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Abstract. We investigate the problem of drawing graphs in 2D and 3D
such that their edges (or only their vertices) can be covered by few lines
or planes. We insist on straight-line edges and crossing-free drawings.
This problem has many connections to other challenging graph-drawing
problems such as small-area or small-volume drawings, layered or track
drawings, and drawing graphs with low visual complexity. While some
facts about our problem are implicit in previous work, this is the first
treatment of the problem in its full generality. Our contribution is as
follows.

– We show lower and upper bounds for the numbers of lines and planes
needed for covering drawings of graphs in certain graph classes. In
some cases our bounds are asymptotically tight; in some cases we
are able to determine exact values.

– We relate our parameters to standard combinatorial characteris-
tics of graphs (such as the chromatic number, treewidth, maximum
degree, or arboricity) and to parameters that have been studied in
graph drawing (such as the track number or the number of segments
appearing in a drawing).

– We pay special attention to planar graphs. For example, we show
that there are planar graphs that can be drawn in 3-space on a lot
fewer lines than in the plane.

1 Introduction

It is well known that any graph admits a straight-line drawing in 3-space. Sup-
pose that we are allowed to draw edges only on a limited number of planes. How
many planes do we need for a given graph G? For example, K6 needs four planes;
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see Fig. 1. Note that this question is different from the well-known concept of
a book embedding where all vertices lie on one line (the spine) and edges lie on
a limited number of adjacent half-planes (the pages). In contrast, we put no
restriction on the mutual position of planes, the vertices can be located in the
planes arbitrarily, and the edges must be straight-line.

u1

u2

u3

u4

u6

u5

Fig. 1. K6 can be drawn straight-line
and crossing-free on four planes. This
is optimal, that is, ρ2

3(K6) = 4.

Fig. 2. Planar 9-vertex graph G with
π1
3(G) = 3, 3D-drawing on three lines.

In a weaker setting, we require only the vertices to be located on a limited
number of planes (or lines). For example, the graph in Fig. 2 can be drawn in
2D such that its vertices are contained in three lines; we conjecture that it is the
smallest planar graph that needs more than two lines even in 3D. This version of
our problem is related to the well-studied problem of drawing a graph straight-
line in a 3D grid of bounded volume [16,37]: If a graph can be drawn with all
vertices on a grid of volume v, then v1/3 planes and v2/3 lines suffice. We now
formalize the problem.

Definition 1. Let 1 ≤ l < d, and let G be a graph. We define the l-dimensional
affine cover number of G in R

d, denoted by ρl
d(G), as the minimum number

of l-dimensional planes in R
d such that G has a drawing that is contained in

the union of these planes. We define πl
d(G), the weak l-dimensional affine cover

number of G in R
d, similarly to ρl

d(G), but under the weaker restriction that
the vertices (and not necessarily the edges) of G are contained in the union
of the planes. Finally, the parallel affine cover number, π̄l

d(G), is a restricted
version of πl

d(G), in which we insist that the planes are parallel. We consider
only straight-line and crossing-free drawings. Note: ρl

d(G), πl
d(G), and π̄l

d(G) are
only undefined when d = 2 and G is non-planar.

Clearly, for any combination of l and d, it holds that πl
d(G) ≤ π̄l

d(G) and
πl

d(G) ≤ ρl
d(G). Larger values of l and d give us more freedom for drawing

graphs and, therefore, smaller π- and ρ-values. Formally, for any graph G, if
l′ ≤ l and d′ ≤ d then πl

d(G) ≤ πl′
d′(G), ρl

d(G) ≤ ρl′
d′(G), and π̄l

d(G) ≤ π̄l′
d′(G).
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But in most cases this freedom is not essential. For example, it suffices to consider
l ≤ 2 because otherwise ρl

d(G) = 1. More interestingly, we can actually focus
on d ≤ 3 because every graph can be drawn in 3-space as effectively as in high
dimensional spaces, i.e., for any integers 1 ≤ l ≤ d, d ≥ 3, and for any graph
G, it holds that πl

d(G) = πl
3(G), π̄l

d(G) = π̄l
3(G), and ρl

d(G) = ρl
3(G). We prove

this important fact in AppendixA. Thus, our task is to investigate the cases
1 ≤ l < d ≤ 3. We call ρ12(G) and ρ13(G) the line cover numbers in 2D and 3D,
ρ23(G) the plane cover number, and analogously for the weak versions.

