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Abstract. In resource-constrained applications, elliptic curve cryptog-
raphy (ECC) is preferable for the property of shorter key size with
comparable security. Binary extension fields are usually used for area-
optimized implementations, since the complex carry-propagation logics
are avoided over these fields. However, efficient ECC implementations
over (general) prime fields are still challenging for low-area constraint.
As a popular implementation platform for cryptographic algorithms,
Field Programmable Gate Array (FPGA) attracts more and more atten-
tions for these applications due to its nice properties of flexibility and
short development cycle. In this paper, we propose a compact and effi-
cient arithmetic logical unit (ALU) by highly integrating the functions
of Montgomery modular multiplications, additions and subtractions over
general prime fields. Then we design a low-cost hardware architecture for
generic elliptic curve point multiplications for FPGA platforms. Experi-
mental results indicate that the implementation only occupies 105 Slices,
2 DSP blocks and 2 BRAMs in Spartan-6 FPGA. To the best of our
knowledge, our implementation is the smallest for general prime fields in
FPGAs.

Keywords: Elliptic curve cryptography · Low-cost · FPGA ·
Implementation

1 Introduction

Low-cost cryptographic implementations have been more and more attractive
for modern applications. A low-cost implementation also means the reduction of
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consumed resources and power, which is necessary for these constrained scenar-
ios. Although the available resources are strictly constrained, public-key cryp-
tography (PKC) involving burdensome arithmetic is usually required due to its
advantages over symmetric cryptography. Compared with RSA or other PKC
algorithms over finite fields, elliptic curve cryptography (ECC) uses a much
shorter key to achieve an equivalent level of security. Therefore, ECC implemen-
tations are preferred for resource-constrained applications owing to the lower
computational complexity and other nice properties such as reduced storage
and power consumption. Compared with software and ASIC (Application Spe-
cific Integrated Circuit) implementations of ECC, FPGA implementation is a
better choice in the trade-off between execution speed and development period.
In addition, FPGAs are often used as the early-validation platforms for the
ASICs, thus have important research values.

ECC designs can be roughly split into two categories: over (extended) binary
fields F2n and over prime fields Fp, and also some designs support both the
two. The first category offers better performance and lower resource consump-
tion, mostly because no carry is propagated in the field structure. That is why
most area-optimized designs focus on binary field implementations. Neverthe-
less, prime fields also have significant value either in the applications, such as
digital signature generation, or in the standards of elliptic curves [4,5,16]. The
NIST curves over binary or prime fields have significant advantages in area and
speed for hardware implementations, as fast reduction methods can be adopted
and the parameters are fixed. Therefore, most of the low-area targeted designs
[1,6,8,11,18,19,21,23] (especially in ASICs) are focusing on these standardized
curves. These implementations are efficient for elliptic curve point multiplica-
tions (ECPMs), but for further applications (such as digital signature gener-
ation), they are hard to be complete these functions alone. For example, the
Elliptic Curve Digital Signature Algorithm (ECDSA) needs another prime (the
order of the base point) field operations for the final operation, but fast reduction
methods cannot be applicable for that prime which is not special. Existing imple-
mentations based on the fast reduction have to specifically add the scheduling
instructions and improve the hardware arithmetic unit for supporting the signa-
ture generation, such as [18].

In this paper, in order to better support the applications based on ECC (such
as curve transition, or signature generation and key agreement which require the
operations over another prime field) for area-constrained scenarios, we propose a
low-cost hardware ECC implementation for general prime fields based on Mont-
gomery modular multiplications. Besides supporting the operation over another
prime field under the same curve, the implementation also supports the transi-
tion of different curves (of the same length) without reconfiguration. For exam-
ple, if needed, the user can switch the underlying curve from the NIST curve
P-256 to the SM2 elliptic curve (Chinese ECC standard [16]) through writing
new parameters for meeting certain demands.

