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Abstract. Canonical orderings serve as the basis for many incremen-
tal planar drawing algorithms. All these techniques, however, have in
common that they are limited to undirected graphs. While st-orderings
do extend to directed graphs, especially planar st-graphs, they do not
offer the same properties as canonical orderings. In this work we extend
the so called bitonic st-orderings to directed graphs. We fully character-
ize planar st-graphs that admit such an ordering and provide a linear-
time algorithm for recognition and ordering. If for a graph no bitonic
st-ordering exists, we show how to find in linear time a minimum set of
edges to split such that the resulting graph admits one. With this new
technique we are able to draw every upward planar graph on n vertices
by using at most one bend per edge, at most n − 3 bends in total and
within quadratic area.

1 Introduction

Drawing directed graphs is a fundamental problem in graph drawing and has
therefore received a considerable amount of attention in the past. Especially the
so called upward planar drawings, a planar drawing in which the curve represent-
ing an edge has to be strictly y-monotone from its source to target. The directed
graphs that admit such a drawing are called the upward planar graphs. Deciding
if a directed graph is upward planar turned out to be NP-complete in the general
case [11], but there exist special cases for which the problem is polynomial-time
solvable [1,2,8,16,19,20]. An important result in our context is from Di Battista
and Tamassia [6]. They show that every upward planar graph is the spanning
subgraph of a planar st-graph, that is, a planar directed acyclic graph with a
single source and a single sink. They also show that every such graph has an
upward planar straight-line drawing [6], but it may require exponential area
which for some graphs cannot be avoided [5,7].

If one allows bends on the edges, then every upward planar graph can be
drawn within quadratic area. Di Battista and Tamassia [6] describe an approach
that is based on the visibility representation of a planar st-graph. Every edge has
at most two bends, therefore, the resulting drawing has at most 6n − 12 bends
with n being the number of vertices. With a more careful choice of the vertex
positions and by employing a special visibility representation, the authors man-
age to improve this bound to (10n − 31)/3. Moreover, the drawing requires only
quadratic area and can be obtained in linear time. Another approach by Di
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Battista et al. [7] uses an algorithm that creates a straight-line dominance
drawing as an intermediate step. A dominance drawing, however, has much
stronger requirements than an upward planar drawing. Therefore, the presented
algorithm in [7] cannot handle planar st-graphs directly. Instead it requires a
reduced planar st-graph, that is, a planar st-graph without transitive edges. In
order to obtain such a graph, Di Battista et al. [7] split every transitive edge by
replacing it with a path of length two. The result is a reduced planar st-graph for
which a straight-line dominance drawing is obtained that requires only quadratic
area and can be computed in linear time. Then they reverse the procedure of
splitting the edges by using the coordinates of the inserted dummy vertices as
bend points. Since a planar st-graph has at most 2n − 5 transitive edges, the
resulting layout has not more than 2n−5 bends and at most one bend per edge.
To our knowledge, this bound is the best achieved so far.

These techniques are very different to the ones used in the undirected case.
One major reason is the availability of canonical orderings for undirected graphs,
introduced by de Fraysseix et al. [9] to draw every (maximal) planar graph
straight-line within quadratic area. From there on this concept has been further
improved and generalized [15,17,18]. Biedl and Derka [3] discuss various variants
and their relation. Another similar concept that extends to non-planar graphs
is the Mondshein sequence [21]. However, all these orderings have in common
that they do not extend to directed graphs, that is, for every edge (u, v), it holds
that u precedes v in the ordering. An exception are st-orderings. While they are
easy to compute for planar st-graphs, they lack a certain property compared
to canonical orderings. In [13] we introduced for undirected biconnected planar
graphs the bitonic st-ordering, a special st-ordering which has properties similar
to canonical orderings. However, the algorithm in [13] uses canonical orderings
for the triconnected case as a subroutine. Since finding a canonical ordering is
in general not a trivial task, respecting the orientation of edges makes it even
harder. Nevertheless, such an ordering is desirable, since one would be able to
use incremental drawing approaches for directed graphs that are usually limited
to the undirected case.

