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Abstract. With rapid increase of the use of cloud services, the availability of
Quality of Service (QoS) information is becoming of utmost importance to assist
application managers in selection of suitable services for their enterprise
applications. Due to different characteristics of cloud and on-premise services,
monitoring and management of cloud-based enterprise applications requires a
different approach that involves the monitoring of QoS parameters such as
availability and response time in different geographic locations. In this paper, we
propose a multi-site model for the monitoring and optimization of cloud-based
enterprise applications that evaluates the availability and response time of cloud
services concurrently across different geographic locations. Our preliminary
results using eWay and PayPal payment services monitored in eleven sites
across four geographic regions indicate that location-based information can be
used to improve the reliability and performance of cloud-based enterprise
applications.

1 Introduction

SOA (Service Oriented Architecture) is evolving towards a more flexible, dynamically
scalable cloud-based computing architecture for enterprise applications. Typically,
multiple cloud and on-premise services are composed using different protocols and
integration methods to provide the required enterprise application functionality. As
cloud services are sourced from different cloud providers their QoS (Quality of Service)
characteristics can substantially differ depending on the geographical location and on
the provider cloud infrastructure. While most cloud service providers publish QoS
information on their websites, it often does not accurately reflect the values measured at
the consumer site as the performance of cloud services is impacted by numerous factors
that include dynamic changes in network bandwidth and topology and transmission
channel interference [1]. Additionally, changes in provider internal architecture and
method of service delivery can significantly impact on QoS characteristics of cloud
services. Consequently, consumer monitoring and optimization of the runtime
behaviour of cloud services has become critically important for the management of
enterprise applications [2].
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Service monitoring is a run-time activity that involves recording the values of
response time, availability and other non-functional service parameters in order to
enable predictive analysis and proactive service management. Service monitoring and
service management in cloud computing environments presents a particular challenge
to application administrators as the enterprise application is dependent on the perfor-
mance and availability of third-party cloud services. The traditional approach to QoS
monitoring is based on continuously sending test messages to critical services to check
their availability and performance. This approach is not suitable for the monitoring of
cloud services as it increases service costs and generates unnecessary data traffic.

Monitoring and optimization of QoS of cloud services presents an important and
challenging research problem. Although some research work on monitoring of QoS
characteristics of cloud services is available in the literature, there is currently lack of
detailed information about the assessment of run-time behaviour of cloud services that
includes location-based QoS information [3], making informed decisions about the
selection and composition of cloud services difficult in practice [4, 5].

In our earlier work we have described the features of the Service Consumer
Framework (SCF) designed to improve the reliability of cloud-based enterprise
applications by managing service outages and service evolution. We have implemented
and experimentally evaluated availability and response time characteristics of payment
services (PayPal and eWay) using three separate reliability strategies (Retry Fault
Tolerance, Recovery Block Fault Tolerance, and Dynamic Sequential Fault Tolerance)
and compared these experimental results with theoretically predicted values [6].

In this paper we extend this work by focusing on improving the estimates of
availability and response time of cloud services by introducing location-based QoS
information. We monitor QoS characteristics of eWay and PayPal services across
eleven locations in four geographical regions to obtain a more accurate estimate of
response time and availability for specific deployment locations of consumer enterprise
application. We collect the QoS information independently of the information pub-
lished by cloud service providers by recording payment transaction log data in a
monitoring database. In the next section (Sect. 2) we review related literature dealing
with monitoring the performance of cloud-based services, and in Sect. 3 we discuss
service optimization using multi-site monitoring. Section 4 describes our experimental
setup for multi-site monitoring of cloud services and gives experimental results of
availability and response time for eWay and PayPal payment services measured at
eleven geographic locations. Section 5 contains our conclusions and proposals for
future work.

