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Abstract. Nowadays, embedded systems have been widely deployed in
numerous applications. Firmwares in embedded systems are typically
custom-built to provide a set of very specialized functionalities. They
are prone to taint-style vulnerability with a high probability, but tradi-
tional whole-program analysis has low efficiency in discovering the vul-
nerability. In this paper, we propose a two-stage mechanism to accelerate
discovery of taint-style vulnerabilities in embedded firmware: first recog-
nizing protocol parsers that are prone to taint-style vulnerabilities from
firmware, and then constructing program dependence graph for security-
sensitive sinks to analyze their input source. We conduct a real-world
experiment to verify the mechanism. The result indicates that the mech-
anism can help find taint-style vulnerabilities in less time compared with
whole-program analysis.

Keywords: Taint-style vulnerability - Embedded security - Protocol
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1 Introduction

Nowadays, embedded systems have been widely deployed in numerous applica-
tions. For example, routers and web cameras are normally used in home and office
environment, and programmable logic controllers (PLC) are widely employed in
industrial plants. If the security of such embedded systems are compromised,
there might be serious consequences. For example, people’s private informa-
tion could be leaked to public or primary production process could be affected.
Firmware of embedded systems is typically custom-built to provide a set of very
specialized functionalities. Due to the resource-constrained nature of embed-
ded systems, usually, firmware developers are more concerned about implement-
ing the functionality and maximizing system performance; security concerns are
often treated as afterthoughts and thus they are often treated inadequately.
As a result, embedded system firmware is prone to vulnerabilities. Among var-
ious kinds of vulnerabilities, taint-style vulnerability refers to the case where
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data propagates from an attacker-controlled input source to a security-sensitive
sink without undergoing proper sanitization which could cause program crash
or execute unauthorized operation [20]. Since embedded devices have frequent
interaction with outside world through various user-input interfaces, undoubt-
edly, embedded systems are prone to taint-style vulnerabilities with a higher
probability. In fact, taint-style vulnerabilities of embedded systems are reported
frequently in various vulnerability reporting sources, including the Common Vul-
nerabilities and Exposures (CVE) [2], exploit-db [6] in recent years. With the
increasing amount of embedded devices, the inability to quickly discover taint-
style vulnerabilities will result in more serious security breaches in the future.

Taint-style vulnerability discovery technologies such as fuzz testing [14], sym-
bolic execution [18], tainting analysis [16] could be applied to embedded systerms.
However, such traditional technologies suffer from low efficiency when analyz-
ing firmware of embedded systems. First, source codes and design documents are
often proprietary and thus only binary firmware image might be available, so that
static analysis is time-consuming due to lack of semantic information. Then, as
peripherals of different embedded devices have profound discrepancy, the unified
dynamic simulation analysis is extremely difficult. In addition, firmware compar-
ison technologies aimed at quickly finding homologous vulnerabilities in different
devices have been studied. But they still suffer from large temporal and spatial
overhead and low accuracy.

According to our study, current taint-style vulnerability discovery has a sig-
nificant defect. Due to little understanding of code function, most approaches
treat all codes equally and waste a lot of time on unimportant codes which have
nothing to do with users input. To accelerate discovery of taint-style vulnerabil-
ity, we investigate function modules that are more prone to this kind of vulner-
ability. Protocol parsers are function modules that handle protocol interaction
and they are first lines of programs dealing with users input. They consume
external input and either build an internal data structure for use, or orchestrate
the execution of the proper functionality based on the input values. We assume
that in firmware of embedded devices, once taint-style vulnerabilities exist, they
are generally concentrated in protocol parsers. Therefore, we take two steps to
accelerate discovery process. First, we construct a classifier using a set of fea-
tures to recognize protocol parsers. Then, we derive program dependence graph
(PDG) to analyze the input source of security-sensitive sinks. It help quickly
extract insecure sinks where a static data flow path from attacker-controlled
input source exists. The mechanism is lightweight as no time-consuming tech-
nology such as symbolic execution is employed. Finally, average time cost of
insecure sinks finding is evaluated to prove efficiency of our work.

To summarize, our contributions include the following:

— We have proposed a two-stage mechanism to accelerate discovery of taint-style
vulnerability in embedded devices.

— We have conducted a real-world experiment on firmwares of two cameras and
reduced time cost of insecure sink finding by 81.4 and 44.2 percent.
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The rest of the paper is structured as follows. We propose a two-stage mech-
anism to accelerate discovery of taint-style vulnerabilities in Sect.2. Then we
present experiment details about the classifier for protocol parsers and compare
our work with whole-program analysis to illustrate the effectiveness of the pro-
posed method in Sect. 3. Related work is presented in Sect. 4. Finally, conclusions
are summarized in Sect. 5.