In this paper we extend the bitonic st-ordering to directed graphs, namely
planar st-graphs. We start by discussing the consequences of having such an
ordering available. Based on the observation that the algorithm of de Fraysseix
et al. [9] can easily be modified to obtain an upward planar straight-line drawing,
we show that for good reasons not every planar st-graph admits such an ordering.
After deriving a full characterization of the planar st-graphs that do admit a
bitonic st-ordering, we provide a linear-time algorithm that recognizes these and
computes a corresponding ordering. For a planar st-graph that does not admit
a bitonic st-ordering, we show that splitting at most n − 3 edges is sufficient to
transform it into one for which then an ordering can be found. Furthermore, a
linear-time algorithm is described that determines the smallest set of edges to
split. By combining these results, we are able to draw every planar st-graph with
at most one bend per edge, n − 3 bends in total within quadratic area in linear
time. This improves the upper bound on the total number of bends considerably.
Some proofs have been omitted and can be found in the full version [12] or in [14].
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2 Preliminaries

In this work we are solely concerned with a special type of directed graph, the
so-called planar st-graph, that is, a planar acyclic directed graph G = (V,E) with
a single source s ∈ V , a single sink t ∈ V and no parallel edges. It should be noted
that some definitions assume that (s, t) ∈ E, we explicitly do not require this
edge to be present. However, we assume a fixed embedding scenario such that
s and t are on the outer face. Under such constraints, planar st-graphs possess
the property of being bimodal, that is, the incoming and outgoing edges appear
as a consecutive sequence around a vertex in the embedding. Given an edge
(u, v) ∈ E, we refer to v as a successor of u and call u a predecessor of v. Similar
to [13], we define for every vertex u ∈ V a list of successors S(u) = {v1, . . . , vm},
ordered by the outgoing edges (u, v1), . . . , (u, vm) of u as they appear in the
embedding clockwise around u. For S(s) we choose v1 and vm such that vm, s, v1
appear clockwise on the outer face. A central problem will be the existence of
paths between vertices. Therefore, we refer to a path from u to v and its existence
with u � v ∈ G. With a few exceptions, G is clear from the context, thus, we
omit it. If there exists no path u � v, we may abbreviate it by writing u �� v.

Let G = (V,E) be a planar st-graph and π : V �→ {1, . . . , |V |} be the rank
of the vertices in an ordering s = v1, . . . , vn = t. π is said to be an st-ordering,
if for all edges (u, v) ∈ E, π(u) < π(v) holds. In case of a (planar) st-graph
such an ordering can be obtained in linear time by using a simple topological
sorting algorithm [4]. We are interested in a special type of st-ordering, the
so called bitonic st-ordering introduced in [13]. We say an ordered sequence
A = {a1, . . . , an} is bitonic increasing, if there exists 1 ≤ h ≤ n such that
a1 ≤ · · · ≤ ah ≥ · · · ≥ an and bitonic decreasing, if a1 ≥ · · · ≥ ah ≤ · · · ≤ an.
Moreover, we say A is bitonic increasing (decreasing) with respect to a function
f , if A′ = {f(a1), . . . , f(an)} is bitonic increasing (decreasing). In the following,
we restrict ourselves to bitonic increasing sequences and abbreviate it by just
referring to it as being bitonic. An st-ordering π for G is a bitonic st-ordering
for G, if at every vertex u ∈ V the ordered sequence of successors S(u) =
{v1, . . . , vm} as implied by the embedding is bitonic with respect to π, that is,
there exists 1 ≤ h ≤ m with π(v1) < · · · < π(vh) > · · · > π(vm). Notice that the
successors of a vertex are distinct and so are their labels in an st-ordering.

