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Abstract. Topological drawings are natural representations of graphs in
the plane, where vertices are represented by points, and edges by curves
connecting the points. We consider a natural class of simple topological
drawings of complete bipartite graphs, in which we require that one side
of the vertex set bipartition lies on the outer boundary of the drawing.
We investigate the combinatorics of such drawings. For this purpose,
we define combinatorial encodings of the drawings by enumerating the
distinct drawings of subgraphs isomorphic to K2,2 and K3,2, and inves-
tigate the constraints they must satisfy. We prove in particular that for
complete bipartite graphs of the form K2,n and K3,n, such an encoding
corresponds to a drawing if and only if it obeys consistency conditions
on triples and quadruples. In the general case of Kk,n with k ≥ 2, we
completely characterize and enumerate drawings in which the order of
the edges around each vertex is the same for vertices on the same side
of the bipartition.

1 Introduction

We consider topological graph drawings, which are drawings of simple undirected
graphs where vertices are represented by points in the plane, and edges are
represented by simple curves that connect the corresponding points. We typically
restrict those drawings to satisfy some natural nondegeneracy conditions. In
particular, we consider simple drawings, in which every pair of edges intersect
at most once. A common vertex counts as an intersection.

While being perhaps the most natural and the most used representations of
graphs, simple drawings are far from being understood from the combinatorial
point of view. For the smallest number of edge crossings in a simple topological
drawing of Kn [1,2,8] or of Kk,n [4,12] there are long standing conjectures but
the actual minimum remains unknown.

In order to cope with the inherent complexity of the drawings, it is useful
to consider combinatorial abstractions. Those abstractions are discrete struc-
tures encoding some features of a drawing. One such abstraction, introduced by
Kratochv́ıl, Lubiw, and Nešetřil, is called abstract topological graphs (AT-
graph) [9]. An AT-graph consists of a graph (V,E) together with a set X ⊆ (

E
2

)
.
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A topological drawing is said to realize an AT-graph if the pairs of edges that
cross are exactly those in X . Another abstraction of a topological drawing is
called the rotation system. The rotation system associates a circular permuta-
tion with every vertex v, which in a realization must correspond to the order in
which the neighbors of v are connected to v. Natural realizability problems are:
given an AT-graph or a rotation system, is it realizable as a topological drawing?
The realizability problem for AT-graphs is known to be NP-complete [10].

For simple topological drawings of complete graphs, the two abstractions are
actually equivalent [11]. It is possible to reconstruct the set of crossing pairs of
edges by looking at the rotation system, and vice-versa. Kynčl recently proved
the remarkable result that a complete AT-graph (an AT-graph for which the
underlying graph is complete) can be realized as a simple topological drawing of
Kn if and only if all the AT-subgraphs on at most 6 vertices are realizable [5,6].
This directly yields a polynomial-time algorithm for the realizability problem.
While this provides a key insight on topological drawings of complete graphs,
similar realizability problems already appear much more difficult when they
involve complete bipartite graphs. In that case, knowing the rotation system is
not sufficient for reconstructing the intersecting pairs of edges.

We propose a fine-grained analysis of simple topological drawings of complete
bipartite graphs. In order to make the analysis more tractable, we introduce a
natural restriction on the drawings, by requiring that one side of the vertex set
bipartition lies on a circle at infinity. This gives rise to meaningful, yet complex
enough, combinatorial structures.

Definitions. We wish to draw the complete bipartite graph Kk,n in the plane
in such a way that:

1. vertices are represented by points,
2. edges are continuous curves that connect those points, and do not contain

any other vertices than their two endpoints,
3. no more than two edges intersect in one point,
4. edges pairwise intersect at most once; in particular, edges incident to the

same vertex intersect only at this vertex,
5. the k vertices of one side of the bipartition lie on the outer boundary of the

drawing.

Properties 1–4 are the usual requirements for simple topological drawings
also known as good drawings. As we will see, property 5 leads to drawings with
interesting combinatorial structures. Throughout this paper, the term drawing
always refers to drawings satisfying the above properties.