The implementation is constructed based on our proposed prime-field arith-
metic logical unit (ALU) for modular arithmetic, which is able to perform the
operations of Montgomery modular multiplications, additions and subtractions



294 Y. Ma et al.

with high compatibility. For the sake of efficiency, the ALU is designed to be
a high-radix architecture. Particularly, we employ Shift Register Look-up Table
(SRLs) in FPGAs to implement long registers to minimize the occupied area,
and eliminate the operations between additions/subtractions and Montgomery
multiplications to decrease the control circuits. Furthermore, we maximize the
frequency of the ALU with the help of the dedicated DSP (Digital Signal Process-
ing) blocks in modern FPGAs, and the execution efficiency of the ECC imple-
mentation is significantly improved. In the higher level, we optimize the schedul-
ing process in the point addition to improve the use efficiency of the ALU. Finally,
we implement the design in Spartan-6 FPGA platform. The design only occupies
105 Slices, 2 DSP blocks and 2 BRAMs in Spartan-6 FPGA with a low computa-
tion latency. Comparison results indicate that our implementation outperforms
the existing works in FPGAs over prime fields in the aspect of area, and a lot of
logic Slices or dedicated cores are saved.

The rest of this paper is organized as follows. Section 2 presents the prelimi-
naries for elliptic curve cryptography. Section 3 describes the hardware architec-
tures of the ALU and the ECC processor. Section 4 gives implementation results
in FPGAs. Section 5 presents the comparison results with related work. Section 6
concludes the paper.

2 Elliptic Curve Cryptography

The elliptic curve is defined over a field K given by the Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1)

In the case of the characteristic Char(K) �= 2, 3, the general Weierstrass
equation is simplified to

E : y2 = x3 + ax + b. (2)

In [14], Montgomery developed an original technique to compute multiples
of points on an elliptic curve, as shown in Algorithm1. His technique is based
on the fact that the sum of two points whose difference is a known point can
be computed without the y-coordinates of the two points. For each iteration in
the Montgomery ladder algorithm, Q1 − Q0 always equals to the base point P ,
thus can be preset as a constant in advance. As the speed is not the primary
optimization goal, we do not adopt more efficient algorithms such as NAF (Non-
adjacent Form) or window-based algorithms, but employ the Montgomery ladder
algorithm whose control is simpler. In addition, the method is resistant against
Simple Power Analysis (SPA).

Let P = (x1, y1) and Q = (x2, y2) ∈ E(Fq) with P �= ±Q, and P + Q =
(x3, y3), 2P = (x4, y4). Given the point P − Q = (x′, y′), the x-coordinates of
P + Q and 2P satisfy [2]:

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− x′, (3)
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Algorithm 1. Montgomery ladder algorithm for point multiplication
Input: P ∈ E(Fq), k = (kl−1, ..., k1, k0) with kl−1 = 1
Output: kP
1: Q0 = P ; Q1 = 2P
2: for i = l − 2 down to 0 do
3: if ki = 0 then
4: Q1 = Q0 + Q1; Q0 = 2Q0

5: else
6: Q0 = Q0 + Q1; Q1 = 2Q1

7: end if
8: end for
9: return (Q0)

and

x4 =
(x2

1 − a)2 − 8bx1

4(x3
1 + ax1 + b)

. (4)

The formulas for point addition and point doubling require a field inversion
and several field multiplications. If inversion in K is significantly more expen-
sive than multiplication, then it may be advantageous to represent points using
projective coordinates.

The projective point (X : Y : Z), Z �= 0, corresponds to the affine point
(X/Z, Y/Z). The projective equation of the elliptic curve is

Y 2Z = X3 + aXZ2 + bZ3.

The point at infinity ∞ corresponds to (0 : 1 : 0), while the negative of (X : Y :
Z) is (X : −Y : Z). Under the standard projective coordinate, these equations
becomes [10]:

Z3 = (X1Z2 + X2Z1)2, (5)
X3 = 2(X1Z2 + X2Z1)(X1X2 + aZ1Z2) + 4bZ2

1Z2
2 − x′Z3, (6)

Z4 = 4Z1(X3
1 + aX1Z

2
1 + bZ3

1 ), (7)
X4 = (X2

1 + aZ2
1 )2 − 8bX1Z

3
1 . (8)

In some cases (such as public key generation), the y-coordinate is required.
The y-coordinate of P can be deduced by:

y1 =
2b + (a + x′x1)(x′ + x1) − x2(x′ − x1)2

2y′ .