Related Work. We have already briefly mentioned 3D graph drawing on the grid,
which has been surveyed by Wood [37] and by Dujmović and Whitesides [16]. For
example, Dujmović [13], improving on a result of Di Battista et al. [4], showed
that any planar graph can be drawn into a 3D-grid of volume O(n log n). It is
well-known that, in 2D, any planar graph admits a plane straight-line drawing
on an O(n)×O(n) grid [20,33] and that the nested-triangles graph Tk = K3×Pk

(see Fig. 4) with 3k vertices needs Ω(k2) area [20].
An interesting variant of our problem is to study drawings whose edge sets

are represented (or covered) by as few objects as possible. The type of objects
that have been used are straight-line segments [14,17] and circular arcs [34]. The
idea behind this objective is to keep the visual complexity of a drawing low for
the observer. For example, Schulz [34] showed how to draw the dodecahedron
by using 10 arcs, which is optimal.

Our Contribution. Our research goes into three directions.
First, we show lower and upper bounds for the numbers of lines and planes

needed for covering drawings of graphs in certain graph classes such as graphs
of bounded degree or subclasses of planar graphs. The most natural graph fam-
ilies to start with are the complete graphs and the complete bipartite graphs.
Most versions of the affine cover numbers of these graphs can be determined
easily. Two cases are much more subtle: We determine ρ23(Kn) and ρ13(Kn,n)
only asymptotically, up to a factor of 2 (see Theorem12 and Example 10). Some
efforts are made to compute the exact values of ρ23(Kn) for small n (see The-
orem 15). As another result in this direction, we prove that ρ13(G) > n/5 for
almost all cubic graphs on n vertices (Theorem 9(b)).

Second, we relate the affine cover numbers to standard combinatorial charac-
teristics of graphs and to parameters that have been studied in graph drawing. In
Sect. 2.1, we characterize π1

3(G) and π2
3(G) in terms of the linear vertex arboricity

and the vertex thickness, respectively. This characterization implies that both
π1
3(G) and π2

3(G) are linearly related to the chromatic number of the graph G.
Along the way, we refine a result of Pach et al. [28] concerning the volume of
3D grid drawings (Theorem 2). We also prove that any graph G has balanced
separators of size at most ρ13(G) and conclude from this that ρ13(G) ≥ tw(G)/3,
where tw(G) denotes the treewidth of G (Theorem 9). In Sect. 3.2, we analyze the
relationship between ρ12(G) and the segment number segm(G) of a graph, which
was introduced by Dujmović et al. [14]. We prove that segm(G) = O(ρ12(G)2)

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.1
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for any connected G and show that this bound is optimal (see Theorem23 and
Example 22).

Third, we pay special attention to planar graphs (Sect. 3). Among other
results, we show examples of planar graphs with a large gap between the para-
meters ρ13(G) and ρ12(G) (see Theorem 24).

We also investigate the parallel affine cover numbers π̄1
2 and π̄1

3 . Observe
that for any graph G, π̄1

3(G) equals the improper track number of G, which was
introduced by Dujmović et al. [15].

Due to lack of space, our results for the parallel affine cover numbers (along
with a survey of known related results) appear in AppendixB. We defer some
other proofs to Appendices C and D and list some open problems in AppendixE.

Remark on the Computational Complexity. In a follow-up paper [9], we inves-
tigate the computational complexity of computing the ρ- and π-numbers. We
argue that it is NP-hard to decide whether a given graph has a π1

3- or π2
3-value

of 2 and that both values are even hard to approximate. This result is based on
Theorems 2 and 4 and Corollaries 3 and 5 in the present paper. While the graphs
with ρ23-value 1 are exactly the planar graphs (and hence, can be recognized in
linear time), it turns out that recognizing graphs with a ρ23-value of 2 is already
NP-hard. In contrast to this, the problems of deciding whether ρ13(G) ≤ k or
ρ12(G) ≤ k are solvable in polynomial time for any fixed k. However, the versions
of these problems with k being part of the input are complete for the complexity
class ∃R which is based on the existential theory of the reals and that plays an
important role in computational geometry [32].

Notation. For a graph G = (V,E), we use n and m to denote the numbers of
vertices and edges of G, respectively. Let Δ(G) = maxv∈V deg(v) denote the
maximum degree of G. Furthermore, we will use the standard notation χ(G) for
the chromatic number, tw(G) for the treewidth, and diam(G) for the diameter
of G. The Cartesian product of graphs G and H is denoted by G × H.