3 Upward Planar Straight-Line Drawings and Bitonic
st-orderings

We start by assuming that we are given a planar st-graph G = (V,E) together
with a bitonic st-ordering π. The idea is to use the straight-line algorithm
from [13] which is based on the one in [15] to produce an upward planar straight-
line layout. Due to space constraints, we omit details here and only sketch the
two modifications that are necessary. For a full pseudocode listing, an example
and a detailed description, see the full version [12] or [14]. When using a bitonic
st-ordering to drive the planar straight-line algorithm of de Fraysseix et al. [9],
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Fig. 1. (a) A vertex vk with only one predecessor wi using the vertex wi+1 as second
neighbor. Vertices in grey have not been drawn yet. The two dummy vertices vL, vR
remain the left- and rightmost ones. (b) Example of an upward planar straight-line
drawing on seven vertices.

the only critical case is the one in which a vertex vk must be placed that has
only one neighbor, say wi, in the subgraph drawn so far. In [13] we use the
idea of Harel and Sardas [15] who guarantee with their ordering that the edges
preceding or following (wi, vk) in the embedding around wi have already been
drawn. Hence one may just pretend that vk has a second neighbor either to the
right or left of wi. The idea is illustrated in Fig. 1a where vk uses wi+1, the suc-
cessor of wi on the contour, as second neighbor. The following lemma captures
the required property and shows that a bitonic st-ordering complies with it.

Lemma 1. Let G = (V,E) be an embedded planar st-graph with a corresponding
bitonic st-ordering π. Moreover, let vk be the k-th vertex in π and Gk = (Vk, Ek)
the subgraph induced by v1, . . . , vk. For every 1 < k ≤ |V | the following holds:

1. Gk and G − Gk are connected,
2. vk is in the outer face of Gk−1,
3. For every vertex v ∈ Vk, the neighbors of v that are not in Gk appear consec-

utively in the embedding around v.

Sketch of Proof. The first two properties hold for all st-orderings. For the third,
assume to the contrary, contradicting that S(v) is bitonic with respect to π. �	

Due to the third statement we can always choose a second neighbor either to
the left or right, since otherwise the grey vertices in Fig. 1a would not be con-
secutive in the embedding around wi. The second modification solves a problem
that arises in the initialization phase of the drawing algorithm. Recall that in [9]
the first three vertices are drawn as a triangle. This of course works in the case
of a canonical ordering, but requires extra care when using a bitonic st-ordering.
In order to avoid subcases and keep things simple, we add two isolated dummy
vertices vL and vR that take the roles of the first two vertices and pretend to
form a triangle with v1 = s. This has another side effect: It avoids distinguishing
between subcases when we have to find a second neighbor at the boundary of
the contour, because vL is always the first, and vR always the last vertex on
every contour during the incremental construction. See the example in Fig. 1b.
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Theorem 1. Given an embedded planar st-graph G = (V,E) and a correspond-
ing bitonic st-ordering π for G. An upward planar straight-line drawing for G of
size (2|V | − 2) × (|V | − 1) can be obtained from π in linear time.

Proof. The upward property is obtained by the following observation: The orig-
inal planar straight-line algorithm installs every vertex vk with k > 2 above its
predecessors. Since we start with vL, vR, v1, the drawing is upward. It remains
to bound the area. Notice that the input consists of the two additional ver-
tices vL, vR. The original algorithm, without any area improvements, produces
a drawing with a size of 2((|V |+2)−4)× (|V |+2)−2 = 2|V |× |V |. However, vL
and vR are dummy vertices and can be removed anyway. Moreover, every other
vertex is located above them. Hence, their removal yields a smaller drawing of
size (2|V | − 2) × (|V | − 1). �	

Now the first question that comes to mind is, if we can always find a bitonic
st-ordering. Although every planar st-graph admits an upward planar straight-
line drawing [6], there exist some classes for which it is known that they require
exponential area [5,7]. Since Theorem 1 clearly states that the drawing requires
only polynomial area, these graphs cannot admit a bitonic st-ordering.

Corollary 1. Not every planar st-graph admits a bitonic st-ordering.

While this had to be expected, we now have to solve an additional problem.
Before we think about how to compute a bitonic st-ordering, we must first be
able to recognize planar st-graphs that admit such an ordering.

