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Abstract. Collaborative filtering plays an important role in online rec-
ommender systems, which provide personalized services to consumers
by collecting and analyzing their rating histories. At the same time,
such personalization may unfavorably incur privacy leakage, which has
motivated the development of privacy-preserving collaborative filtering
(PPCF) mechanisms. Most previous research efforts more or less impair
the quality of recommendation. In this paper, we propose a social-
aware algorithm called DynaEgo to improve the performance of PPCF.
DynaEgo utilizes the principle of differential privacy as well as the social
relationships to adaptively modify users’ rating histories to prevent exact
user information from being leaked. Theoretical analysis is provided to
validate our scheme. Experiments on a real data set also show that
DynaEgo outperforms existent solutions in terms of both privacy pro-
tection and recommendation quality.

Keywords: Social networks · Privacy preserving · Recommender sys-
tem · Collaborative filtering · Differential privacy

1 Introduction

Recommender systems [1] are widely used in e-commerce and online social net-
works, suggesting products, movies, music, etc. to consumers. Recommender
systems are designed to provide personalized suggestions on items to consumers.
Collaborative filtering (CF) plays an important role in recommender systems,
which makes recommendations by collecting suggestions from similar users (user-
based) or similar items (item-based).

However, the tendency towards personalization has raised privacy concerns
[2]. To address this problem, privacy-preserving collaborative filtering (PPCF)
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methods have been proposed, most of which employ traditional approaches such
as cryptography, obfuscation, and perturbation. These approaches either induce
great computation cost or provide insufficient privacy protection, thus impair-
ing the performance in practical applications. In 2006, Dwork [3] proposed the
notion of differential privacy (DP), which provides a quantifiable measurement
of privacy. McSherry and Mironov [4] first introduced DP into CF. They con-
structed a private covariance matrix to randomize each user’s ratings. In the
context of the recommender systems, DP ensures that no user would be able to
guess whether certain items appear in other users’ rating histories.

Unfortunately, former methods fail to resist the k nearest neighbors (kNN)
attack, which was first proposed by Calandrino et al. [5]. In the kNN attack, the
adversary can infer the rating history of the target user by creating fake users.
The success of the attack is due to that CF reveals users’ preferences explicitly
or implicitly, so the attacker can take advantage of the preferences to infer more
information. Existent PPCF schemes only obscure the values of ratings, but not
protect users’ preferences. To address the problem, Guerraoui et al. [6] proposed
D2P, which strengthens the notion of DP in recommender systems by creating
a perturbed rating history named AlterEgo for each user. The perturbation
process of D2P is highly dependent on subjectively selected parameters, which
makes the privacy level non-intuitive and hard to control.

To improve both the privacy protection and the recommendation quality of
former solutions, we introduce social relationships to PPCF schemes. Although
social relationships have been widely used in recommender systems to boost the
accuracy of recommendation, little work adopts it to provide effective privacy
protection. In practice, users tend to share similar tastes with their close friends.
So, substituting users’s ratings with their friends’ rating histories will obscure
the exact ratings while keeping high utility. The import of social relationship
information calls for us to customize the perturbed rating histories for differ-
ent users. Therefore, the modified rating histories in our scheme are generated
dynamically, which vary with the user who is receiving recommendations. We
call our dynamically modified rating history DyEgo, and correspondingly name
our scheme DynaEgo.

The rest of the paper is organized as follows. Section 2 introduces the prelimi-
naries. In Sect. 3, we present our construction along with the theoretical analysis
on privacy preserving. Section 4 reports the experimental results on a real data
set called Epinions. Section 5 concludes this paper.