Note that y′ is the y-coordinate of the base point that is known in advance
in Algorithm 1, so (2y′)−1 can be pre-computed and the inversion is replaced by
a multiplication in the equation.
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In the original ladder, the addition and doubling are computed separately.
For sake of efficiency, Izu et al. [9] encapsulated these formulae into one formula,
which outputs x-coordinate values of P + Q and 2P on inputs P and Q. With
a projective version of the x-coordinate-only formulae, X3, Z3,X4, Z4 can be
computed with 17 multiplications and 18 additions. The number of auxiliary
variables for the formulae is 7. The y-coordinate recovery algorithm requires 13
multiplications and 7 additions and 7 auxiliary variables [9]. For one ECPM, the
y-coordinate recovery is only performed once, thus has negligible impact on the
execution efficiency.

3 Hardware Architecture

In general, the compact ECC architecture is usually composed of four parts:
the ALU for finite-field arithmetic, data memory, program memory and other
control circuits. The core of the design is to simplify the ALU operations and
further utilize the ALU efficiently for elliptic curves arithmetic. In this section,
we first propose a compact and efficient ALU architecture based on a series of
design policies, and then design a low-cost ECC architecture.

3.1 ALU Design

Design Policy. The design of an ALU is crucial for ECC implementations. The
purpose of our design is to construct a compact and area-saving architecture.
To achieve this goal, we establish the following design policy for the circuit
architecture.

1. To support the operations of general prime fields or generic curves rather than
specific curves (such as NIST curves) in order to guarantee the flexibility.

2. To set the bus width of the input/output signals to no more than 16 bits
in order to simplify the control, and to use single-port RAM rather than
dual-port RAM.

3. To integrate all the prime-field operations to use the same computing circuit
in order to save consumed resources.

4. To specifically enrich the ALU functions to optimize the scheduling process
inside the elliptic curve arithmetic.

Item (1) ensures the flexibility of the ECC implementation, so that it is not
only suitable for the NIST primes (such as P-192, P-256) but also for the opera-
tions over general prime fields. Item (2) guarantees lower-resource consumption
when using RAMs. With narrower width and single port RAM, smaller area
of control circuits are consumed. The use of single-port RAM is to improve
the transportability of the architecture. Item (3) makes the same circuit per-
form modular multiplication, addition and subtraction by configuration, which
improves the utilization. Item (4) enhances the efficiency for calculating point
addition and doubling, as some involved specific operations can be optimally
executed by the ALU.



Low-Cost Hardware Implementation of ECC over Prime Fields 297

Modular Arithmetic. According to the design policy (1), we choose Mont-
gomery multiplication as the underlying modular multiplication algorithm,
rather than the fast reduction method which is only available for pseudo
Mersenne primes such as NIST standardized primes [5]. Montgomery multiplica-
tion is a method to perform modular multiplication without the need to perform
division by the modulus [13]. A version of Montgomery’s algorithm [17] is given
as Algorithm 2. This algorithm avoids multiplication and addition in quotient
determination to simplify the computation.

Algorithm 2. Montgomery multiplication algorithm with simplified quo-
tient determination [17]
Input:

A modulus M > 2 with gcd(M ,2) = 1 and positive integers w, n such that

4˜M < 2wn, where ˜M is given by ˜M = (M̄ mod 2w)M .
Integer R−1, where (2wnR−1)mod M = 1
Integer M̄ , where (-MM̄)mod 2w = 1

Integer multiplicand A, where 0 ≤ A ≤ 2˜M
Integer multiplier B =

∑n
i=0(2

w)ibi, where digit bn = 0, bi ∈ {0, 1, . . . , 2w − 1}
for 0 ≤ i < n and 0 ≤ B ≤ 2˜M

Output:
An integer Sn+1 where Sn+1 ≡ ABR−1( mod M) and 0 ≤ Sn+1 ≤ 2˜M

1: S0 = 0;
2: for i = 0 to n do
3: qi = Si mod 2w;
4: Si+1 = Si div 2w + qiM

′ + biA, where M ′ = (˜M + 1) div 2w;
5: end for
6: return Sn+1

On the observation from Algorithm 2, the step to calculate Si+1 is crucial
for this modular multiplication. In order to make this algorithm suitable for
hardware implementation, we propose a processing method which uses two w-
bit multipliers and a few adders, as shown in Algorithm3. The long integer Si and
M ′ are split into w-bit blocks. The remaining inputs appearing in Algorithm2
are omitted.