2 The Affine Cover Numbers in R
3

2.1 Placing Vertices on Few Lines or Planes (π1
3 and π2

3)

A linear forest is a forest whose connected components are paths. The linear
vertex arboricity lva(G) of a graph G equals the smallest size r of a partition
V (G) = V1∪· · ·∪Vr such that every Vi induces a linear forest. This notion, which
is an induced version of the fruitful concept of linear arboricity (see Remark 8
below), appears very relevant to our topic. The following result is based on a
construction of Pach et al. [28]; see Appendix C for the proof.

Theorem 2. For any graph G, it holds that π1
3(G) = lva(G). Moreover, any

graph G can be drawn with vertices on r lines in the 3D integer grid of size
r × 4rn × 4r2n, where r = lva(G).

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.2
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.4
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.5
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
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Corollary 3. χ(G)/2 ≤ π1
3(G) ≤ χ(G).

Corollary 3 readily implies that π1
3(G) ≤ Δ(G) + 1 [7]. This can be consid-

erably improved using a relationship between the linear vertex arboricity and
the maximum degree that is established by Matsumoto [27]. Matsumoto’s result
implies that π1

3(G) ≤ Δ(G)/2 + 1 for any connected graph G. Moreover, if
Δ(G) = 2d, then π1

3(G) = d + 1 if and only if G is a cycle or the complete
graph K2d+1.

We now turn to the weak plane cover numbers. The vertex thickness vt(G)
of a graph G is the smallest size r of a partition V (G) = V1 ∪ · · · ∪ Vr such that
G[V1], . . . , G[Vr] are all planar. We prove the following theorem in AppendixC.

Theorem 4. For any graph G, it holds that π2
3(G) = π̄2

3(G) = vt(G) and that
G can be drawn such that all vertices lie on a 3D integer grid of size vt(G) ×
O(m2) × O(m2), where m is the number of edges of G. Note that this drawing
occupies vt(G) planes.

Corollary 5. χ(G)/4 ≤ π2
3(G) ≤ χ(G).

Example 6. (a) π1
3(Kn) = �n/2�.

(b) π1
3(Kp,q) = 2 for any 1 ≤ p ≤ q; except for π1

3(K1,1) = π1
3(K1,2) = 1.

(c) π2
3(Kn) = �n/4�; therefore, π2

3(G) ≤ �n/4� for every graph G.

2.2 Placing Edges on Few Lines or Planes (ρ1
3 and ρ2

3)

Clearly, Δ(G)/2 ≤ ρ13(G) ≤ m for any graph G. Call a vertex v of a graph G
essential if deg v ≥ 3 or if v belongs to a K3 subgraph of G. Denote the number
of essential vertices in G by es(G).

Lemma 7. (a) ρ13(G) > (1 +
√

1 + 8 es(G))/2.
(b) ρ13(G) >

√
m2/n − m for any graph G with m ≥ n ≥ 1.

Proof. (a) In any drawing of a graph G, any essential vertex is shared by two
edges not lying on the same line. Therefore, each such vertex is an intersec-
tion point of at least two lines, which implies that es(G) ≤ (

ρ1
3(G)
2

)
. Hence,

ρ13(G) ≥ (
1 +

√
1 + 8 es(G)

)
/2 >

√
2 es(G).

(b) Taking into account multiplicity of intersection points (that is, each vertex v
requires at least �deg v/2�(�deg v/2�−1)/2 intersecting line pairs), we obtain(

ρ1
3(G)

2

)
≥ 1

2

∑
v∈V (G)

⌈
deg v

2

⌉(⌈
deg v

2

⌉
− 1

)
≥
∑ deg v(deg v − 2)

8
=

=
1

8

∑
(deg v)2 − 1

4

∑
deg v ≥ 1

8n

(∑
deg v

)2
− 1

4
2m =

m2

2n
− m

2
.

The last inequality follows by the inequality between arithmetic and
quadratic means. Hence, ρ13(G) >

√
m2/n − m. �	

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
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Part (a) of Lemma 7 implies that ρ13(G) >
√

2n if a graph G has no vertices
of degree 1 and 2, while Part (b) yields ρ13(G) >

√
m/2 for all such G. Note that

a disjoint union of k cycles can have no essential vertices, but each cycle will
need 3 intersection points of lines, i.e., such a graph has ρ13 ∈ Ω(

√
k). Thus, ρ13

cannot be bounded from above by a function of essential vertices.