4 Characterization, Recognition and Ordering

We proceed as follows: As a first step, we identify a necessary condition that a
planar st-graph has to meet for admitting a bitonic st-ordering. Then we exploit
this condition to compute a bitonic st-ordering which proves sufficiency. We start
with an alternative characterization of bitonic sequences. Since we will use the
labels of an st-ordering, we can assume that the elements are pairwise distinct.

Lemma 2. An ordered sequence A = {a1, . . . , an} of pairwise distinct elements
is bitonic increasing if and only if the following holds:

∀1 ≤ i < j < n : ai < ai+1 ∨ aj > aj+1.

Sketch of Proof. For “⇒”, assume to the contrary which yields i ≥ j. For “⇐”,
we choose, if exists, h = min{j | aj > aj+1}, otherwise we set h = n. �	

In general a planar st-graph may have many st-orderings, some of them
being bitonic while others are not. To deal with this in a more formal manner,
we introduce some additional notation. Given an embedded planar st-graph
G = (V,E), we refer with Π(G) to all feasible st-orderings of G, that is,

Π(G) = {π : V �→ {1, . . . , |V |} | π is an st − ordering for G}.
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Fig. 2. (a) A successor list S(u) = {. . . , vi, vi+1, . . . , vj , vj+1, . . .} with i < j and a
forbidden configuration of paths vi+1 � vi and vj � vj+1. (b)–(d) The three cases at
a face between two successors vi and vi+1 of the face-source u: (b) vi+1 is the sink of
the face indicating the existence of a path from vi to vi+1. (c) A path from vi+1 to vi
results in a face having vi as sink. (d) There exists no path between vi and vi+1, if and
only if neither vi nor vi+1 is the face-sink.

Furthermore, let Πb(G) be the subset of Π(G) that contains all bitonic st-
orderings. By definition, we can describe Πb(G) by

Πb(G) = {π ∈ Π(G) | ∀u ∈ V : S(u) is bitonic with respect to π}.

Applying the alternative characterization of bitonicity from Lemma2 to the
bitonic property of the successor lists S(u) yields the following expression for
the existence of a bitonic st-ordering:

∃π ∈ Πb(G) ⇔ ∃π ∈ Π(G) ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : π(vi) < π(vi+1) ∨ π(vj) > π(vj+1).

(1)

Next we translate this expression from st-orderings to the existence of paths.
Consider a path from some vertex u to some other vertex v in G, then for every
π ∈ Π(G), by the definition of st-orderings, π(u) < π(v) holds. Now it is not hard
to imagine that if there exists π ∈ Πb(G), then there must exist configurations
of paths that are forbidden. To clarify this, let us rewrite the last part of the
condition in Eq. 1, that is, π(vi) < π(vi+1) ∨ π(vj) > π(vj+1), using a simple
boolean transformation, which yields ¬(π(vi) > π(vi+1)∧π(vj) < π(vj+1)). So if
there exists a path from vi+1 to vi and one from vj to vj+1 with i < j, then this
expression evaluates to false for every π ∈ Π(G). Therefore, we may refer to the
pair of paths vi+1 � vi and vj � vj+1 with i < j as a forbidden configuration
of paths. See Fig. 2a for an illustration.

We may state now that in case there exists a bitonic st-ordering, the afore-
mentioned configuration of paths cannot exist:

∃π ∈ Πb(G) ⇒ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1.

Conversely, if we find an u with vi and vj in a graph for which these paths exist,
then we can safely reject it as one that does not admit a bitonic st-ordering. The
following well-known property of planar st-graphs will prove itself useful when
it comes to testing for the existence of a path between two vertices.
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Lemma 3. Let F be the subgraph of an embedded planar st-graph G = (V,E)
induced by a face that is not the outer face1, and u, v two vertices of F , that is,
u and v are on the boundary of the face. Then there exists a path from u to v in
G, if and only if there exists such a path in F .