In Algorithm 3, Si and M ′ are divided into n w-bit blocks. Si is represented
as: Si = {S

(n−1)
i , S

(n−2)
i , . . . , S

(0)
i }. During the initialization procedure, S0 and

(w +1)-bit Carry are set to be zero. After the initialization, there are two loops
to complete the Montgomery multiplication. For the operands A and B, the
outer loop is responsible for the split of B and the inner loop controls the use
of w-bit aj . The most resource consuming calculation is in the inner loop, and
this calculation is involved with two w-bit multipliers and an addition with four
addends. Since the inner loop consumes n clocks and the outer loop has (n + 1)
times, it takes n(n + 1) clocks to finish one Montgomery multiplication.
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Algorithm 3. Processing method for the compact design of Montgomery
multiplication
Input:

A,B,M ′ = {m′
n−1, . . . ,m

′
0}

Output:
Sn+1 ≡ ABR−1( mod M) and 0 ≤ Sn+1 ≤ 2˜M.

1: S0 = 0, Carry = {w + 1}′b0;
2: for i = 0 to n do
3: qi = S

(0)
i ;

4: for j = 0 to n − 1 do
5: {Carry, S

(j)
i+1} = S

(j+1)
i + Carry + qim

′
j + biaj ;

6: end for
7: end for
8: return Sn+1

Based on the processing method, we add the modular addition and subtrac-
tion function by using the existing accumulator in the multiplier. In fact, the
Montgomery multiplication has the function of reduction by expanding R. For
example, for any input A,B < 4˜M , when R = 2wn > 4 × 4˜M = 16˜M , the final
result still satisfies 0 < Sn+1 < 2˜M. Therefore, we do not perform the reduction
of the addition results, but only to guarantee the multiplier input in the range
of (0, 4˜M). For modular subtraction, we need to add integer multiples of M to
the subtraction result when it is negative. The algorithm for modular addition
and subtraction is shown in Algorithm4.

Algorithm 4. Modular addition and subtraction sharing the circuit of
Montgomery multiplication

Input: A,B,˜M ,
operation flag sub ∈ {0, 1} denotes a subtraction when sub = 1 and addition
otherwise;

Output: S
1: S = 0, Carry = (w + 1)′b0;
2: for j = 0 to n − 1 do
3: {Carry, S(j)} = Carry + bj ⊕ {sub} + aj + (j == 0?1 : 0);
4: end for
5: while Carry �= 0 do
6: {Carry, S} = {Carry, S} + ˜M ;
7: end while
8: return S

In the initialization of Algorithm4, S0 and (w +1)-bit Carry are set to zero.
According to the operation flag sub, the accumulator can complete both addition
and subtraction. When the operation is modular addition, after the n-time loop,
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the operation is completed. When the operation is modular subtraction, the
XOR operation is activated and ‘1’ is added in the first round. Furthermore,
if Carry is not zero after the iteration, which means the final result of S is
negative, it requires extra additions with ˜M until S is positive.

Design Architecture. The ALU architecture integrating Montgomery multi-
plication, addition and subtraction operations is depicted as Fig. 1. According
the design policy (2), only one data input port is allowed for the ALU. There
are three logic calculation units: two w-bit multipliers and one adder with four
inputs. Also, there are two long shift registers which are used for storing M ′

and the computed result S, and these two registers are shifted w-bit every clock.
Here, we carefully minimize the number of states of the shift registers to reduce
the control circuits for these massive registers.

The data flow of the multiplication in the ALU is explained as follows. Before
the first modular multiplication, we should load the modulus into the shift reg-
ister M ′ and the bus width of this data input port is w, so it takes nearly
(n − 1)-time shifts to finish the loading. Note that the loading operation is only
executed once at the beginning of the prime field computation. Algorithm3 is
performed after rightmost w-bit b0 into the ALU register. Then a0, a1, · · ·, an−1

successively enter the left multiplier unit of the ALU figure. The width of the
addition result is 2w + 1 bit, where the higher w + 1 bits are fed back to the
adder in the next cycle and the rest are put into the S shift registers. Due to
the one extra cycle for loading bi, the total clock cycles for one multiplication
increases to (n + 1)2.

