

In this paper, we aim to understand how the correlation influences the accuracy of
NIMFA by comparing the average fraction y.. of infected nodes obtained by NIMFA
and the simulations of the exact SIS model. In [17], we explored the influence of
the correlation between the infection rate and the nodal degree on the prevalence of
epidemic, which can be used to partially explain the conclusions in this paper.

2.4 The network construction and simulations

As in our previous work [15, 17], we perform the continuous-time simulations of the
SIS model. We consider both the scale-free (SF) and Erdos-Rényi (ER) models for
different network topologies. The SF model has been used to capture the scale-free
nature of degree distribution in real-world networks such as the Internet [5] and
World Wide Web [1]: Pr[D =d| ~ d*.de [@min; dmax]> Where dpyy, is the smallest
degree, dmax is the degree cutoff, and A > 0 is the exponent characterizing the
broadness of the distribution [2]. In real-word networks, the exponent A is usually
in the range [2,3], thus we confine the exponent A = 2.5 in this paper. We further
employ the smallest degree dyin = 2, the natural degree cutoff dmax = [N 1/ (A’I)J as
in [6], and the size N = 1000. Hence, the average degree is approximately 4. The
distribution of the degree of a random node in ER network is binomial: Pr[D = d] =
("1 p?(1— p)¥~'=? and the average degree is E[D] = (N — 1)p. We consider the
ER networks with N = 1000 and E[D] = 4.

Given a network topology and a recovery rate 8, we carry out 100 iterations. In
each iteration, the networks are constructed as described above and the infection
rates are generated as described in Section 2.2 and 2.3. Initially, 10% of the nodes
are randomly infected. Then the infection and recovery processes of SIS model are
simulated until the system reaches the metastable state where the fraction of infected
nodes is nonzero and unchanged for a long time if the epidemic spreads out, or the
fraction is zero if the epidemic dies out. The average fraction y.. of infected nodes is
obtained over 100 iterations (no matter the epidemic dies out or not).

3 Effect of the heterogeneous infection rates

In this section, we first explore the accuracy of NIMFA with the i.i.d. infection rates,
and particularly how NIMFA performs when the variance Var[B] of the infection rate
B varies. Then we explore the influence of the correlated infection rates on NIMFA.

3.1 The i.i.d. infection rates

We aim to understand the precision of NIMFA under different effective infection
rates, different variances of infection rates and different network topologies: we set
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the average infection rate to 1 and tune the recovery rate § to control the effective
infection rate 7; we change the variance of infection rates which follow the log-
normal distribution; we consider both ER and SF networks to represent different
topologies. For each value of the variance of the infection rate, we obtain the average
fraction y.. of infected nodes as a function of the effective infection rate 7 for NIMFA
by numerically solving (3) and compare with that by the continuous-time simulations.
As shown in Fig. 1a, no matter what the variance of the infection rate is, the curve of
Yo Vs. T obtained by NIMFA for ER networks is close to that obtained by simulations
when the actual prevalence of the epidemic is high, i.e. the effective infection rate T
is large.
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Fig. 1: (a) The average fraction y., as a function of the effective infection rate
and (b) the plot of the difference { as a function of the effective infection rate 7.
The variances of the infection rates are 1 and 4 in the main figure and the inset
respectively. All results are on ER networks.

In order to quantify the difference between the two curves obtained by NIMFA
and simulations, we define the variable {:

_ Voo N (T) = Yoo 5(7T)|
¢ = Yoo 5 (T)

Q)

where y. n(7) > 0 and y. s(7) > 0 denote the average fraction of infected nodes
obtained by NIMFA and simulations respectively. The larger the value of {(7) is, the
less accurate NIMFA is at the corresponding 7.

In Fig. 1b, the plot of { vs. T is shown for ER networks. We find that, for a
given effective infection rate 7, NIMFA becomes less accurate when the variance of
the i.i.d. heterogeneous infection rates increases. This observation can be to a large
extent explained by: 1) our finding in Fig. 1a that NIMFA is more accurate when the
prevalence is higher; 2) that given an effective infection rate T a smaller variance of
the i.i.d. infection rates leads to a higher prevalence [15]. We observe the same in SF
networks, and the figures, which can be found in [16], are not shown here due to the
page limit.
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We further explore how the variance of the infection rates influences the accuracy
of NIMFA if the actual prevalence y.. s(7) of epidemic is similar. We plot the variable
£ in (6) as a function of the actual average fraction of infected nodes obtained by
simulations in Fig. 2. We find that though it is less evident for ER networks in Fig. 2a,
the difference ¢ in (6) is actually larger if the variance of the infection rate is larger
as shown in Fig. 2b for SF networks when the prevalence is the same. Hence, the
higher heterogeneity, i.e. the larger variance, of the i.i.d. infection rates tends to lower
down more the accuracy of NIMFA. Overall, we conclude that the prevalence of the
epidemic mainly affects the accuracy of NIMFA, i.e. the higher the prevalence is, the
more accurate NIMFA tends to be, and given the same prevalence, a larger variance
of the i.i.d. infection rates tends to lower down the accuracy of NIMFA.
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Fig. 2: The plot of the difference { as a function of the average fraction y.. obtained
by simulations for (a) ER networks and (b) SF networks.