There are several ways to prove this result, one proof can be found in the
work of de Fraysseix et al. [10]. Notice that Lemma 3 is concerned with every pair
of vertices incident to the face. But we are only interested in paths between two
consecutive successors vi and vi+1 of a vertex u. Notice that vi, vi+1 and u share
a common face which is not the outer face and in which u is the face-source.
Figure 2b–d illustrates all three possible cases: vi � vi+1 (b), vi+1 � vi (c), and
no path at all (d). Hence, we can decide the existence of a path based on the
sink of the common face.

To prove that the absence of forbidden configurations is sufficient for the
existence of a bitonic st-ordering, we require the following technical proposition.

Proposition 1. Given an embedded planar st-graph G = (V,E) and a vertex
u ∈ V with successor list S(u) = {v1, . . . , vm}. If it holds that

∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1,

then there exists 1 ≤ h ≤ m such that

(∀ 1 ≤ i < h : vi+1 �� vi) ∧ (∀ h ≤ i < m : vi �� vi+1)

holds. In other words, there exists at least one vh in S(u) whose preceding vertices
in S(u) are only connected by paths in clockwise direction, whereas paths between
following vertices are directed counterclockwise.

Sketch of Proof. If exists, set h = min{i | vi+1 � vi}, otherwise set h = m. �	

Fig. 3. (a) Paths orientations between consecutive successors of u. All of them directed
towards vh as described by Proposition 1. (b) The augmented graph G′ in the proof of
Lemma 4 obtained by adding edges between consecutive successors of u such that they
are oriented towards vh.

1 This restriction is necessary due to the possible absence of the st-edge which is
allowed by our definition of planar st-graphs.
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The idea is now the following: If we have a graph that satisfies our necessary
condition, then we can find for every u ∈ V with u �= t a successor vh with the
property as described in Proposition 1. The intuition behind this property is that
all paths that exist between successors of u, are directed in some way towards vh.
See Fig. 3a for an illustration. The next lemma exploits this property to obtain
a bitonic st-ordering, which proves that this condition is indeed sufficient for the
existence of a bitonic st-ordering.

Lemma 4. Given a planar st-graph G = (V,E) with a fixed embedding. If at
every vertex u ∈ V with successor list S(u) = {v1, . . . , vm} the following holds:

∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1,

then G admits a bitonic st-ordering π ∈ Πb(G).

Proof. To show that there exists π ∈ Πb(G), we augment G into a new graph
G′ by inserting additional edges that we refer to as E′. These edges ensure
that between every pair of consecutive successors in G, there exists a path in
G′ = (V,E ∪ E′). Afterwards, we show that every st-ordering π ∈ Π(G′) for G′

is a bitonic st-ordering for G.
For every vertex u with successor list S(u) = {v1, . . . , vm}, we may assume

by Proposition 1 that there exists 1 ≤ h ≤ m such that for every 1 ≤ i < h
there exists no path from vi+1 to vi, and for every h ≤ i < m no path from vi to
vi+1 in G. Our goal is to add specific edges to fill the gaps such that there exist
two paths in G′, v1 � v2 � · · · � vh ∈ G′ and vm � vm−1 � · · · � vh ∈ G′.
Figure 3b illustrates the idea. More specifically, for every 1 ≤ i < m, there are
three cases to consider: (i) There already exists a path between vi and vi+1 in
G, that is, vi � vi+1 ∈ G or vi+1 � vi ∈ G. Proposition 1 ensures that the
path is directed towards vh, thus, we just skip the pair. (ii) If there exists no
path between vi and vi+1 in G and i < h holds, we add an edge from vi to vi+1.
(iii) When there also exists no path between vi and vi+1, but now h ≤ i < m
holds, we add the reverse edge (vi+1, vi) to E′.

Before we continue, we show that G′ = (V,E ∪ E′) is st-planar. Consider a
single edge in E′ which has been added either by case (ii) or (iii) while traversing
the successors S(u) of some vertex u ∈ V . This edge will be added to a face in
which u is the source, and since every face has only one source, only one edge
will be added to the corresponding face, hence, planarity is preserved. Since case
(ii) and (iii) only apply, when there exists no path between the two vertices,
adding this edge will not generate a cycle. Induction on the number of added
edges yields then st-planarity for G′.