The addition and subtraction shares the same accumulator of the ALU. The
configuration is easily completed by using the multiplexers which are responsible
for switching the values of sub and zero. Another advantage of the ALU struc-
ture is that it can perform the operation αA ± βB, where α, β ∈ [0, 2w − 1] and
β ≡ 1 for subtraction. The function is more powerful by combining Algorithm4,
as the result can be immediately input to the ALU for Montgomery multiplica-
tion without modular reduction gradually. This is useful to merge the adjacent
additions and subtractions in point addition and doubling algorithms, thus saves
program commands and consumed time. The required clock cycles for one-time
addition/subtraction is 2(n + 1).

3.2 FPGA Optimization

In modern FPGAs, the dedicated resources and multifunctional logics allows us
to further improve the efficiency of the ALU.

Maximizing Frequency. The maximum frequency of the ALU is limited due to
the long critical path, which consists of one multiplier, one adder of four numbers
and some multiplexers, as shown in Fig. 1. This could reduce the compatibility
of the ALU (or the ECC implementation) with high-speed modules that run at
a high frequency in the same FPGA. Therefore, we maximize the frequency of
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Fig. 1. The ALU architecture

the ALU with the help of the dedicated DSP (Digital Signal Processing) blocks
in modern FPGAs, which also significantly improves the execution efficiency
of the ECC implementation. In our targeted FPGA platform Xilinx Spartan-6,
the DPS block named DSP48A1 is able to perform (mixed) multiplications and
subtractions/additions efficiently, and the frequency can achieve very high by
inserting the registers (i.e., pipeline) inside DSP blocks.

In the pipeline setting up, to guarantee that the result is computed in each
loop after the pipeline is filled, we shall recognize that which variables can be
known in advance and which ones cannot be. The critical data path of the ALU
in the i-round j-loop is represented as:

{Carry, S
(j)
i+1} = Carry + S

(j+1)
i + qi ∗ m′

j + ai ∗ bj ,

where the variables except for Carry for the next loop are known before the
end of the current loop, thus can be pre-computed. In addition, the result of
ai ∗ bj should be negated for the subtraction operation (bj always equals 1 for
the subtraction), and we also put the negation operation into the DSP blocks
by being subtracted with w-bit 1’s.

The data path with pipelines inside DSP blocks is depicted as Fig. 2, which
contains two DSP blocks with a three-stage pipeline. The stage latencies are
balanced to maximize the frequency. In the 1st stage, the two multiplications
are performed. The negation and the addition operations are processed in the
2nd stage, and the two DSP blocks are connected using the cascade connection
ports PCOUT and PCIN to decrease the wire delay. The remain three-number
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addition is performed in the 3rd stage. After the frequency optimization, the
maximum frequency of ALU is improved to 200 MHz in our experiment, which
is nearly three times than the original. The execution time of the multiplication
or addition/subtraction sightly increases by two clock cycles that is caused by
filling up the pipeline.

Fig. 2. The optimized data path with pipelines

Minimizing Area. In the ALU, the main consumed resources are divides into
three parts: multiplier and adder units, the long shift registers, and the con-
trol circuit, and we have put some addition operations in the DSP blocks to
improve the resource utilization. Here we further employ the SRLs in FPGAs
to implement the long shift registers. SRLs are one type of LUTs that can effi-
ciently implement shift registers. One 6-input SRL can compose 1-bit-width and
64-bit-depth shift registers, while it requires 64 registers in the non-optimizing
manner. In addition, as we mentioned, the two groups of shift registers (S and M
in Fig. 1) have only two states: suspending and shifting, except for the heading
registers that have different inputs. For SRL implementations, each SRL has an
input to control the inside registers shifting or not. Therefore, these registers can
be efficiently implemented in FPGAs with a ultra-low cost.

3.3 ECC Architecture

Based on the ALU design and the Montgomery ladder algorithm for point mul-
tiplication, we design our ECC architecture by utilizing decoders and program
commands to control all the required operations over prime fields. The ECC
architecture is designed as shown in Fig. 3. Except for the ALU module, two
memories are deployed in the architecture. One is the PROGRAM ROM and
the other is a DATA RAM which is used for storing intermediate values, the
constants, and the final results.