The set of vertices of a bipartite graph Kk,n will be denoted by P ∪ V ,
where P and V are the two sides of the bipartition, with |P | = k and |V | = n.
When we consider a given drawing, we will use the word “vertex” and “edge” to
denote both the vertex or edge of the graph, and their representation as points
and curves. Without loss of generality, we can assume that the k outer vertices
p1, . . . , pk lie in clockwise order on the boundary of a disk that contains all
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Fig. 1. Two drawings of K3,5 satisfying the constraints. In both drawings the rotation
system is (12345, 21435, 13254).

the edges, or on the line at infinity. The vertices of V are labeled 1, . . . , n. An
example of such a drawing is given in Fig. 1.

The rotation system of the drawing is a sequence of k permutations on n
elements associated with the vertices of P in clockwise order. For each vertex
of P , its permutation encodes the (say) counterclockwise order in which the n
vertices of V are connected to it. Due to our last constraint on the drawings, the
rotations of the k vertices of P around each vertex of V are fixed and identical,
they reflect the clockwise order of p1, . . . , pk on the boundary.

Unlike for complete graphs, the rotation system of a drawing of a complete
bipartite graph does not completely determine which pairs of edges are inter-
secting. This is exemplified with the two drawings in Fig. 1.

Results. The paper is organized as follows. In Sect. 2, we consider drawings with
a uniform rotation system, in which the k permutations of the vertices of P are all
equal to the identity. In this case, we can state a general structure theorem that
allows us to completely characterize and count drawings of arbitrary bipartite
graphs Kk,n.

In Sect. 3, we consider drawings of K2,n with arbitrary rotation systems.
We consider a natural combinatorial encoding of such drawings, and state two
necessary consistency conditions involving triples and quadruples of points in V .
We show that these conditions are also sufficient, yielding a polynomial-time
algorithm for checking consistency of a drawing.

In Sect. 4, we consider drawings of K3,n and study a complete classification
of all drawings of K3,3. This directly gives a necessary consistency condition
on triples of vertices in V . We also provide an additional necessary condition on
quadruples. A proof that the consistency conditions on triples and quadruples are
sufficient for drawings of K3,n can be found in the long version of the paper [3].

2 Drawings with Uniform Rotation System

We first consider the case where k is arbitrary but the rotation system is uniform,
that is, the permutation around each of the k vertices pi is the same. Without
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Fig. 2. Having placed b in Q4(a) the crossing pairs of edges and the order of crossings
on each edge is prescribed. In particular a ∈ Q4(b). On the right a symmetric drawing
of the pair.

loss of generality we assume that this permutation is the identity permutation
on [n].

In a given drawing, each of the n vertices of V splits the plane into k
regions Q1, Q2, . . . , Qk, where each Qi is bounded by the edges from v to pi

and pi+1, with the understanding that pk+1 = p1. We denote by Qi(v) the ith
region defined by vertex v and further on call these regions quadrants. We let
type(a, b) = i, for a, b ∈ V and i ∈ [k], whenever a ∈ Qi(b). This implies that
b ∈ Qi(a), see Fig. 2. Indeed if a < b and j �= i + 1, then edge pi+1b has to
intersect all the edges pja, while edge pjb has to avoid pi+1b until they meet
in b. It follows that none of the edges pjb can intersect pi+1a. This shows that
a ∈ Qi(b).

Observation 1 (Symmetry).
For all a, b in uniform rotation systems: type(a, b) = type(b, a).

For the case k = 2, we have exactly two types of pairs, that we will denote
by A and B. The two types are illustrated on Fig. 3.

The drawings of K2,n with uniform rotations can be viewed as colored pseudo-
line arrangements, where each pseudoline is split into two segments of distinct
colors, and no crossing is monochromatic. This is illustrated on Fig. 4. The
pseudoline of a vertex v ∈ V is denoted by �(v). The left (red) and right
(blue) parts of this pseudoline are denoted by �L(v) and �R(v). Now having
type(a, b) = type(b, a) = A means that b lies above �(a) and a lies above �(b).
While having type(a, b) = type(b, a) = B means that b lies below �(a) and a lies
below �(b).

The Triple Rule.