Consider now an st-ordering π ∈ Π(G′). Since clearly E′ ⊆ E ∪ E′ holds,
π is also an st-ordering for G, that is, Π(G′) ⊆ Π(G) holds. Recall that we
constructed G′ such that for every u ∈ V with S(u) = {v1, . . . , vm}, there exists
v1 � v2 � · · · � vh ∈ G′ and vm � vm−1 � · · · � vh ∈ G′. It follows that for
every π ∈ Π(G′)

∀ 1 ≤ i < h : π(vi) < π(vi+1) ∧ ∀ h ≤ i < m : π(vi) > π(vi+1)
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Algorithm 1. Recognition and ordering algorithm for planar-st graphs

input : Embedded planar st-graph G = (V, E) with S(u) for every u ∈ V .
output: If exists, a bitonic st-ordering π for G.
begin

E′ ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

decreasing ← false;
for i = 1 to m − 1 do

w ← faceSink(u, vi, vi+1);
if w = vi+1 and decreasing then return reject;
if w = vi then decreasing ← true;
if vi �= w �= vi+1 then

if decreasing then E′ ← E′ ∪(vi+1, vi) else E′ ← E′ ∪(vi, vi+1);

compute π ∈ Π(V, E ∪ E′);
return π

holds, which implies that S(u) is bitonic with respect to π. Since this holds for all
u ∈ V , it follows that Π(G′) ⊆ Πb(G). Moreover, G′ has at least one st-ordering,
that is, Π(G′) �= ∅, thus, there exists π ∈ Πb(G). �	

Let us summarize the implications of the lemma. The only requirement is
that the graph complies with our necessary condition, that is, the absence of
forbidden configurations. If this is the case, then Lemma4 provides us with a
bitonic st-ordering, which in turn proves that this condition is sufficient.

∃π ∈ Πb(G) ⇔ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1

With a full characterization now at our disposal and in combination with
Lemma 3, we are able to describe a simple linear-time algorithm (Algorithm 1)
which tests a given graph and in case it admits a bitonic st-ordering, computes
one. We iterate over S(u) and as long as there is no path vi+1 � vi, we assume
i < h and fill possible gaps. Once we encounter a path vi+1 � vi for the first
time, we implicitly set h = i via the flag and continue to add edges, but now the
reverse ones. But in case we find a path vi � vi+1, then it forms with vh+1 � vh
a forbidden configuration and the graph can be rejected. If we succeed in all
successor list, an st-ordering for G′ is computed, which is a bitonic one for G.
Since G′ is st-planar and has the same vertex set as G, we can claim that the
overall runtime is linear. Let us state this as the main result of this section.

Theorem 2. Deciding whether an embedded planar st-graph G admits a bitonic
st-ordering π or not is linear-time solvable. Moreover, if G admits such an order-
ing, π can be found in linear time.

Next we will consider the case in which no bitonic st-ordering exists. Although
our initial motivation was to create upward planar straight-line drawings, we now
allow bends and shift our efforts to upward planar poly-line drawings.
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5 Upward Planar Poly-line Drawings with Few Bends

We start with a simple observation. Consider a forbidden configuration consisting
of two paths vi+1 � vi and vj � vj+1 with i < j between successors of a vertex
u as shown in Fig. 2a. Notice that (u, vi) and (u, vj+1) are transitive edges. Since
a reduced planar st-graph has no transitive edges, we can argue the following.

Corollary 2. Every reduced planar st-graph admits a bitonic st-ordering.

This leads to the idea to use the same transformation as Di Battista et al. [7]
in their dominance-based approach. We can split every transitive edge to obtain
a reduced planar st-graph and draw it upward planar straight-line. Replacing
the dummy vertices with bends results in an upward planar poly-line drawing
with at most 2|V | − 5 bends, at most one bend per edge and quadratic area.