2 Preliminaries

2.1 Notation

Let U = {u1, u2, ..., un} be a set of users and I = {t1, t2, ..., tm} be a set of
items. The rating histories data set D can be represented as an n × m matrix,
which can be decomposed into row vectors Pi and column vectors Ri. Specif-
ically, the row vector Pi = [ri1, ri2, ..., rim] corresponds to the user ui’s rating
history, and rij denotes the rating that user ui gave to item tj . The column vector
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Ri = [r1i, r2i, ..., rni] is composed of the ratings that ti has received. For an item
tj that has not been rated by ui, rij = 0. sim(ui, uj) represents the similarity
between users, and itemsim(ti, tj) is the similarity between items. Empirical
analysis indicates that Pearson correlation coefficient (Eq. 1) and Cosine simi-
larity (Eq. 2) outperform other measurements, respectively:

sim(ui, uj) =
∑m

k=1 (P
(k)
i −P̄i)(P

(k)
j −P̄j)

√∑m
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2.2 Differential Privacy

Definition 1 (ε-Differential Privacy). A random function M satisfies ε- dif-
ferential privacy if for all neighboring data sets D and D′, and for all outputs t
of this randomized function, the following statement holds:

Pr(M(D) = t)

Pr(M(D′) = t)
≤ exp(ε), where exp(ε) � eε,

Two data sets D and D′ are said to be neighbors if they are different in at most
one item. ε is the privacy protection parameter which controls the amount of
distinction induced by two neighboring data sets. A smaller value of ε ensures a
stronger privacy guarantee.

Two main mechanisms are usually used to achieve DP: the Laplace mecha-
nism [7] and the Exponential mechanism [8]. The Laplace mechanism is only
suitable for numeric outputs, while the Exponential mechanism is designed to
address the privacy issues in scenarios of entity outputs.

Definition 2 (Exponential Mechanism). Let q(r) be a score function of data
set D that measures the score of output r ∈ D. The mechanism M satisfies ε-
differential privacy if M(D) outputs r with the probability:

Pr(M(D) = r) =
exp(εq(r)/(2Δq))

∑
r∈D exp(εq(r)/(2Δq))

,

where Δq is the global sensitivity of q.

Definition 3 (Global Sensitivity). The global sensitivity Δq of a function q
is the maximum absolute difference obtained on the output over all neighboring
data sets:

Δq = max
D∼D′ |q(D) − q(D′)|.

Definition 4 (Composition Property [8]). The sequential application of
mechanisms Mi, each giving εi-differential privacy, gives

∑
εi-differential privacy.
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2.3 kNN Attack

The kNN attack assumes that the attacker knows m elements in Pt (i.e., partial
rating history of ut), which may be obtained by methods like social engineering.
Then the attacker wants to infer the remaining items that ut has rated.

The process of the kNN attack can be summarized as follows. The attacker
creates k fake users (i.e., sybils), and assigns the partial rating history of ut to
each sybil’s rating history. Then, with high probability, the k most similar users
of each sybil will consist of ut and the other k − 1 sybils. The attacker inspects
the list of items recommended to any of the sybils. Any item which appears in
the list must have been rated by ut.

2.4 Related Work

Former DP based PPCF solutions utilized DP mechanisms in various ways.
McSherry and Mironov [4] proposed the first DP-based PPCF mechanism, which
adds Laplace noise to the covariance matrix. PNCF [9] adopted the Exponential
mechanism to select the neighbors, and add Laplace noise to the computation
results. Zhu and Sun [10] proposed a mechanism based on the Exponential
mechanism and designed a low sensitivity metric to measure the similarity.

Another method to adopt DP into PPCF is creating perturbed rating histo-
ries, e.g., AlterEgo in D2P [6]. In D2P scheme, the AlterEgo remains unchanged
once created. In addition, the perturbation mechanism of D2P greatly depends
on subjectively chosen parameters. Different from D2P, our proposal DynaEgo
depends on the Exponential mechanism of DP, and employs social relationships
to dynamically modify the rating histories.

3 DynaEgo Recommender

3.1 System Model

In this paper, we consider a general user-based CF recommender system, con-
sisting of two parties: the service provider and the users. The service provider is
trusted, storing users’ rating histories and the social relationships data. There
may be some malicious users in the system, who aim to infer other users’ rat-
ing histories. The malicious users conduct the kNN attack. ua is the active user,
who is receiving recommendations. The service provider leverages k most similar
users’ rating histories to suggest items to ua.

As Fig. 1 shows, DynaEgo relies on the DyEgos to make recommendations.
The DyEgos are adaptively imitational rating histories. DynaEgo operates in
three phases: Grouping phase, Modification phase, and Recommendation phase.
The Recommendation phase is the same as the traditional CF algorithm, except
using the DyEgos rather than the exact rating histories. Thus we only introduce
the first two phases in detail below.
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Fig. 1. The DynaEgo recommender scheme.