2 Related Work

Optimization techniques to improve reliability and performance of enterprise appli-
cations that include fault prevention and forecasting have been the subject of research
interest for a number of years [7]. Such techniques have been recently adapted for web
services and cloud-based enterprise applications. Using redundancy-based fault toler-
ance strategies, Zibin and Lyu [8] propose a distributed replication strategy evaluation
and selection framework for fault tolerant web services. Authors compare various
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replication strategies and propose a replication strategy selection algorithm. Adams
et al. [9] describe fundamental reliability concepts and a reliability design-time process
for organizations, providing guidelines for IT architects to mitigate potential failures of
cloud-based applications.

Developing reliable cloud-based applications involves a number of new challenges,
as enterprise applications are no longer under the full of control of local developers and
administrators. In response to such challenges, Zibin et al. [10] present a FTCloud
component ranking framework for fault-tolerant cloud applications. Using structure-
based component ranking and hybrid component ranking algorithms, authors identify
the most critical components of cloud applications and then determine an optimal
fault-tolerance strategy for these components. Based on this work, Reddy and Nalini
[11] propose the FT2R2Cloud framework as a fault tolerant solution using time-out and
retransmission of requests for cloud applications. FT2R2Cloud measures the reliability
of software components in terms of the number of responses and throughput. Authors
propose an algorithm to rank software components based on reliability as calculated
using number of service outages and service invocations over a period of time.

Other authors focus on QoS optimization, for example Deng and Xing [12] pro-
posed a QoS-oriented optimization model for service selection. This approach involves
developing a lightweight QoS model, which defines functionality, performance, cost,
and trust as QoS parameters of a service. Authors have verified the validity of the
model by simulation of cases that show the effectiveness of service selection based on
these QoS parameters. Leitner et al. [13] formalize the problem of finding an optimal
set of adaptations, which minimizes the total cost arising from Service Level Agree-
ment (SLA) violations and the cost of preventing the violations. Authors present
possible algorithms to solve this complex optimization problem, and describe an
end-to-end approach based on the PREvent (Prediction and Prevention based on Event
monitoring) framework. They discuss experimental results that show how the appli-
cation of their approach leads to reduced service provider costs and explain the cir-
cumstances in which different algorithms lead to satisfactory results. Other authors
have focused on predicting future QoS values using service performance history
records. Wenmin et al. [1] present a history record-based service optimization method,
called HireSome that aims at enhancing the reliability of service composition plans.
The method takes advantage of service QoS history records collected by the consumer,
avoiding the use of QoS values recorded by the service provider. Authors use a case
study of a multimedia delivery application to validate their method. Lee et al. [14]
present a QoS management framework that is used to quantitatively measure QoS and
to analytically plan and allocate resources. In this model, end users quality preferences
are considered when system resources are apportioned across multiple applications,
ensuring that the net end-user benefit is maximized. Using semantically based tech-
niques to automatically optimize service delivery, Fallon and O’Sullivan [15] introduce
the Semantic Service Analysis and Optimization (AESOP) approach and a Service
Experience and Context COllection (SECCO) framework. The AESOP knowledge
base models the end-user service management domain in a manner that is aware of the
temporal properties of the services. The autonomic AESOP Engine runs efficient
semantic algorithms that implement the Monitor, Analyze, Plan, and Execute (MAPE)
functions using temporal properties to operate on small partitioned subsets of the
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knowledge base. A case study is used to demonstrate that AESOP is also applicable in
the Mobile Broadband Access domain.

So far only a very limited attention has been paid to using location-based QoS
information for the optimization of cloud-based enterprise applications.

3 Service Optimization Using Multi-site Monitoring

Service optimization is concerned with continuous service improvement and aims to
optimize performance and cost of business services. Consider, for example, the situ-
ation illustrated in Fig. 1 that shows an Online Shopping Check Out service that
includes a cloud-based payment gateway. At design time, the service consumer needs
to select a suitable payment service to integrate into the business workflow ensuring
that both the functional and non-functional requirements are satisfied. Making this
selection decision requires the knowledge of QoS parameters at the site where the
enterprise application is deployed.