Lemma 1 (Triple rule).
For uniform rotation systems and three vertices a, b, c ∈ V with a < b < c

type(a, c) ∈ {type(a, b), type(b, c)}.
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Fig. 3. The two types of pairs for drawings of K2,n with uniform rotation systems.
(Color figure online)
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Fig. 4. Drawing K2,4 as a colored pseudoline arrangement. The type of each pair is
given in the table on the right. (Color figure online)

Proof. Case k = 2. If type(a, b) �= type(b, c) there is nothing to show since
there are only two types. Without loss of generality, suppose that type(a, b) =
type(b, c) = B. This situation is illustrated in the left part of Fig. 5. The pseudo-
line �(c) must cross �(b) on �R(b), otherwise we would have type(b, c) = A. Hence
the point c is on the right of this intersection. Pseudoline �(a) must cross �(b)
on �L(b), and a is left of this intersection. It follows that �(a) and �(c) cross on
�R(a) and �L(c), i.e., type(a, c) = B.

Case k > 2. For the general case assume that type(a, b) = i and type(a, c) = j.
If i = j there is nothing to show. Now suppose i �= j. From c ∈ Qj(a) it follows
that pj+1a and pjc are disjoint. Edges pjb and pjc only share the endpoint pj ,
hence c has to be in the region delimited by pjb and pj+1a, see the right part of
Fig. 5. This region is contained in Qj(b), hence type(b, c) = j. ��
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a c
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pj+1

Fig. 5. Illustrations for the k = 2 case of Lemma 1 (left), and the k > 2 case of
Lemma 1 (right).

The Quadruple Rule

Lemma 2. For four vertices a, b, c, d ∈ V with a < b < c < d and X ∈ {A,B}:
if type(a, c) = type(b, c) = type(b, d) = X then type(a, d) = X.
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Proof. Case k = 2. Suppose, without loss of generality, that X = B. Consider
the pseudolines representing b and c with their crossing at �R(b)∩ �L(c). Coming
from the left the edge �L(d) has to avoid �L(c) and therefore intersects �R(b).
On �R(b) the crossing with �L(c) is left of the crossing with �L(d), see Fig. 6.
Symmetrically from the right the edge �R(a) has to intersect �L(c) and this
intersection is left of �R(b) ∩ �L(c). To reach the crossings with �L(c) and �R(b)
edges �R(a) and �L(d) have to intersect, hence, type(a, d) = B.

a

b

c

ad

b

c

d

Fig. 6. Illustration for the k > 2 case of Lemma 1.

Case k > 2. In the general case, we let X = i, and consider the pseudoline
arrangement defined by the two successive vertices pi and pi+1 of P defining the
quadrants Qi. Proving that type(a, d) = i, that is, that a ∈ Qi(d), can be done
as above for k = 2 on the drawing of K2,n induced by {pi, pi+1} and V . ��

Decomposability and Counting

We can now state a general structure theorem for all drawings of Kk,n with
uniform rotation systems.

Theorem 1. Given a type for each pair of vertices in V , there exists a drawing
realizing those types if and only if:

1. there exists s ∈ {2, . . . , n} and X ∈ [k] such that type(a, b) = X for all pairs
a, b with a < s and b ≥ s,

2. the same holds recursively when the interval [1, n] is replaced by any of the
two intervals [1, s − 1] and [s, n].

Proof. (⇒) Let us first show that if there exists a drawing, then the types must
satisfy the above structure. We proceed by induction on n. Pick the smallest
s ∈ {2, . . . , n} such that type(1, b) = type(1, s) for all b ≥ s. Set X := type(1, s).
We claim that type(a, b) = X for all a, b such that 1 ≤ a < s ≤ b ≤ n. For a = 1
this is just the condition on s. Now let 1 < a.

First suppose that type(1, a) �= X. We can apply the triple rule on 1, a, b.
Since type(1, b) ∈ {type(1, a), type(a, b)}, we must have that type(a, b) = X.

Now suppose that type(1, a) = X. We have type(1, s − 1) = Y �= X by
definition. As in the previous case we obtain type(s − 1, b) = X from the triple
rule for 1, s−1, b. Applying the triple rule on 1, a, s−1 yields type(a, s−1) = Y .
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Fig. 7. Illustration of the recursive structure of the drawings in the uniform case.

Now apply the quadruple rule on 1, a, s− 1, b. We know that type(1, s− 1) =
type(a, s − 1) = Y , and by definition type(1, b) = X. Hence we must have that
type(a, b) �= Y .

Finally, apply the triple rule on a, s − 1, b. We know that type(a, s − 1) = Y ,
type(s − 1, b) = X. Since type(a, b) �= Y , we must have type(a, b) = X. This
yields the claim.