3.2 Grouping Phase

The Grouping phase consists of two steps. We select s users as the SelectedUsers
at first, then create a RatingPool for each user in SelectedUsers.

SelectedUsers are s users who have the most similar rating histories to ua,
where s > k (k is the size of neighbors). To reduce the computation cost, only
the rating histories of the SelectedUsers will be substituted. Then, we create a
RatingPool for each ui in SelectedUsers. We use the Exponential mechanism of
DP to randomly select h users for ui, and add their ratings into the RatingPool
of ui. More specifically, sim(·) acts as the score function, and Δsim = 1.

Algorithm 1 illustrates the process of creating the RatingPool for a user ut

in SelectedUsers.

Algorithm 1. Grouping Function
Input: ut, U , h, I
Output: RatingPoolt

UserPool = {}
for i = 1 : h do

Sample a user u ∈ U with probability:
exp(ε1·sim(u,ut)/2)∑

u∈U exp(ε1·sim(u,ut)/2)
UserPool.add(u), U = U\u

end for
for ui in UserPool do

for tj in I do
if rij �= 0 then

RatingPoolt.add(rij)
end if

end for
end for

3.3 Modification Phase

Our scheme relies on the RatingPools obtained from the Grouping phase to
create DyEgos by the Exponential mechanism. For users not in SelectedUsers,
their DyEgos are their real rating histories. Algorithm2 shows the process of
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Algorithm 2. Modification Function
Input: Pt, α, RatingPoolt
Output: DyEgot

q(rij , rxy) = α · trust(ui, ux) + (1 − α) · itemsim(tj , ty)
for rij in Pt do

Sample a rating rxy ∈ RatingPoolt with probability:

exp(ε2 · q(rij , rxy)/2)
∑

rxy∈RatingPoolt
exp(ε2 · q(rij , rxy)/2)

DyEgot.add(rxy)
end for

creating DyEgo for ut. The social information is used to design the score func-
tion. It is believed that users with more common friends are more likely to have
similar tastes. So we use the percentage of common friends (Eq. 3) to measure
the trust relationship.

trust(ui, uj) =
|F (ui) ∩ F (uj)|
|F (ui) ∪ F (uj)| . (3)

Here, function F (·) returns the friend list of the user. |F (ui) ∩ F (uj)| is the
number of common friends of ui and uj , and |F (ui) ∪ F (uj)| is the number of
total friends of ui and uj .

According to Algorithm2, we set the score function as α · trust(ui, uy)+(1−
α) · itemsim(tj , tx), where α ∈ (0, 1) is the parameter indicating the weight of
social information in perturbations.

3.4 Theoretical Analysis

Theorem 1. The recommendation mechanism M based on DynaEgo satisfies
(ε1+ε2)-differential privacy, where ε1 and ε2 are privacy parameters in Grouping
phase and Modification phase, respectively.

First, we present lemmas and corollaries needed to prove Theorem 1.

Lemma 1. We denote SUB(i, j) the event of substituting element i with j in a
user’s rating history. For three arbitrary elements i, j, and k, where i �= j, the
following inequality holds:

Pr(SUB(i, k))

Pr(SUB(j, k))
≤ exp(ε2),

where ε2 is the privacy parameter in Modification phase.

The correctness of Lemma 1 can be easily derived from Definition 2 and
Algorithm 2.
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Lemma 2. Let Pi denote the original rating history of user ui, whereas P ′
i and

Pi are neighbors. PS is a privacy preserving mechanism which creates the DyEgo
PiE of ui. Then, we have:

Pr(PS(Pi, PiE))

Pr(PS(P ′
i , PiE))

≤ exp(ε2).

Proof. Let Pi = [ri1, ri2, ..., rik, ..., rim]. Without loss of generality, we assume
that Pi and P ′

i only differ in the first element, i.e., P ′
i = [r′

i1, ri2, ..., rik, ..., rim].
rπ
ik denotes the permutation of the rating rik.