Remark 8. The linear arboricity la(G) of a graph G is the minimum number of
linear forests which partition the edge set of G; see [24]. Clearly, we have ρ13(G) ≥
la(G). There is no function of la(G) that is an upper bound for ρ13(G). Indeed,
let G be an arbitrary cubic graph. Akiyama et al. [2] showed that la(G) = 2. On
the other hand, any vertex of G is essential, so ρ13(G) >

√
2n by Lemma 7(a).

Theorem 9 below shows an even larger gap.

We now prove a general lower bound for ρ13(G) in terms of the treewidth of
G. Note for comparison that π1

3(G) ≤ χ(G) ≤ tw(G) + 1 (the last inequality
holds because the graphs of treewidth at most k are exactly partial k-trees and
the construction of a k-tree easily implies that it is k + 1-vertex-chromatic).
The relationship between ρ13(G) and tw(G) follows from the fact that graphs
with low parameter ρ13(G) have small separators. This fact is interesting by
itself and has yet another consequence: Graphs with bounded vertex degree can
have linearly large value of ρ13(G) (hence, the factor of n in the trivial bound
ρ13(G) ≤ m ≤ 1

2 nΔ(G) is best possible).
We need the following definitions. Let W ⊆ V (G). A set of vertices S ⊂ V (G)

is a balanced W-separator of the graph G if |W ∩C| ≤ |W |/2 for every connected
component C of G\S. Moreover, S is a strongly balanced W-separator if there is
a partition W\S = W1 ∪ W2 such that |Wi| ≤ |W |/2 for both i = 1, 2 and there
is no path between W1 and W2 avoiding S. Let sepW (G) (resp. sep∗

W (G)) denote
the minimum k such that G has a (resp. strongly) balanced W-separator S with
|S| = k. Furthermore, let sep(G) = sepV (G)(G) and sep∗(G) = sep∗

V (G)(G). Note
that sepW (G) ≤ sep∗

W (G) for any W and, in particular, sep(G) ≤ sep∗(G).
It is known [19, Theorem 11.17] that sepW (G) ≤ tw(G) + 1 for every W ⊆

V (G). On the other hand, if sepW (G) ≤ k for all W with |W | = 2k + 1, then
tw(G) ≤ 3k.

The bisection width bw(G) of a graph G is the minimum possible number of
edges between two sets of vertices W1 and W2 with |W1| = �n/2� and |W2| =
�n/2� partitioning V (G). Note that sep∗(G) ≤ bw(G) + 1.

Theorem 9. (a) ρ13(G) ≥ bw(G).
(b) ρ13(G) > n/5 for almost all cubic graphs with n vertices.
(c) ρ13(G) ≥ sep∗

W (G) for every W ⊆ V (G).
(d) ρ13(G) ≥ tw(G)/3.

Proof. (a) Fix a drawing of the graph G on r = ρ13(G) lines in R
3. Choose a plane

L that is not parallel to any of the at most
(
n
2

)
lines passing through two

vertices of the drawing. Let us move L along the orthogonal direction until
it separates the vertex set of G into two almost equal parts W1 and W2. The
plane L can intersect at most r edges of G, which implies that bw(G) ≤ r.
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(b) follows from Part (a) and the fact that a random cubic graph on n vertices
has bisection width at least n/4.95 with probability 1−o(1) (Kostochka and
Melnikov [25]).

(c) Given W ⊆ V (G), we have to prove that sep∗
W (G) ≤ ρ13(G). Choose a plane

L as in the proof of Part (a) and move it until it separates W into two equal
parts W ′

1 and W ′
2; if |W | is odd, then L should contain one vertex w of W . If

|W | is even, we can ensure that L does not contain any vertex of G. We now
construct a set S as follows. If L contains a vertex w ∈ W , i.e., |W | is odd,
we put w in S. Let E be the set of those edges which are intersected by L
but are not incident to the vertex w (if it exists). Note that |E| < r if |W | is
odd and |E| ≤ r if |W | is even. Each of the edges in E contributes one of its
incident vertices into S. Note that |S| ≤ r. Set W1 = W ′

1\S and W2 = W ′
2\S

and note that there is no edge between these sets of vertices. Thus, S is a
strongly balanced W-separator.

(d) follows from (c) by the relationship between treewidth and balanced sepa-
rators. �	
On the other hand, note that ρ13(G) cannot be bounded from above by any

function of tw(G). Indeed, by Lemma 7(a) we have ρ13(T ) = Ω(
√

n) for every
caterpillar T with linearly many vertices of degree 3. The best possible relation
in this direction is ρ13(G) ≤ m < n tw(G). The factor n cannot be improved here
(take G = Kn).