(⇐) Now given the recursive structure, it is not difficult to construct a draw-
ing. Consider the two subintervals as a single vertex, then recursively blow up
these two vertices. (See Fig. 7 for an illustration). ��
The recursive structure yields a corollary on the number of distinct drawings.

Corollary 1 (Counting drawings with uniform rotation systems). For
every pair of integers k, n > 0 denote by T (k, n) the number of simple topolog-
ical drawings of the complete bipartite graph isomorphic to Kk,n with uniform
rotation systems. Then

T (n + 1, k + 1) =
n∑

j=0

(
n+j
2j

)
Cj kj

where Cj is the jth Catalan number.

3 Drawings with k = 2

In this section we deal with drawings with k = 2 and arbitrary rotation system.
We now have three types of pairs, that we call N , A, and B, as illustrated on
Fig. 8. The type N (for noncrossing) is new, and is forced whenever the pair
corresponds to an inversion in the two permutations.

Recall that a drawing of K2,n, in which no pair is of type N , can be seen as
a colored pseudoline arrangement as defined previously. Similarly, a drawing of
K2,n in which some pairs are of type N can be seen as an arrangement of colored
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Fig. 8. The three types of pairs for drawings of K2,n with arbitrary rotation systems.

monotone curves crossing pairwise at most once. We will refer to arrangement of
monotone curves that cross at most once as quasi-pseudoline arrangements. The
pairs of type N correspond to parallel pseudolines. Without loss of generality,
we can suppose that the first permutation in the rotation system, that is, the
order of the pseudolines on the left side, is the identity. We denote by π the
permutation on the right side.

Note that every permutation π is feasible in the sense that there is a drawing
of K2,n such that the rotations are (id, π). To realize this, take the point set
{(i, π(i)) : i ∈ [n]} and consider horizontal and rays starting from each of these
points to the left and upward respectively.

Triples. For a, b, c ∈ V , with a < b < c, we are interested in the triples of types
(type(a, b), type(a, c), type(b, c)) that are possible in a topological drawing of
K2,n, i.e., all possible topological drawings of K2,3. Such triples will be called
legal. We like to display triples in little tables, e.g., the triple type(a, b) = X,

type(a, c) = Y , and type(b, c) = Z is represented as

a X Y

b Z

c

.

Lemma 3 (Decomposable Triples1). A triple with Y ∈ {X,Z} is always
legal. There are 15 triples of this kind.

Lemma 4.

There are exactly two non-decomposable legal triples:

a N A

b B

c and

a A B

b N

c

.

.

The proofs of the two lemmas can be found in [3]. With the two lemmas we
have classified all 17 legal triples.

Observation 2 (Triple Rule). Any three vertices of V in a drawing of K2,n

must induce one of the 17 legal triples of types.

Quadruples. We aim at a characterization of collections of types that corre-
spond to drawings. Already in the case of uniform rotations we had to add
Lemma 2, a condition for quadruples. In the general case the situation is more
complex than in the uniform case, see Fig. 9.

1 These triples of this lemma are decomposable in the sense of Theorem 1.
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Fig. 9. The quadruple rule from Lemma 2 does not hold in the presence of N types.

Reviewing the proof of Lemma 2 we see that in the case discussed there,
where given B types are intended to enforce type(a, d) = B, we need that in π
element a is before b, this is equivalent to type(a, b) �= N . Symmetrically, three
A types enforce type(a, d) = A when d is the last in π, i.e., if type(c, d) �= N .

Lemma 5. Consider four vertices a, b, c, d ∈ V such that a < b < c < d.
If type(a, b) �= N and type(a, c)=type(b, c)=type(b, d)= B then type(a, d) = B.
If type(c, d) �= N and type(a, c)=type(b, c)=type(b, d)= A then type(a, d) = A.

Consistency. With the next theorem we show that consistency on triples and
quadruples is enough to grant the existence of a drawing.

Theorem 2 (Consistency of drawings for k = 2). Given a type for each
pair of vertices in V , there exists a drawing realizing those types if and only if
all triples are legal and the quadruple rule (Lemma 5) is satisfied.

The proof of this result is based on the characterization of local sequences
in pseudoline arrangements. Given an arrangement of n pseudolines, the local
sequences are the permutations αi of [n] \ {i}, i ∈ [n], representing the order in
which the ith pseudoline intersects the n − 1 others.