3.2 The correlated infection rate

In this subsection, we aim to understand how the correlation between the infection
rate and the nodal degree as shown in (5) influences the accuracy of NIMFA. We
first employ ER networks as an example and discuss the case when the correlation is
positive. Afterwards we explore the influence of the negative correlation.

As mentioned in Section 2.3, we build the scenario of uncorrelated infection rates
as a reference to study the influence of the correlation between the infection rate
and the nodal degree by shuffling the infection rates from all the links as generated
in the scenario of correlated infection rates and redistributing them randomly to all
the links. As shown in Fig. 3a, we compare the difference { between NIMFA and
simulations in the scenario of uncorrelated and correlated infection rates for both
o =0.25 and o = 1, and find that { is smaller in the scenario of correlated infection
rates, i.e. NIMFA is more accurate at a given effective infection rate T when the
correlation between the infection rate and the nodal degree is positive comparing
to the scenario of uncorrelated infection rates. The observations are also consistent
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Fig. 3: The plot of the difference { as a function of (a) the effective infection rate
T or (c) the average fraction y. of infected nodes obtained by simulations in the
scenarios of uncorrelated and correlated infection rates for o = 0.25 (the main figure)
and o = 1 (the inset). The plot of the difference ¢ as a function of (b) the effective
infection rate 7 or (d) the actual average fraction y., of infected nodes in the scenario
of correlated infection rates where different values of o are considered.

with our conclusion that NIMFA is more accurate when the prevalence is higher: the
positive correlation tends to increase the average fraction of infected nodes [17], and
thus the accuracy of NIMFA, when the effective infection rate 7 is small; however,
when the effective infection rate 7 is large, though the positive correlate may lower
down a bit the average fraction y.. of infected nodes, the prevalence in both scenarios
is high, i.e. NIMFA is relatively accurate, and the difference of the accuracy of
NIMFA in the two scenarios is not obvious. As the correlation strength ¢ increases
in Fig. 3b, the difference { decreases at a given 7. That is to say, NIMFA tends to be
more accurate when the positive correlation becomes stronger.

We further consider the influence of the positive correlation on the accuracy of
NIMFA when the prevalence is the same. The plots of the difference ¢ as a function
of the average fraction y.. of infected nodes are shown in Fig. 3¢ and Fig. 3d. Given
the prevalence of epidemic, the positive correlation is more likely to increase the
precision of NIMFA and the stronger the correlation is the more accurate NIMFA is.
We observe the same on SF networks which is though not shown here.

Regarding to the influence of the negative correlation between the infection rate
and the nodal degree on the accuracy of NIMFA, we compare the variable { in
the scenario of correlated and uncorrelated infection-rate scenario with o = —1



The Accuracy of NIMFA for SIS model

0.7

.
ER, a=-1 osfi SF, o=-1

507

0.6f- osh
0.5( 04r ‘\‘
[ECES
n 04r 02| \\a
0.3F oA N
029\ A
T
0.1- X\ —©— Correlated —5- Uncorrelated |
~—
T —
z 6§ 7 8 9 2
1
T
(2)
0.7+ u T T T
i —©— Correlated | a=-o--1 |
06 sk —5- Uncorrelated | —=--0.5
—4—-0.257
05 ]
04r SF, correlated |
4

03

o2t
o1t

Fig. 4: The plot of the difference { as a function of (a) the effective infection rate ©
or (c) the actual average fraction y., of infected nodes in the scenarios of uncorrelated
and correlated infection rates for & = —1. The plot of the difference { as a function
of (b) the effective infection rate 7 or (d) the actual average fraction y., of infected
nodes in the scenario of correlated infection rates where different values of « are
considered.

for both ER and SF networks as shown in Fig. 4a. We find that, in general, the
negative correlation significantly decreases the accuracy of NIMFA when the effective
infection rate 7 is small but may slightly increase that when 7 is large. Moreover,
NIMFA becomes less accurate when the negative correlation is stronger as shown in
Fig. 4b. As mentioned in Section 2.3, the negative correlation tends to decrease the
prevalence when the effective infection rate 7 is small while increase the prevalence
when 7 is large. Hence, the influence of prevalence on the precision of NIMFA could
largely explain our observations here.