But we can do better using the following idea: If we have a single forbid-
den configuration, it suffices to split only one of the two transitive edges. More
specifically, if we split in Fig. 2a the edge (u, vi) into two new edges (u, v′

i) and
(v′

i, vi) with v′
i being the dummy vertex, then v′

i replaces vi in S(u). But now
there exists no path from vi+1 to v′

i, hence, the forbidden configuration has been
destroyed at the cost of one split. Moreover, a pair of transitive edges does not
necessarily induce a forbidden configuration. At this point the question arises
how such a split affects other successor lists and if it may even create new for-
bidden configurations. The following trivial observation is helpful in this regard.

Lemma 5. Let G′ = (V ′, E′) be the graph obtained from splitting an edge (u, v)
of a graph G = (V,E) by inserting a dummy vertex v′. More specifically, let
V ′ = V ∪ {v′} and E′ = (E − (u, v)) ∪ {(u, v′), (v′, v)}. Then for all w, x ∈ V
there exists a path w � x ∈ G, if and only if there exists a path w � x ∈ G′.

Since a forbidden configuration is solely defined by the existence of paths, we
can argue now with Lemma 5 that a split does not create nor resolves forbidden
configurations in other successor lists. However, one vertex that is not covered
by the lemma is the dummy vertex itself, but it has only one successor which is
insufficient for a forbidden configuration. This locality is of great value, because
it enables us to focus on one successor list, instead of having to deal with a
bigger picture. Next we prove an upper bound on the number of edges to split
in order to resolve all forbidden configurations.

Lemma 6. Every embedded planar st-graph G = (V,E) can be transformed into
a new one that admits a bitonic st-ordering by splitting at most |V | − 3 edges.

Proof. Consider a vertex u and its successor list S(u) = {v1, . . . , vm} that con-
tains multiple forbidden configurations of paths. Instead of arguing by means of
forbidden configurations, we use our second condition from Proposition 1, that
is, the existence of a vertex vh such that every path that exists between two con-
secutive successors vi and vi+1, is directed from vi towards vi+1 for i < h, or from
vi+1 towards vi if i ≤ h holds. Of course h does not exist due to the forbidden
configurations. But we can enforce its existence by splitting some edges.
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Assume that we want vh to be the first successor, that is, h = 1. Then every
path from vi to vi+1 with 1 ≤ i < m is in conflict with this choice. We can
resolve this by splitting every edge (u, vi+1) for which a path vi � vi+1 exists.
Clearly, the maximum number of edges to split is at most m − 1, that is the
case in which for every 1 ≤ i < m, there exists a path from vi to vi+1. However,
there do not exist paths vi � vi+1 and vi+1 � vi at the same time, because
G is acyclic. So, if the number of edges to split is more than m−1

2 , then there
are less than m−1

2 paths of the form vi+1 � vi. In that case, we may choose
in a symmetric manner vh to be the last successor (h = m), instead of being
the first. Or in other words, we choose vh to be the first or the last successor,
depending on the direction of the majority of paths. And as a result, at most
m−1
2 edges have to be split. Notice that the overall length of all successor lists

is exactly the number of edges in the graph. Hence, with m = |S(u)| we get∑
u∈V |S(u)| = |E| ≤ 3|V | − 6, and the claimed upper bound can be derived by

∑

u∈V

|S(u)| − 1
2

≤ 3|V | − 6 − |V |
2

= |V | − 3.

Moreover, the split procedure preserves st-planarity of G. �	

Fig. 4. (a) Example of a graph with |V | − 3 forbidden configurations, each requiring
one split to be resolved. (b) Example for finding the smallest set of edges to split.
The numbers indicate how many splits are necessary when choosing the corresponding
vertex to be vh. For v5, v6, v8 and v9 only two splits are necessary. Choosing h = 6
results in Esplit = {(u, v1), (u, v8)}. The squares indicate the result of the two splits,
whereas the dotted edges represent E′ in Algorithm 1.

One may wonder now if this bound can be improved. Unfortunately, the
graph shown in Fig. 4a is an example that requires |V | − 3 splits, hence, the
bound is tight. It also shows that there exist graphs that can be drawn upward
planar straight-line in polynomial area but do not admit a bitonic st-ordering.
But we will push the idea of splitting edges a bit further from a practical point
of view, and focus on the problem of finding a minimum set of edges to split.