Example 10. (a) ρ13(Kn) =
(
n
2

)
for any n ≥ 2.

(b) pq/2 ≤ ρ13(Kp,q) ≤ pq for any 1 ≤ p ≤ q.

We now turn to the plane cover number.

Example 11. For any integers 1 ≤ p ≤ q, it holds that ρ23(Kp,q) = �p/2�.
Determining the parameter ρ23(G) for complete graphs G = Kn is a much

more subtle issue. We are able to determine the asymptotics of ρ23(Kn) up to a
factor of 2.

By a combinatorial cover of a graph G we mean a set of subgraphs {Gi}
such that every edge of G belongs to Gi for some i. A geometric cover of a
crossing-free drawing d : V (Kn) → R

3 of a complete graph Kn is a set L of
planes in R

3 so that for each pair of vertices vi, vj ∈ V (Kn) there is a plane
� ∈ L containing both points d(vi) and d(vj). This geometric cover L induces
a combinatorial cover KL = {G� | � ∈ L} of the graph Kn, where G� is the
subgraph of Kn induced by the set d−1(�). Note that each G� is a Ks subgraph
with s ≤ 4 (because K5 is not planar).

Let c(Kn,Ks) denote the minimum size of a combinatorial cover of Kn by Ks

subgraphs (c(Kn,Ks) = 0 if s > n). The asymptotics of the numbers c(Kn,Ks)
for s = 3, 4 can be determined via the results about Steiner systems by Kirkman
and Hanani [5,23]. This yields the following bounds for ρ23(Kn) (see Appendix C).

Theorem 12. For all n ≥ 3,

(1/2 + o(1)) n2 = c(Kn,K4) ≤ ρ23(Kn) ≤ c(Kn,K3) = (1/6 + o(1)) n2.

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
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Table 1. Lower and upper bounds for ρ2
3(Kn) for small values of n.

n 4 5 6 7 8 9

≥ 1 3 4 6 6 7

≤ 1 3 4 6 7

Note that we cannot always realize a combinatorial cover of Kn by copies of
K4 geometrically. For example, c(K6,K4) = 3 < 4 = ρ23(K6) (see Theorem 15).

In order to determine ρ23(Kn) for particular values of n, we need some prop-
erties of geometric and combinatorial covers of Kn.

Lemma 13. Let d : V (Kn) → R
3 be a crossing-free drawing of Kn and L a

geometric cover of d. For each 4-vertex graph G� ∈ KL, the set d(G�) not only
belongs to a plane �, but also defines a triangle with an additional vertex in its
interior.

Lemma 14. Let d : V (Kn) → R
3 be a crossing-free drawing of Kn and L a

geometric cover of d. No two different 4-vertex graphs G�, G�′ ∈ KL can have
three common vertices.

Theorem 15. For n ≤ 9, the value of ρ23(Kn) is bounded by the numbers in
Table 1.

Proof. Here, we show only the bounds for n = 6. For the remaining proofs,
see Appendix C. Figure 1 shows that ρ23(K6) ≤ 4. Now we show that ρ23(K6) ≥
4. Assume that ρ23(K6) < 4. Consider a combinatorial cover KL of K6 by its
complete planar subgraphs corresponding to a geometric cover L of its drawing
by 3 planes. Graph K6 has 15 edges, so to cover it by complete planar graphs
we have to use at least two copies of K4 and, additionally, a copy of Kk for
3 ≤ k ≤ 4. But, since each two copies of K4 in K6 have a common edge (and
by Lemma 14 this edge is unique), the cover KL consists of three copies of K4.
Denote these copies by K1

4 , K2
4 , and K3

4 . By Lemma 13, for each i, d(Ki
4) is a

triangle with an additional vertex d(vi) in its interior. Let V0 = {v1, v2, v3}. By
the Krein–Milman theorem [26,36], the convex hull Conv(d(K6)) is the convex
hull Conv(d(V (K6))\d(V0)). If all the vertices vi are mutually distinct then the
set d(V (K6))\d(V0) is a triangle, so the drawing d is planar, a contradiction.
Hence, vi = vj for some i �= j. Let k be the third index that is distinct from
both i and j. Since graphs Ki

4 and Kj
4 have exactly one common edge, this is

an edge (vi, v) for some vertex v of K6 (see Fig. 1 with u4 for vi and u1 for
v). Let V (Ki