When the prevalence of epidemic is the same, the influence of the negative
correlation on NIMFA’s accuracy is shown in Fig. 4c and Fig. 4d. We find that, in
general, 1) NIMFA is less accurate with the negative correlation comparing to the
uncorrelated scenario especially when the prevalence is low as shown in Fig. 4c; 2)
NIMFA becomes even less accurate if the negative correlation becomes stronger as
shown in Fig. 4d.
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4 Real-world network

In this section, we choose the airline network from the real world as an example to
illustrate how its heterogeneous infection rates affect the accuracy of NIMFA of SIS
epidemics on the network.

In the airline network, the nodes are the airports, the link between two nodes
indicates that there’s at least one flight between these two airports, and the infection
rate along a link is the number of flights between the two airports. We construct this
network and its infection rates from the dataset of openFlightsl. As shown in [17], the
airline network possess roughly a power-law degree distribution. The heterogeneous
infection rates from the dataset are normalized by the average so that the average is
1. We compare the difference { between NIMFA and the simulations of the exact
SIS model in three scenarios: 1) the network is equipped with its normalized original
heterogeneous infection rates (correlated) as given in the dataset; 2) the network is
equipped with the infection rates in the normalized original dataset but randomly
shuffled (uncorrelated); 3) the network is equipped with a constant infection rate
(homogeneous) which equals to 1. The original heterogeneous infection rate between
a pair of nodes are approximately correlated with the degrees of the two nodes as the
relationship (5), and the parameter o ~ 0.14 indicates a positive correlation [17].

0101 The airline network | 0.10r| The airline network
\ —&— Homogenous \ —&— Homogenous
0.08- | —&- Correlated ] 0.08}| —&- Correlated

\ —A— Uncorrelated | —A— Uncorrelated

(a) (b)

Fig. 5: The plot of the difference { as a function of (a) the effective infection rate
7 and (b) the average fraction y., of infected nodes obtained by simulations in the
airline network with different scenarios of infection rates.

We show the difference { as a function of the effective infection rate 7 in Fig. 5a
for the 3 scenarios defined as above. We find that NIMFA is generally more accurate
when the effective infection rate 7 is larger, i.e. the prevalence of epidemic is high. The
variable { is smaller in the scenario of homogeneous infection rates than uncorrelated
infection rates with any effective infection rate. This is because the i.i.d. infection
rates with a non-zero variance tends to decrease the prevalence, and thus lower
down the accuracy of NIMFA at a given effective infection rate 7. NIMFA is more
accurate with the positive correlation by comparing the difference § in the scenario
of correlated infection rates and uncorrelated infection rates. Furthermore, Fig. 5b

! http://openflights.org/data.html
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shows that, given the same actual prevalence, i.e. the average fraction y.. of infected
nodes obtained by simulations, NIFMA is more accurate: 1) in the homogeneous
scenario than in the uncorrelated scenario; 2) in the correlated scenario than in the
uncorrelated scenario. All the observations agree with our previous observations and
explanations about how the heterogeneous infection rate influences the accuracy of
NIMFA in network models.

5 Conclusion

In this paper, we study how the heterogeneous infection rates affect the accuracy of
NIMFA - an advanced mean-field approximation of SIS model that takes the underly
network topology into account. By comparing NIMFA with the continuous-time
simulations of the exact SIS model at a give effective infection rate 7, we find that
the prevalence of epidemic could largely characterize the accuracy of NIMFA which
is reflected in two aspects: 1) NIFMA is generally more accurate when the effective
infection rate 7 is larger, i.e. the prevalence of epidemic is higher; 2) when the
variance of the i.i.d. infection rates or the correlation between the infection rate and
the nodal degree decreases the prevalence at a given 7, NIMFA tends to become
less accurate as well. Moreover, we also explore the influence of the heterogeneous
infection rates on the accuracy of NIMFA at a given prevalence, i.e. when the average
fraction y. of infected nodes obtained by simulations is given. Regarding to the
i.i.d. heterogeneous infection rates, the accuracy of NIMFA tends to decrease as the
variance of infection rates increases. In the scenario of correlated infection rates, the
positive correlation between the nodal degree and the infection rate is more likely
to increase the accuracy of NIMFA whereas the negative correlation tends to lower
down the accuracy especially when the effective infection rate 7 is small. Note that
we discuss the conditions when NIMFA is accurate but the cases where NIMFA is
far from the simulations are still unexplored. Our work sheds light on the conditions
when we the mean-field approximation of the SIS model with heterogeneous infection
rates is accurate.
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