2 Two-Stage Mechanism

In the two-stage mechanism, we first recognize protocol parsers from firmware
to narrow down the analysis scope of security-sensitive sinks, and then analyze
input source of sinks based on PDG to help extract insecure cases. Insecure
sinks refer to cases where a static data flow path from attacker-controlled input
source exists. They need be further checked about data sanitization to finish the
discovery of taint-style vulnerability. The mechanism is committed to quickly
find insecure sinks in the former stage, which accelerate the discovery of taint-
style vulnerabilities.

2.1 Protocol Parsers Recognition

Firmware is a software that provides control, monitoring and data manipulation
of embedded systems. It is normally constitute of operating system, file system
and user programs. To find out protocol parsers from firmware, we first extract
the main service program from firmware. Then, we select a set of discriminative
features. Finally, we use support vector machine (SVM) model to construct a
classifier for parser recognition.

Firmware Pre-processing. In the pre-processing phase, we obtain the
firmware of embedded system by downloading it from the official website. As it
is compressed using standard compression algorithm and the file system adopt
cramfs, jffs, yaffs these common formats, we use Binwalk [1] and firmware-mod-
kit [4] to automatically extract binary programs from the firmware. Then, we
manually find out the main service program that contain most of functional ser-
vices. In general, the main service program is always running on online device
and has various protocol keywords in it. It could be simply located with manual
analysis.

Features. After finding out the main service program, we select a group of rep-
resentative features from the respective of assembly form to represent functions.
All features are shown in Table 1. In the following, we introduce the motivation
why we choose these features.

First, the protocol parser should have features related to service. Since it
has complex processing logic, the number of blocks is larger than other function
modules. The protocol parser is usually called by various components, so it owns
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more parent functions. Similarly, the protocol parser implements its functionality
by calling other modules, so it also owns more child functions. In addition, the
protocol parser normally executes different functionality depending on received
network data, thus the number of child functions appearing in paths of switch
branches is also important in recognizing the protocol parser. In Table 1, blocks,
inedges, outedges, switch_call are used to represent above features.

Then, the protocol parser should have control structure features. As the
protocol parser normally deal with external input, it would execute in different
path depending on the received network data. Moreover, the process may run
in cycles constantly. So a parser need contain switch statements or successive
if-else statements, and it should have a parent function that calls it in a while
structure. From the perspective of assembly form, the parser function should
has a block that owns more than three branches or successive blocks all of which
have side branches. Meanwhile, the parser function should be surrounded by a
loop structure. In Table 1, switch and loop are relevant features.

Finally, the protocol parser should have features related to protocol process-
ing. As the protocol parser normally deals with protocol communication, it fol-
lows the protocol specification and resolves particular characters and strings.
For example, the HTTP protocol parser need compare the front part of header
with GET and POST strings to determine the request method. Similarly, new-
line and return character would appear in the protocol parser as it is used to
split protocol fields. Thus the occurrence frequency of const strings and string
manipulation functions can reflect the likelihood of being a parser for a function.
As shown in Table 1, emp_banner, stremp and strstr are features that represent
the number of const strings, occurrence frequency of strecmp and strstr function
calls. Besides, cmp_spec is to represent occurrence frequency of CMP instruction
with ASCII code of character as the second argument.

Table 1. List of features

Features Explanation
switch Number of switch branches
loop Equal 1 when surrounding loop structure exists otherwize 0

cmp_spec Character comparison times

cmp_banner | String comparision times

stremp Frequency of strcmp occurrence

strstr Frequency of strstr occurrence

switch_call | Number of functions invoked in switch branches

blocks Number of blocks in functions

inedges Number of parent functions

outedges Number of child functions
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SVM Learning. After extracting features, we use SVM learning to construct
the classifier which can recognize parsers. First, we combine all features to con-
struct a feature vector and normalize them to represent each function. Though
observation, the feature value is either an integer value that is greater than zero
or a boolean variable. As the distribution of feature values is not uniform and
has a long tail, the Min-Max scaling transformation is not suitable. We take
logarithmic transformation to normalize all feature values.

T5 = logygxyf (1)

where x s represents the feature f’s value for a given function. Ty represents the
feature f’s value after normalization. Then, we select Standard Support Vector
Machine (C-SVM) with linear kernel to train our classifier based on normalized
samples. The result of classifier training is presented in Sect. 3.

2.2 Analysis of Security-Sensitive Sinks

After recognizing protocol parsers from firmware, we first design a selection
mechanism for security-sensitive sinks. Then, we construct PDG to identify
related input source and extract insecure sinks.