4) = {v, vi, v
1
i , v2

i } and V (Kj
4) = {v, vj , v

1
j , v2

j }. Since the union
K1

4 ∪ K2
4 ∪ K3

4 covers all edges of K6, all edges (v1
i , v1

j ), (v1
i , v2

j ), (v2
i , v1

j ), and
(v2

i , v2
j ) belong to Kk

4 . Thus V (Kk
4 ) = {v1

i , v2
i , v1

j , v2
j }. But vertices v1

i , v2
i , v1

j ,
and v2

j are in convex position (see Fig. 1), a contradiction to Lemma 13. �	

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
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3 The Affine Cover Numbers of Planar Graphs
(R2 and R

3)

3.1 Placing Vertices on Few Lines (π1
2 and π1

3)

Combining Corollary 3 with the 4-color theorem yields π1
3(G) ≤ 4 for planar

graphs. Given that outerplanar graphs are 3-colorable (they are partial 2-trees),
we obtain π1

3(G) ≤ 3 for these graphs. These bounds can be improved using
the equality π1

3(G) = lva(G) of Theorem 2 and known results on the linear
vertex arboricity:

(a) For any planar graph G, it holds that π1
3(G) ≤ 3 [21,29].

(b) There is a planar graph G with π1
3(G) = 3 [11].

(c) For any outerplanar graph G, π1
3(G) ≤ 2 [1,6,35].

According to Chen and He [12], the upper bound lva(G) ≤ 3 for planar
graphs by Poh [29] is constructive and yields a polynomial-time algorithm for
partitioning the vertex set of a given planar graph into three parts, each inducing
a linear forest. By combining this with the construction given in Theorem2, we
obtain a polynomial-time algorithm that draws a given planar graph such that
the vertex set “sits” on three lines.

The example of Chartrand and Kronk [11] is a 21-vertex planar graph whose
vertex arboricity is 3, which means that the vertex set of this graph cannot even
be split into two parts both inducing (not necessarily linear) forests. Raspaud
and Wang [30] showed that all 20-vertex planar graphs have vertex arboricity at
most 2. We now observe that a smaller example of a planar graph attaining the
extremal value π1

3(G) = 3 can be found by examining the linear vertex arboricity.

Example 16. The planar 9-vertex graph G in Fig. 2 has π1
3(G) = lva(G) = 3.

(See a proof in AppendixD.)

Now we show lower bounds for the parameter π1
2(G).

Recall that the circumference of a graph G, denoted by c(G), is the length
of a longest cycle in G. For a planar graph G, let v̄(G) denote the maximum k
such that G has a straight-line plane drawing with k collinear vertices.

Lemma 17. Let G be a planar graph. Then π1
2(G) ≥ n/v̄(G). If G is a trian-

gulation then π1
2(G) ≥ (2n − 4)/c(G∗).

Proof. Since the first claim is obvious, we prove only the second. Let γ(G) denote
the minimum number of cycles in the dual graph G∗ sharing a common vertex
and covering every vertex of G∗ at least twice. Note that, as G is a triangulation,
γ(G) ≥ (4n − 8)/c(G∗), where 2n − 4 is the number of vertices in G∗ (as a
consequence of Euler’s formula). We now show π1

2(G) ≥ γ(G)/2, which implies
the claimed result.

Given a drawing realizing π1
2(G) with line set L, for every line � ∈ L, draw

two parallel lines �′, �′′ sufficiently close to � such that they together intersect
the interiors of all faces touched by � and do not go through any vertex of the

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.4
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drawing. Note that �′ and �′′ cross boundaries of faces only via inner points of
edges. Each such crossing corresponds to a transition from one vertex to another
along an edge in the dual graph G∗. Since all the faces of G are triangles, each
of them is visited by each of �′ and �′′ at most once. Therefore, the faces crossed
along �′ and the faces crossed along �′′, among them the outer face of G, each
form a cycle in G∗. It remains to note that every face f of the graph G is crossed
at least twice, because f is intersected by at least two different lines from L and
each of these two lines has a parallel copy that crosses f . �	

An infinite family of triangulations G with v̄(G) ≤ n0.99 is constructed in [31].
By the first part Lemma 17 this implies that there are infinitely many triangu-
lations G with π1

2(G) ≥ n0.01. The second part of Lemma 17 along with an
estimate of Grünbaum and Walther [22] (that was used also in [31]) yields a
stronger result.