Point multiplication is composed of a series of point addition and point dou-
bling. After the mix of modular multiplications and additions by utilizing the
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multiple-and-addition function of the ALU, one point addition and doubling
needs 17 modular multiplications and 12 modular addition/subtraction. For each
modular multiplication or modular addition/subtraction, there is a command to
indicate the type of this operator, the addresses for the operands of this opera-
tor. Therefore, for one point addition and point doubling there are 29 commands
in total and there is a decoder to determine which command is used for next
calculation according to k. In order to simplify the decoder, we have two sets of
commands in the PROGRAM ROM, one set of 29 commands is for the case in
which ki is 0, and the other set of 29 commands is for the case in which ki is 1.

Modular inversion is required for transferring the projective coordinates to
affine ones or generating the signature. In our implementation, the operation is
carried out by utilizing the ALU, and the commands are also stored in the ROM
of Fig. 3. We take advantage of Fermat’s little theorem to calculate the inversion,
which is

ap−2 ≡ a−1 mod p. (9)

Hence, the operation of modular inversion just consumes a few extra memory
and control circuits.

4 Hardware Implementation

In this section, we implement the 256-bit ECC architecture in Xilinx FPGAs,
and evaluate its area and efficiency.

4.1 Efficiency

For demonstration purposes, we implement 256-bit ECPM of generic curves over
prime fields in FPGAs. The parameters of the ALU and ECC processor are set
as follows. The modulus M has 256-bit length, the width w = 16, n = 18,
and R = 2wn = 2288. Hence, the total number of processing cycles for a modular
multiplication and addition/subtraction is (n+1)2+2 = 363 and 2(n+1)+2 = 40,

Fig. 3. The ECC architecture
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respectively. The RAM size is set to 256-bit depth and 16-bit width (256× 16),
and the program ROM size is 128× 16.

For 256-bit ECPM, the required clock cycles of w = 16 for different opera-
tions are listed in Table 1. One 256-bit ECPM has at most 256 point addition &
doubling operations for Montgomery ladder algorithm. The inversion in the
ECPM is only considered once. The y-coordinate is also calculated at the end
of ECPM. As a result, the 256-bit ECPM for generic curves can be completed
in about 1847 K clock cycles for w = 16.

Table 1. Required clock cycles for the operations (w = 16)

Operation MUL ADD/SUB Point ADD & DBL INV Other ECPM

Clock cycles 363 40 6651 139392 5362 1847410

4.2 FPGA Implementation

We implement the ECC processor on Xilinx Spartan-6 (XC6SLX45T-4) and
Spartan-3E (XC3S100E-5) FPGAs. The two FPGAs are both low-cost-
application oriented, while the latter is an old device which is useful for the
fair comparison with previous work. The post place and route (PAR) implemen-
tation results by ISE 14.6 are shown in Table 2. Note that the differences between
internal structure of the two FPGAs make the consumed logics seemingly sig-
nificantly different. One Slice in Spartan-3E contains two 4-input LUTs and
two flip-flops, while the Slice in Spartan-6 contains four 6-input LUTs and four
flip-flops. The multiplier resources are multi-functional DSP units in Spartan-6,
while they are multiplier hardcores (MULT) in Spartan-3E. It is noted that the
functions that were completed in DSP blocks are implemented using LUT logics
in Spartan-3E.

Table 2. PAR results of the ECC processor in FPGAs

Device Resource Speed

LUT Flip-flop Slice DSP/MULT BRAM Frequency ECPM latency

Spartan-6 332 372 105 2 2 200.4MHz 9.2ms

Spartan-3E 520 392 350 2 2 145.6MHz 12.7ms

On Spartan-3E FPGA, 350 Slices, 2 MULTs, and 2 BRAMs are occupied
to implement our ECC architecture with w = 16, including 520 LUTs and 392
Flip-flops. The maximum frequency on Spartan-3E is 145.6 MHz, and it needs
12.7 ms to finish one ECPM. In Spartan-6 FPGA, it costs only 105 Slices (includ-
ing 332 6-input LUTs and 382 flip-flops), 2 DSP blocks and 2 BRAMs. One
ECPM consumes only 9.2 ms with w = 16 in Spartan-6. From these results, it
is observed that our low-cost ECC architecture has an excellent performance in
FPGAs: very small area with a low computation latency.
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5 Related Work and Comparison

Many low-cost ECC implementations are targeted to ASICs. Because the area is
extremely constrained and the application is specific, the ASIC implementations
use standardized curves that support the fast reduction, such as [1,6,8,11,18,23].
Different with their underlying methods, we choose the Montgomery multiplica-
tion as the modular method, which is more complex than the fast reduction, but
is more flexible. This allows us to support generic curves or different prime fields
under the same curve without reconfiguration. Hence, we do not perform the
comparison with ASIC implementations due to the differences in the underlying
platform and the design goal.