Selection of Security-Sensitive Sinks. The security-sensitive sink refers to
the common library function which could be affected by malicious external input
if the verification of input data is not strict. Since both buffer overflow and com-
mand injection belong to taint-style vulnerability, we list their related vulnerable
functions as sinks in Table 2.

To accelerate the discovery of the vulnerability, we only analyse sinks in the
parser function and its child functions. If a child function is deeper from the
parser function, the probability of suffering from vulnerability for the sink is
lower as external data usually does not spread too deep. Thus, we limit the
scope of our analysis to the parser function itself and its child functions within
three layers.

Table 2. Security-sensitive sinks

Category Functions

Buffer overflow strepy sprintf strcat memcpy gets fgets
vulnerability getws sscanf strncpy memmove
Command injection system exec execv execl

vulnerability

Program Dependence Graph. PDG is firstly constructed to guarantee precise
backtracking to source for sinks. It is an intermediate program representation that
makes explicit both the data and control dependence for each operation in a pro-
gram [13]. Three kinds of directed edges are contained in PDG, and we describe
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Fig. 1. PDG diagram

them in detail using a diagram of binary sample shown in Fig. 1. First, control
flow edge [10] represents the transition between program blocks. Second, control
dependance edge [12] refers the relationship that execution result of one specific
statement affects execution of the other statement. In Fig. 1, one of control depen-
dence analysis is that execution result of comparison instruction in Block 1 deter-
mines execution of all instructions in Block 3. In addition, data dependence edge
[13] represents the production and consumption of data in program. Instructions
in assembly form are transformed to VEX intermediate language and data depen-
dence is analyzed by construction and inferring of def-use chain [21]. In Fig. 1, one
of data dependence analysis is that RO in first instruction of Block 3 and R3 in
last instruction of Block 3 points to the same address. Source of any instruction’s
argument could be deduced iteratively in this way.

Since most external inputs are located in parser functions, we then construct
PDG from the entry point of identified parser functions to all child functions
within three layers. Based on PDG, we can identify the input source of sinks.
If the type of input source is string constant or from read-only data segments
like .rodata, we take it as insecure sinks. Finally, it need be deeply analyzed to
confirm the existence of vulnerability and the analysis does not belong to the
work of this paper.

3 Evaluation

In this section, we first describe the implementation details, then present training
result of the classifier. Next, we evaluate the performance of parsers recognition
on real-world embedded devices. Finally, the performance of our mechanism is
compared with whole-program analysis.

3.1 Implementation

We implement the two-stage mechanism on a server. It is Ubuntu 14.04.2
LTS(GNU/Linux 3.13.0-48-generic x86 64) with Intel Xeon(R) E5-2687TW v3
CPU and 125.8 GiB of memory. In the first stage, the main service program
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is loaded in The Interactive Disassembler (IDA) [9] which can disassemble the
program from binary to assembly form and recover its control flow graph. Since
features are unrelated to instruction set architecture and the disassembler code is
sufficient for analysis, we write python scripts using programming API supported
by IDA to extract feature values. Then we use open source tool scikit-learn [7]
to train classifier based on SVM learning. In the second stage, we modify the
code of tool Angr [21] to support PDG and analyze the input source of security-
sensitive sinks which help quickly find out insecure cases. Finally, We conduct
the experiment on firmwares of Hikvision and TVT brand camera. Hikvision [5]
and TVT [8] are famous camera manufacturers and their cameras are wildly
deployed in numerous applications. We select DS-2CD6223F model for Hikvi-
sion camera and TD-9436T model for TVT camera. The main programs from
two cameras firmwares are centaurus (13.2MB) and ipcamera (14.4 MB). The
performance of the classifier and two-stage mechanism are evaluated on them.

3.2 Cross Validation for Classifier

In the learning phase of classifier, We label 63 parsers from several firmwares as
positive samples, and choose 300 negative samples at random. We divide samples
into training set and validation set, respectively are S1 and S2. The experiment
starts to take 10 features as candidates and construct an initial classifier on S1.
Then the classifier is tested on S2, and the feature with lowest weight would
be discarded. The rest of features are kept training, and the result indicates
that when candidate features are reduced to specified 5 features, the recognition
accuracy rate is the best. The best features combination are switch, com_spec
com_banner, strcmp and strstr. The corresponding weights are 0.93, 1.76, 0.61,
1.88 and 1.71.

Unimportant features are loop, inedge, switch_call, blocks and outedge
sorted by unimportance. The [oop feature cannot be easily extracted since the
broken chain of function calls from IDA perspective. So it appears to be unim-
portant in recognition of parser functions. Conversely, other features are indeed
unimportant for parser recognition. Through our experiment, we find features
like cmp_spec, stremp and strstr may be more significant.