Theorem 18. There are infinitely many triangulations G with Δ(G) ≤ 12 and
π1
2(G) ≥ n0.01.

Proof. The shortness exponent σG of a class G of graphs is the infimum of the
set of the reals lim infi→∞ log c(Hi)/log |V (Hi)| for all sequences of Hi ∈ G
such that |V (Hi)| < |V (Hi+1)|. Thus, for each ε > 0, there are infinitely many
graphs H ∈ G with c(H) < |V (H)|σG+ε. The dual graphs of triangulations with
maximum vertex degree at most 12 are exactly the cubic 3-connected planar
graphs with each face incident to at most 12 edges (this parameter is well defined
by the Whitney theorem). Let σ denote the shortness exponent for this class of
graphs. It is known [22] that σ ≤ log 26

log 27 = 0.988 . . .. The theorem follows from
this bound by the second part of Lemma17. �	
Problem 19. Does π1

2(G) = o(n) hold for all planar graphs G?

A track drawing [18] of a graph is a plane drawing for which there are parallel
lines, called tracks, such that every edge either lies on a track or its endpoints
lie on two consecutive tracks. We call a graph track drawable if it has a track
drawing. Let tn(G) be the minimum number of tracks of a track drawing of G.
Note that π1

2(G) ≤ π̄1
2(G) ≤ tn(G).

The following proposition is similar to a lemma of Bannister et al. [3,
Lemma 1] who say it is implicit in the earlier work of Felsner et al. [18].

Theorem 20. (cf. [3,18]). Let G be a track drawable graph. Then π1
2(G) ≤ 2.

Proof. Consider a track drawing of G, which we now transform
to a drawing on two intersecting lines. Put the tracks consecu-
tively along a spiral so that they correspond to disjoint inter-
vals on the half-lines as depicted on the right. Tracks whose
indices are equal modulo 4 are placed on the same half-line; for
more details see Fig. 8 in AppendixD on page 26. (Bannister
et al. [3, Fig. 1] use three half-lines meeting in a point.)

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=figure.caption.13
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.4
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Observe that any tree is track drawable: two vertices are aligned on the same
track iff they are at the same distance from an arbitrarily assigned root. More-
over, any outerplanar graph is track drawable [18]. This yields an improvement
over the bound π1

3(G) ≤ 2 for outerplanar graphs stated in the beginning of this
section.

Corollary 21. For any outerplanar graph G, it holds that π1
2(G) ≤ 2.

3.2 Placing Edges on Few Lines (ρ1
2 and ρ1

3)

The parameter ρ12(G) is related to two parameters introduced by Dujmović et
al. [14]. They define a segment in a straight-line drawing of a graph G as an
inclusion-maximal (connected) path of edges of G lying on a line. A slope is
an inclusion-maximal set of parallel segments. The segment number (resp., slope
number) of a planar graph G is the minimum possible number of segments (resp.,
slopes) in a straight-line drawing of G. We denote these parameters by segm(G)
(resp., slop(G)). Note that slop(G) ≤ ρ12(G) ≤ segm(G).

These parameters can be far away from each other. Figure 4 shows a graph
with slop(G) = O(1) and ρ12(G) = Ω(n) (see the proof of Theorem 24). On the
other hand, note that ρ12(mK2) = 1 while segm(mK2) = m where mK2 denotes
the graph consisting of m isolated edges. The gap between ρ12(G) and segm(G)
can be large even for connected graphs. It is not hard to see that segm(G) is
bounded from below by half the number of odd degree vertices (see [14] for
details). Therefore, if we take a caterpillar G with k vertices of degree 3 and
k+2 leaves, then segm(G) ≥ n/2, while ρ12(G) = O(

√
n) because G can easily be

drawn in a square grid of area O(n). Note that, for the same G, the gap between
slop(G) and ρ12(G) is also large. Indeed, slop(G) = 2 while ρ12(G) >

√
n − 2 by

Lemma 7(a).
It turns out that a large gap between ρ12(G) and segm(G) can be shown also

for 3-connected planar graphs and even for triangulations.

Example 22. There are triangulations with ρ12(G) = O(
√

n) and segm(G) =
Ω(n).1 Note that this gap is the best possible because any 3-connected graph G
has minimum vertex degree 3 and, hence, ρ12(G) ≥ ρ13(G) >

√
2n by Lemma 7(a).