Based on the fact that every element is replaced independently, we get:

Pr(PS(Pi, PiE)) =
∏m

k=1
Pr(SUB(rik, rπ

ik)), (4)

Pr(PS(P ′
i , PiE)) = Pr(SUB(r′

i1, r
π
i1)) ·

∏m

k=2
Pr(SUB(rik, rπ

ik)). (5)

Now, from Eqs. 4 and 5, we have:

Pr(PS(Pi, PiE))

Pr(PS(P ′
i , PiE))

=
Pr(SUB(ri1, r

π
i1)) ·∏m

k=2 Pr(SUB(rik, rπ
ik))

Pr(SUB(r′
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π
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.

So, according to Lemma 1, we can get:

Pr(PS(Pi, PiE))
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i , PiE))

=
Pr(SUB(ri1, r

π
i1)) ·∏m

k=2 Pr(SUB(rik, rπ
ik))

Pr(SUB(r′
i1, r

π
i1)) ·∏m
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≤exp(ε2 Pr(SUB(r′
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π
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Pr(SUB(r′
i1, r

π
i1)) ·∏m

k=2 Pr(SUB(rik, rπ
ik))

= exp(ε2).

�

Corollary 1. For any two neighboring original rating histories data sets D, D′,
and an arbitrary DyEgo data set Dr, we denote DS(D,Dr) as the function of
substituting Dr for D. Then, we have:

Pr(DS(D, Dr))

Pr(DS(D′, Dr))
≤ exp(ε1 + ε2).

Proof. The process of building DyEgo set is composed of two phases: Creat-
ing the RatingPool and Modification phase. According to Lemma2, the Mod-
ification phase satisfies ε2-differential privacy. If the process of creating the
RatingPool satisfies ε1-differential privacy, the construction of DyEgo data set
satisfies (ε1 + ε2)-differential privacy due to the composition property of DP. �

Proof of Theorem 1. Let M the mechanism based on DynaEgo, and M ′ is an
arbitrary recommendation algorithm. We denote Rec as the recommendations
given to ua. So, Theorem 1 can be rewritten as:

Pr(M(D, ua) = Rec)

Pr(M(D′, ua) = Rec)
≤ exp(ε1 + ε2).
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In addition, we have:

Pr(M(D, ua) = Rec) =
∑

Dr
Pr(DS(D, Dr)) Pr(M ′(Dr, ua) = Rec), (6)

Pr(M(D′, ua) = Rec) =
∑

Dr
Pr(DS(D′, Dr)) Pr(M ′(Dr, ua) = Rec). (7)

From Eqs. 6, 7, and Corollary 1, we can get:

Pr(M(D, ua) = Rec)

Pr(M(D′, ua) = Rec)
=

∑
Dr Pr(DS(D, Dr)) Pr(M ′(Dr, ua) = Rec)

∑
Dr Pr(DS(D′, Dr)) Pr(M ′(Dr, ua) = Rec)

≤
∑

Dr exp(ε1 + ε2) Pr(DS(D′, Dr)) Pr(M ′(Dr, ua) = Rec)
∑

Dr Pr(DS(D′, Dr)) Pr(M ′(Dr, ua) = Rec)
= exp(ε1 + ε2).

Therefore, we can conclude that M satisfies (ε1 + ε2)-differential privacy. �

4 Experimental Evaluation

4.1 Setup

Data Set. We evaluate DynaEgo with the Epinions1 data set. The Epinions
data set consists of ratings given by 49,290 users over 139,738 items, and each
rating ranges from 1 to 5. In addition, Epinions provides the social relationship
data. In this paper, we use a subset of the Epinions data set with ratings given by
100 users over 500 items and the corresponding social relationship data, which
shares the same size with the data set in [6].

Parameter Selection. The performance of PPCF varies with the privacy para-
meter ε. In our experiments, we set ε = 2. According to [6], in D2P, ε is decided
by three parameters: λ, p, and p∗. We set λ = 0.5, p = 0.8, and p∗ = 0.01,
which ensure that ε = 2. Whereas in PNCF, the parameter ε can be selected
directly. In our scheme, the privacy parameters ε1 and ε2 in Grouping phase and
Modification phase are 1, ensuring the overall mechanism satisfies 2-differential
privacy. In addition, without loss of generality, we set the size of SelectedUsers
twice as large as the neighbors’ size, i.e., s = 2k. h = 10, and α = 0.2.