3.3 Performance of Classifier

To evaluate performance of the classifier, we manually label parser functions and
normal functions in centaurus and ipcamera. The classifier is applied to them
and the parser recognition accuracy is shown in Table 3. The mechanism tolerates
imprecision of parsers recognition to a certain extent as it is an intermediate step
to accelerate the speed of finding code locations where probability of the taint-
style vulnerability existence is high.

3.4 Performance of Two-Stage Mechanism

In whole-program analysis, functional modules are treated equally without dis-
crimination so that the entire security-sensitive sinks are analysed in spite that
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Table 3. Recognition accuracy of classifier

Program | Identified parsers | Correct num | Accuracy
centaurus | 93 79 84.9%
ipcamera | 97 83 85.6%
Total 190 162 85.3%

many of these are free of vulnerability. In our two-stage mechanism, only sinks
inside parser functions are analysed which greatly reduce the time cost. To prove
the efficiency, we get the number of function analyzed, sinks analyzed and inse-
cure sinks within them for specified sink types in different methods and calculate
time cost of each insecure sink discovery.

Table 4. Analysis of two camera firmwares

ipcamera centaurus

Global analysis | Our method | Global analysis | Our method
Analysis time 2950.8s 252.6s 3007.1s 321.4s
Function num 16053 1174 7232 853
Total (insecure/all) 623/2094 288/655 287/4528 54/427
strepy (insecure/all) 116/180 22/34 36/92 8/13
memcpy (insecure/all) | 352/1328 221/451 141/2347 29/287
strncpy (insecure/all) | 20/252 6/73 11/1638 4/39
sscanf (insecure/all) 4/29 4/22 8/67 5/52
sprintf (insecure/all) | 120/288 34/73 63/318 7/30
Time per insecure sink | 4.74s 0.88s 10.48 s 5.85s

The evaluation result on ipcamera and centaurus program is shown in Table 4.
It shows that to ipcamera and centaurus, average time cost of each insecure sink
discovery by our method are 0.88s and 5.85s. And the corresponding time cost
by whole-program analysis are 4.74 s and 10.48 s. By comparison, our mechanism
reduce the time cost of insecure sink discovery by 81.4 and 44.2 percent. There-
fore, our method has an advantage over accelerating discovery of the taint-style
vulnerability in embedded systems.

4 Related Work

4.1 Static Analysis

Yamaguichi et al. [19,20] propose to design code property graph representation
and path traversal patterns for various vulnerability types. Unfortunately, code
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property graph is depended on source code, hence it cannot be applied directly on
embedded binary programs. Angr [21] extracts control flow, control dependence,
data dependence graph and discovers vulnerabilities by using backward slicing
and symbolic execution technologies. However, accurate analysis still suffers from
low efficiency. PIE [11] finds parsers by extracting features and using machine
learning. However, only structure features are selected which affects accuracy of
protocol parsers recognition and vulnerability analysis work is rare.

4.2 Dynamic Analysis

Dynamic approaches like fuzz testing have been proposed to discover vulnerabil-
ity more precisely. Codenomicon Defensics [3], a mature network protocol fuzzing
product, supports many species of industrial protocols. However, code coverage
for testing is usually low and vulnerabilities in uncommon paths are not found.
As a remedy, some dynamic analysis tool like Driller [17] is proposed to combine
fuzz testing with symbolic execution to guide analysis into specified code areas.
Unfortunately, it requires simulation of programs which is difficult to implement
in embedded systems. In the aspect of dynamic simulation, Avatar framework
[22] is proposed to dynamically analyze embedded systems by orchestrating the
execution of an emulator together with the real hardware. Decaf [15] is proposed
to support virtual machine based, multi-target, whole-system dynamic binary
analysis. However, both frameworks have not been used to directly analyze
vulnerabilities.

5 Conclusion

In this paper, we propose a lightweight method to accelerate discovery of taint-
style vulnerabilities in embedded systems. Instead of analyzing entire security-
sensitive sinks, we focus on protocol parsers which are more prone to taint-
style vulnerabilities. We firstly use machine learning technologies to construct a
classifier that can recognize parser functions accurately. Then, we derive PDG
to identify input source of sinks that can help extract insecure cases quickly.
We demonstrate effectiveness of our work by comparing it with whole-program
analysis. Our work can effectively help analysts spend less time on insignificant
codes and find taint-style vulnerabilities in time. In the future, we need improve
protocol parsers recognition model and extend our work to cover more vulnera-
bility types.
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