Consider the graph shown in Fig. 3. Its vertices are placed on the standard
orthogonal grid and two slanted grids, which implies that at most O(

√
n) lines

are involved. The pattern can be completed to a triangulation by adding three
vertices around it and connecting them to the vertices on the pattern boundary.
Since the pattern boundary contains O(

√
n) vertices, O(

√
n) new lines suffice

for this. Thus, we have ρ12(G) = O(
√

n) for the resulting triangulation G. Note
that the vertices drawn fat in Fig. 3 have degree 5, and there are linearly many
of them. This implies that segm(G) = Ω(n).

Somewhat surprisingly, the parameter segm(G) can be bounded from above
by a function of ρ12(G) for all connected graphs.
1 A triangulation G with segm(G) = O(

√
n) has been found by Dujmović et al. [14,

Fig. 12].
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Fig. 3. The main body
of a triangulation G with
ρ1
2(G) = O(

√
n) and segm

(G) = Ω(n).

Fig. 4. The nested-
triangles graph Tk.

Fig. 5. Sketch of the con-
struction in the proof of
Theorem 24(b).

Theorem 23. For any connected planar graph G, segm(G) = O(ρ12(G)2).

Note that Δ(G)/2 ≤ ρ13(G) ≤ ρ12(G) ≤ segm(G) ≤ m for any planar graph G.
For all inequalities here except the second one, we already know that the gap
between the respective pair of parameters can be very large (by considering a
caterpillar with linearly many degree 3 vertices and applying Lemma7(a), by
Example 22, and by considering the path graph Pn, for which segm(Pn) = 1).
Part (b) of the following theorem shows a large gap also between the parameters
ρ13(G) and ρ12(G), that is, some planar graphs can be drawn much more efficiently,
with respect to the line cover number, in 3-space than in the plane.

Theorem 24. (a) There are infinitely many planar graphs with constant maxi-
mum degree, constant treewidth, and linear ρ12-value.

(b) For infinitely many n there is a planar graph G on n vertices with ρ12(G) =
Ω(n) and ρ13(G) = O(n2/3).

Proof. Consider the nested-triangles graph Tk = C3 × Pk shown in Fig. 4. To
prove statements (a) and (b), it suffices to establish the following bounds:

(i) ρ12(Tk) ≥ n/2 and
(ii) ρ13(Tk) = O(n2/3).

To see the linear lower bound (i), note that Tk is 3-connected. Hence, Whitney’s
theorem implies that, in any plane drawing of Tk, there is a sequence of nested
triangles of length at least k/2. The sides of the triangles in this sequence must
belong to pairwise different lines. Therefore, ρ12(Tk) ≥ 3k/2 = n/2.

For the sublinear upper bound (ii), first consider the graph C4 × Pk. We
build wireframe rectangular prisms that are stacks of O( 3

√
n) squares each. These

prisms are placed onto the base plane in an O( 3
√

n) × O( 3
√

n) grid; see Fig. 5. So
far we can place the edges on the O(n2/3) lines of the 3D cubic grid of volume
O(n). Next, we construct a path that traverses all squares by passing through
the prisms from top to bottom (resp., vice versa) and connecting neighboring
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prims. We rotate and move some of the squares at the top (resp., bottom) of the
prisms to be able to draw the edges between neighboring prisms according to
this path. For this “bending” we need O(n2/3) additional lines. In AppendixD
we provide a drawing; see Fig. 11 on page 30. The same approach works for the
graph Tk = C3 × Pk. In addition to the standard 3D grid, here we need also its
slanted, diagonal version (and, again, additional lines for bending in the cubic
box of volume O(n)). The number of lines increases just by a constant factor. �	

We are able to determine the exact values of ρ12(G) for complete bipartite
graphs Kp,q that are planar.

Example 25. ρ12(K1,q) = �m/2� and ρ12(K2,q) = �(3n − 7)/2� = �(3m − 2)/4�.
See AppendixD for details.

Motivated by Example 25, we ask:

Problem 26. What is the smallest c such that ρ12(G) ≤ (c+o(1))m for any planar
graph G? Example 25 shows that c ≥ 3/4. Durocher and Mondal [17], improving
on an earlier bound of Dujmović et al. [14], showed that segm(G) < 7

3n for any
planar graph G. This implies that c ≤ 7/9.

For any binary tree T , it holds that ρ12(T ) = O(
√

n log n). This follows
from the known fact [8] that T has an orthogonal drawing on a grid of size
O(

√
n log n) × O(

√
n log n). For complete binary trees lower and upper bounds

are described in Example 37 in AppendixD.
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