Lemma 6 (Theorem 6.17 in [7]). The set {αi}i∈[n] is the set of local
sequences of an arrangement of n pseudolines if and only if

ij ∈ inv(αk) ⇔ ik ∈ inv(αj) ⇔ jk ∈ inv(αi),

for all triples i, j, k, where inv(α) is the set of inversions of the permutation α.

Proof (Theorem 2). The necessity of the condition is implied by Observation 2
and Lemma 5.

We proceed by giving an algorithm for constructing an appropriate drawing.
From the proof of Lemma 4, we know that having legal triples implies that the
sets of inversion pairs and its complement, the set of non-inversion pairs, are
both transitive. Hence, there is a well defined permutation π representing the
rotation at p2.

We aim at defining the local sequences αi that allow an application of
Lemma 6. This will yield a pseudoline arrangement. A drawing of K2,n, how-
ever, will only correspond to a quasi-pseudoline arrangement. Therefore, we first
construct a quasi-pseudoline arrangement T for the pair (π, id), i.e., only the
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quasi-pseudolines corresponding to i and j with type(i, j) = N cross in T . The
idea is that appending T on the right side of the quasi-pseudoline arrangement
of the drawing yields a full pseudoline arrangement.

Now fix i ∈ [n]. Depending on i we partition the set [n] \ i into five parts.
For a type X let X<(i) = {j : j < i and type(j, i) = X} and X>(i) = {j :
j > i and type(i, j) = X}, the five relevant parts are A<(i), A>(i), B<(i),
B>(i), and N(i) = N<(i) ∪ N>(i). The pseudoline �i has three parts. The edge
incident to p1 (the red edge) is crossed by pseudolines �j with j ∈ A>(i)∪B<(i).
The edge incident to p2 (the blue edge) is crossed by pseudolines �j with j ∈
A<(i) ∪ B>(i). The part of �i belonging to T is crossed by pseudolines �j with
j ∈ N(i). The order of the crossings in the third part, i.e., the order of crossings
with pseudolines �j with j ∈ N(i), is prescribed by T .

Regarding the order of the crossings on the second part we know that the
lines for j ∈ A<(i) have to cross �i from left to right in order of decreasing
indices and the lines for j ∈ B>(i) have to cross �i from left to right in order
of increasing indices, see Fig. 10. If j ∈ A<(i) and j′ ∈ B>(i), then consistency
of triples implies that type(j, j′) ∈ {A,B}. If type(j, j′) = A, then on �i the
crossing of j′ has to be left of the crossing of j. If type(j, j′) = B, then on �i the
crossing of j has to be left of the crossing of j′.

a

b

c

d e

i B B

BBA

A A

A A B

B

a

d

c

e

b

i

Fig. 10. Crossings on the edge i p2.

The described conditions yield a “left–to–right” relation →i such that for all
x, y ∈ A<(i) ∪ B>(i) one of x →i y and y →i x holds. We have to show that →i

is acyclic. Since →i is a tournament it is enough to show that →i is transitive.
Suppose there is a cycle x →i y →i z →i x. If x, y < i and z > i, then

type(x, i) = type(y, i) = A, moreover, from x →i y we get y < x and from y →i

z →i x we get type(x, z) = A, and type(y, z) = B. Since type(i, z) = B �= N
this is a violation of the second quadruple rule of Lemma 5.

If x < i and y, z > i, then we have type(i, y) = type(i, z) = B. From this
together with y →i z we obtain y < z, and z →i x →i y yields type(x, y) = B,
and type(x, z) = A. This is a violation of the first quadruple rule of Lemma 5.

Adding the corresponding arguments for the order of crossings on the first
part of line �i we conclude that the permutation αi is uniquely determined by
the given types and the choice of T .
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The consistency condition on triples of local sequences needed for the appli-
cation of Lemma 6 is trivially satisfied because legal triples of types correspond
to drawings of K2,3 and each such drawing together with the extensions of the
lines in T consists of three pairwise crossing pseudolines. ��
Since the two rules we enforced only involve at most four vertices of V , we
immediately get the following corollary.

Corollary 2. Consistency on all 4-tuples of V is sufficient and necessary for
drawings of K2,n, yielding an O(n4) time algorithm for checking consistency of
an assignment of types.