4.2 Utility Evaluation

This section examines the utility performance of DynaEgo. We conduct experi-
ments by defining different size of neighbors. We apply the traditional user-based
CF as the baseline, and then compare DynaEgo with D2P and PNCF.

We measure the recommendation quality in terms of classification accuracy
metrics (CAM) [11]. CAM measures the frequency with which a recommender
makes correct or incorrect decisions about whether an item should be recom-
mended. In CAM evaluation, parts of ua’s ratings are deleted, and we observe
1 http://www.trustlet.org/epinions.html.

http://www.trustlet.org/epinions.html


DynaEgo 355

how well the recommendations match the real rating record. The recommender
system selects the top-5 items as the recommendations. We compare the F1-
Score of the PPCF schemes and the non-private CF. The experiment for each
mechanism is repeated for 50 times to eliminate the impact of randomization.

According to Fig. 2, DynaEgo maintains the F1-Score larger than 0.6, which
indicates that DynaEgo maintain a high recommendation quality. Specifically,
when #neighbor = 15, DynaEgo achieves an F1-Score of 0.628, which outper-
forms the results of D2P (0.462) and PNCF (0.508) by 36% and 24%, respectively.

4.3 Privacy Evaluation

We use the SuccessRate of the kNN attack as the metric, which indicates the
percentage of inferences that are correct (i.e., the items that ut has rated).

We consider a recommender system with the configuration of 10 neighbors.
An attacker creates 10 sybils, each of whom owns a rating history with parts
of ut’s rating history (i.e., the auxiliary knowledge). Ideally, each sybil has a
neighborhood consisting of ut plus 9 other sybils. However, in PPCF schemes, the
sybil cannot obtain neighbors as expected, due to the introduced perturbation.

In Fig. 3, each point represents the average value of SuccessRate from
50 repeated experiments. It may seem strange at the first sight that the
SuccessRate decreases with the increase of auxiliary information. In fact, in
PPCF schemes, more auxiliary knowledge increases the probability of other
sybils rather than the target user appearing in the neighbors. Since sybil user’s
rating history does not have any information about ut’s remaining rating history,
the increase of sybil users in neighbors has a negative effect on the inferences.

For the non-private scheme, the SuccessRate of kNN attack is 1.0,
which indicates that the kNN attack always succeed. In PPCF schemes, the
SuccessRate falls significantly. Compared with other PPCF schemes, DynaEgo
has lower SuccessRate regardless the percentage of auxiliary knowledge of the
attacker.

Fig. 2. Utility comparison between
D2P, PNCF, and DynaEgo

Fig. 3. Resistance of D2P, PNCF, and
DynaEgo to the kNN attack.



356 S. Yan et al.

4.4 Effect of Social Relationship Weight (α)

We vary the value of parameter α from 0.1 to 0.9 to observe the change of F1-
Score and SuccessRate, with the configuration of 80% auxiliary items and 15
neighbors. The larger α is, the bigger impact the social relationship will have.

Table 1. Effect of α on privacy and utility

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1-Score 0.625385 0.622308 0.613846 0.612308 0.607692 0.618461 0.621026 0.625385 0.627692

SuccessRate 0.024365 0.021989 0.022166 0.019447 0.017265 0.021544 0.022121 0.021825 0.024005

Table 1 indicates that when α = 0.5, our scheme will have the best resistance
to the kNN attack and a correspondingly lower F1-Score value. The privacy
protection degrades when α approaches 0.1 or 0.9.

5 Conclusions

In this paper, we have proposed a social-aware PPCF scheme called DynaEgo.
The main idea of DynaEgo is substituting users’ rating histories adaptively, which
adopts the Exponential mechanism of DP. Additionally, social relationships are
used to design the score function. To evaluate the performance of our scheme,
we have conducted experiments on the Epinions data set. The results show that
DynaEgo outperforms existent solutions in both utility and privacy protection.
Since DynaEgo is independent of any specific recommendation algorithm, it can
be applied to all recommender systems that are based on users’ rating histories.
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