Typically, both the service provider and service consumer perform service moni-
toring independently, and both parties are responsible for resolving service quality
issues that may arise. Service providers maintain transactions logs and make these logs
available to service consumers who can use this information to calculate service costs
and to estimate service QoS. Provider QoS data is collected continuously at the pro-
vider site irrespective of any connectivity issues and includes information about
planned and unplanned outages. However, the QoS values published by service pro-
viders may not accurately reflect the values measured at the service consumer site as
QoS depends on the deployment location of the enterprise application and is affected
by the quality of the network connection, provider location, and service configuration.
With some global cloud service providers, the actual location from which the service is
delivered may not be known to service consumers, making it difficult to optimize the

Fig. 1. Online shopping check out optimization scenario
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performance of the enterprise application based on QoS values published by the pro-
vider. The QoS values measured at the consumer site are impacted by connectivity
issues, and while these values may not fully reflect provider site QoS measurements
they are important indicators of enterprise application performance. Multi-site moni-
toring can be used to overcome the limitations of single-site (provider or consumer)
QoS monitoring by mapping the behaviour of cloud services across different sites and
geographical regions. We argue that in order to fully optimize cloud service selection
and deployment and to ensure that the non-functional requirements are met at run-time,
the service consumer needs to know the runtime QoS values of cloud services as
measured in different geographic locations. To accomplish this, we propose a model
that uses a centralized monitoring database to collect service QoS data from multiple
service consumer locations and making this data available for analysis by service
consumers (Fig. 2). This can be achieved by collaboration among different service
consumers who record their local monitoring data in a global QoS database and share
this information with other consumers of cloud services. The implementation of such a
shared QoS monitoring database would enable accurate real-time QoS analysis and
real-time notifications of QoS issues. Runtime performance information (i.e. response
time, availability and various types of error messages) recorded in the database can be
used by application administrators to monitor service utilization, plan maintenance
activities, and to perform statistical analysis of response time and throughput for
individual cloud services.

Fig. 2. Multi-site cloud service monitoring

Optimization of Cloud-Based Applications 329



3.1 Enterprise Application Optimization Strategies

Optimization of enterprise applications that use cloud services may involve a number
of different strategies that range from using alternative cloud services to migrating the
servers that run the application to a different cloud infrastructure. With increasing
availability of alternative cloud services with equivalent functionality, service con-
sumers can chose services to use in their enterprise applications based on the cost and
QoS characteristics. This may involve deployment of a new version of an existing
service or replacement of the service with an alternative from a different provider, if the
original service becomes obsolete or too costly. Service consumers can also optimise
application performance by re-locating the application to a different cloud infrastructure
selecting a more suitable geographic location, taking into account both end-user con-
nectivity and connectivity to third-party cloud services. Finally, QoS characteristics of
cloud-based enterprise applications can be improved by using various reliability
strategies, re-configuring cloud services to provide higher levels of fault tolerance [6].
These fault tolerance strategies include Retry Fault Tolerance (RFT), Recovery Block
Fault Tolerance (RBFT) and Dynamic Sequential Fault Tolerance (DFST) strategies.
Using RFT strategy, cloud services are repeatedly invoked following a delay period
until the service invocation succeeds. RFT helps to improve reliability, in particular
in situations characterized by short-term outages. The RBFT strategy relies on service
substitution using alternative services invoked in a specified sequence. This failover
configuration includes a primary cloud service used as a default (active) service, and
stand-by services that are deployed in the event of the failure of the primary service, or
when the primary service becomes unavailable because of scheduled/unscheduled
maintenance. The DFST strategy is a combination of the RFT and RBFT strategies that
deploys an alternative service when the primary service fails following RFT retries
[16]. The choice of an optimal strategy for the deployment of cloud services must be
based on in-depth knowledge of QoS characteristics including their dependence on the
geographical location.