In the following we describe an algorithm that solves this problem in linear
time. To do so, we introduce some more notation. Let u ∈ V be a vertex with
successor list S(u) = {v1, . . . , vm}. We define L(u, h) = |{i < h : vi+1 � vi}|
and R(u, h) = |{i < h : vi � vi+1}|. If we choose now a particular 1 ≤ h ≤ m at



Bitonic st-orderings for Upward Planar Graphs 233

Algorithm 2. Algorithm for computing the minimum set of edges to split.

input : Embedded planar st-graph G = (V, E) with S(u) for every u ∈ V .
output: Minimum set Esplit ⊂ E to split for admitting a bitonic st-ordering.
begin

Esplit ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

h ← 1;
cmin ← c ← 0;
for i = 2 to m do

w ← faceSink(u, vi−1, vi);
if w = vi−1 then c ← c + 1;
if w = vi then c ← c − 1;
if c < cmin then

cmin ← c;
h ← i;

for i = 1 to h − 1 do
if vi = faceSink(u, vi, vi+1) then Esplit ← Esplit ∪ (u, vi);

for i = h to m − 1 do
if vi+1 = faceSink(u, vi, vi+1) then Esplit ← Esplit ∪ (u, vi+1);

return Esplit

u, then we have to split every edge (u, vi+1) with i < h for which there exists a
path vi+1 � vi, and every edge (u, vi) with h ≤ i for which G contains a path
vi � vi+1, that is, we have to split L(u, h)+R(u,m)−R(u, h) edges. See Fig. 4b
for an example. When now considering all successor lists, the minimum number
of edge splits is

∑

u∈V

(

R(u,m) + min
1≤h≤m

{L(u, h) − R(u, h)}
)

.

Notice that the locality of a split allows us to minimize the number of edge splits
for every successor list independently. From an algorithmic point of view, we are
interested in the value of h and not in the number of splits, hence, we may drop
R(u,m) and consider the problem of finding h for which L(u, h) − R(u, h) is
minimum. Since this is now only a matter of counting paths for which we can
again exploit Lemma 3, a linear-time algorithm becomes straightforward (see
Algorithm 2). And as a result, we may state the following lemma without proof.

Lemma 7. Every embedded planar st-graph G = (V,E) can be transformed into
a planar st-graph that admits a bitonic st-ordering by splitting every edge at most
once. Moreover, the minimum number of edges to split is at most |V | − 3 and
they can be found in linear time.

Now we may use this to create upward planar poly-line drawings with few bends.
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Theorem 3. Every embedded planar st-graph G = (V,E) admits an upward
planar poly-line drawing within quadratic area having at most one bend per edge,
at most |V |−3 bends in total, and such a drawing can be obtained in linear time.

Proof. We use Lemma 7 to obtain a new planar st-graph G′ = (V ′, E′) with
|V ′| ≤ 2|V |−3 and a corresponding bitonic st-ordering π with Algorithm 1. With
Theorem 1, an upward planar straight-line layout of size (2|V ′| − 2) × (|V ′| − 1)
for G′ is computed. Replacement of the dummy vertices by bends, yields an
upward planar poly-line drawing for G of size at most (4|V | − 8) × (2|V | − 4). �	
Recall that every upward planar graph is a spanning subgraph of a planar
st-graph [6]. Therefore, the bound of |V | − 3 translates to all upward planar
graphs.

Corollary 3. Every upward planar graph G = (V,E) admits an upward planar
poly-line drawing within quadratic area having at most one bend per edge and at
most |V | − 3 bends in total.

6 Conclusion

In this work we have introduced the bitonic st-ordering for planar st-graphs.
Although this technique has its limitations, it provides the properties of canonical
orderings for the directed case. We have shown that this concept is viable by
using a classic undirected incremental drawing algorithm for creating upward
planar drawings with few bends.
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