Table 3. Comparison of ECC implementations in FPGAs (256-bit prime field)

Work FPGA Curve Slice MULT/DSP BRAM Freq. (MHz) Latency (ms)

This work (16 bit) Spartan-6 any 105 2 2 200.4 9.2

Spartan-3E any 350 2 2 145.6 12.7

Vliegen [22] (16 bit) Virtex-2 Pro any 1832 2 9 108.2 29.83

Varchola [21] (16 bit) Virtex-2 Pro P-256 773 1 3 210.0 10.02

Roy [19] Spartan-6 P-256 72 8 24 156.25 12.2

McIvor [3] Virtex-2 Pro any 15755 256 0 39.5 3.84

Tawalbeh [12] Virtex-5 any 20000 0 0 200 1.66

Ghosh [20] Virtex-4 any 13661 0 0 43 9.2

Guillermin [15] Stratix II any 9177ALM 96 0 157.2 0.68

Ma [24] Virtex-5 any 1725 37 10 291 0.38

Güneysu [7] Virtex-4 P-256 1715 32 11 490 0.45

Table 3 lists related works for ECC implementations in FPGAs, where
the former three [19,21,22] focused on compact implementations and others
[3,7,12,15,20,24] on high-speed implementations. Especially, [7,19,21] optimized
the implementation efficiency for NIST prime P-256. Vliegen et al. [22] presented
a compact FPGA-based architecture for ECC over prime fields by using the
coarsely integrated operand scanning (CIOS) method of Montgomery multipli-
cation. The architecture is available for any prime-field curve, but the occupied
area is large. Varchola et al. [21] optimized the computational unit using fast
reduction for the NIST primes, and obtained a very high frequency and relative
small area (773 Slices in Virtex-2 Pro). Targeting generic curves, our optimized
ECC architecture has a significant lower area than these two works. As Virtex-2
family FPGAs are not recommended by Xilinx, we choose Spartan-3E FPGA,
which has a similar structure of Virtex-2 Pro, to perform the comparison. In our
implementation, only 350 Slices with 2 MULTs and 2 BRAMs are consumed, thus
more than half of the resources are saved in the comparison with [22] and [21].
Roy et al. [19] recently present a single instruction based light ECC processor
coupled with dedicated hardcores of the FPGAs for NIST P-256. The implemen-
tation only occupies 72 Slices, but the consumed DSP blocks and BRAMs are
relatively more (8 DSP blocks and 24 BRAMs). Therefore, our implementation
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achieves a good balance in the consumed logics and hardcores. Furthermore,
thanks to the optimization inside DSP blocks, our ECC implementation is able
to run at a high frequency and compute the ECPM for general prime fields with
a low latency.

6 Conclusion

In this paper, we propose a very low-cost ECC implementation for general prime
fields. In the architecture design, we efficiently integrate all the prime opera-
tions into the compact ALU, and specifically optimize its functions for elliptic
curve arithmetic. In the architecture implementation, we further adopt platform-
targeted optimization techniques, such as pipeline inside DSP blocks and SRL
implementation in FPGAs, and this allows us to further reduce the area of the
implementation and improve the efficiency. Experimental results indicate that
the implementation only occupies 105 Slices, 2 DSP blocks and 2 BRAMs in
Spartan-6 FPGA. In future work, we will add the countermeasures into the
implementation to resist side channel attacks.
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7. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3 5

http://dx.doi.org/10.1007/3-540-45664-3_24
www.secg.org/sec1-v2.pdf
www.secg.org/SEC2-Ver-1.0.pdf
http://dx.doi.org/10.1007/978-3-540-85053-3_5


306 Y. Ma et al.

8. Hutter, M., Feldhofer, M., Plos, T.: An ECDSA processor for RFID authentication.
In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 189–202. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16822-2 16
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