4 Drawings with k = 3

At the beginning of the previous section we have seen that any pair of rotations
is feasible for drawings of K2,n. This is not true in the case of k > 2. For k = 4
the system of rotations ([1, 2], [2, 1], [1, 2], [2, 1]) is easily seen to be infeasible. In
the case k = 3 it is less obvious that infeasible systems of rotations exist. We
will show later (Proposition 1) that ([1, 2, 3, 4], [4, 2, 1, 3], [2, 4, 3, 1]) is infeasible.
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Fig. 11. The six types of drawings of K3,2. (Color figure online)

Pairs. We again start by looking at the types for pairs, i.e., at all possible draw-
ings of K3,2. We already know that if the rotation system is uniform (id2, id2, id2),
then there are three types of drawings. The other three options (id2, id2, id2),
(id2, id2, id2), and (id2, id2, id2), each have a unique drawing. Figure 11 shows the
six possible types and associates them to the symbols Bα, and Wα, for α = 1, 2, 3.

The three edges emanating from a vertex i ∈ [n] partition the drawing area
into three regions. Define Qα(i) as the region bounded by the two edges i pα+1

and i pα−1 not containing pα When the types have been prescribed for all pairs
of vertices we know which vertices are located in which region of i. Conversely,
if we know the α for which j ∈ Qα(i), then only one B-type and one W -type
remain eligible for the pair (i, j).
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Triples. We now classify the triples, i.e., drawings of K3,3. It turns out that
there are 92 types. A complete description can be found in [3].

Now suppose that rotations (id, π2, π3) are prescribed. We want to decide
whether there is a corresponding drawing. The first step would be to deter-
mine the type of the drawing for each pair of vertices. For all non-uniform pairs
type(i, j) ∈ {W1,W2,W3} is uniquely given by the system.

The type of the remaining pairs is Bα for some α. Beforehand each α ∈
{1, 2, 3} is possible but of course the types of every triple must also correspond
to a drawing, i.e., the types of each triple must be among the 89 drawable types
of the classification. This may force the types of additional pairs.

Before giving a larger example we show that by looking at triples we can
deduce that not all choices (id, π2, π3) of prescribed rotations are feasible, i.e.,
there are choices that have no corresponding drawing.

Proposition 1. The system (id4, [4, 2, 1, 3], [2, 4, 3, 1]) is an infeasible set of
rotations.

Proof. The table of types for the given permutations is shown

on the right. Consider the subtable

W1 W3

Bα corresponding to
{1, 2, 3}. From the classification of triples it follows that the
only feasible one choice for α is α = 2.

1 W1W3W1

2 Bα W2

3 W1

4

The subtable

Bα W2

W1 of {2,3,4} again only allows a unique choice of α which is
α = 3. This shows that there is no drawing for this set of rotations. ��

Quadruples. Let us give a non-realizable example which nevertheless exhibits
triple consistency. Consider for instance the types type(1, 2) = type(1, 4) =
type(3, 4) = B1 and type(1, 3) = type(2, 3) = type(2, 4) = B2. Every triple
is decomposable, i.e., we have consistency on triples, however, the full table is
not decomposable. Since all the rotations/permutations are the identity, ie.e.,
the system is uniform we know from Theorem 1 that there is no corresponding
drawing.

1 W1 B1 B1

2 B1 B2

3 B2

4

The need for a condition on quadruples is not restricted to tables
of uniform systems. The table on the right is consistent on all
triples, still it is not realizable. This can be shown by looking at
the table corresponding to the green-blue K2,n subgraph, which
reveals a bad quadruple. Note that for the table of the green-blue
K2,n the elements have to be sorted according to π3 = (2, 1, 3, 4).

Let T be an assignment of types, e.g., in form of a table. From T we know
the corresponding system (π1, π2, π3) of rotations.
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Definition 1. T is consistent on quadruples if for any four vertices a, b, c, d
and i ∈ {1, 2, 3} the assignment of types from A,B,N induced by the restriction
of πi−1 and πi+1 to a, b, c, d satisfies the condition from Lemma 5.

Note that checking the condition requires sorting a, b, c, d according to πi−1.

4.1 The Consistency Theorem

Theorem 3 (Consistency of drawings for k = 3, see [3]). Given a type
for each pair of vertices in V , there exists a drawing realizing those types if and
only if all triples and quadruples are consistent.
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