4 Experimental Setup for Multi-site Monitoring

In order to evaluate the proposed location-based QoS approach to optimization of
cloud-based enterprise applications we have implemented an experimental multi-site
monitoring environment for two payment services: PayPal Pilot service (pilot-
payflowpro.paypal.com) and eWay Sandbox (https://api.sandbox.ewaypayments.com).
The QoS data was collected using Amazon Elastic Compute Cloud (AWS EC2) servers
deployed at eleven sites (Mumbai, Seoul, Singapore, Sydney, Tokyo, Frankfurt, Ire-
land, Sao Paulo, California, Oregon and Virginia) across four different geographic
regions (Asia Pacific, Europe, South America and the US). The monitoring database
was implemented using Microsoft SQL Server Amazon Relational Database (AWS
RDB). The QoS data was collected in each site by monitoring payment transactions and
removing private data such as customer information before recording the information in
the monitoring database. Simulating over 200,000 payment transactions initiated by
300 users, payment services were invoked using the SCF (Service Consumer
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Framework) payment service adaptor that logs the service name, location, start time,
end time, result, and error code for each payment transaction [17].

The payment service response time for a transaction ðTTÞ was calculated as:

TT ¼ TE � Ts ð1Þ

where TE is the end time of transaction and TS is the start time of a transaction, and the
average response time ðTSÞ of a service was calculated as:

Ts ¼
Pn

1 TT

n
ð2Þ

where n is number of transactions, and TT is response time of a transaction in Eq. (1).
Similarly, an inactive time or downtime of a service ðTIÞ is calculated as:

TI ¼ TIS � TAs ð3Þ

where TIS is the start time of a failed transaction and TAs is the start time of the next
successful transaction. Then, the availability of a service (As) is calculated as:

D ¼ TLE � TFS ð4Þ

PFs ¼
P

TI
D

ð5Þ

AS ¼ 1� PFS ð6Þ

where D is the duration of test period that is calculated using the end time of last
transaction ðTLEÞ and the start time of first transaction ðTFSÞ. PFs is probability of
failure of a service, and TI is a downtime in Eq. (3) and AS is the availability of a
service.

Table 1 shows the response time of eWay and Paypal payment services as mea-
sured in different geographical locations over the monitored period 20th to 28th August
2016. The table shows that the response time of the eWay service is better (in most
cases less than half) than the response time of the PayPal service, while the availability
of both services is approximately the same. Both response time and availability are
influenced by two major factors: provider QoS characteristics and the reliability of the
network connection. In order to optimize the consumer side QoS characteristics it is
important to identify which of these factors plays a dominant role. If network con-
nectivity is the dominant factor that impacts on service quality, then using the RFT
fault tolerance strategy described in Sect. 3.1 above may improve consumer side QoS,
but only for situations characterized by short-term outages or latency fluctuations.
When network connectivity suffers from long-term outages, the solution may involve
migrating the service to a different cloud infrastructure in a different geographical
location. However, if network connectivity is not a dominant factor and QoS degra-
dation is caused by provider related issues, then RBFT and DFST fault tolerant
strategies may provide a solution by substituting alternative services at runtime.
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In order to differentiate between network connectivity and cloud service provider issues
we analyse the level of dependence between QoS parameters for the two payment
services (eWay and PayPal) at each location by calculating the correlation coefficient
for response time and availability. High level of dependence indicates that both pay-
ment services fail or suffer from increased response time at the same time, identifying
network connectivity as the main source of the problem. Low levels of correlation
indicate independent modes of failure for the two payment services, pointing to the
service provider as the cause of QoS fluctuations.

Table 2 shows the values of correlation coefficients of eWay and PayPal payment
services calculated for different locations. The correlation coefficient CðTe;TpÞ [18] of
response time between eWay and PayPal services is calculated as:

CðTe;TpÞ ¼
P ðTe � TeÞðTp � TpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðTe � TeÞ2

P ðTp � TpÞ2
q ð7Þ

Table 1. QoS data for eWay and PayPal payment services

Region Location Service Number of
transaction

Number
of fails

Average
response
time (s)

Availability

Asia
Pacific

Mumbai eWay 8328 52 1.48 99.37%
PayPal 8328 43 3.37 99.47%

Seoul eWay 9599 55 1.25 99.42%
PayPal 9601 53 2.71 99.44%

Singapore eWay 8900 57 1.33 99.35%
PayPal 8900 52 2.97 99.41%

Sydney eWay 9530 57 0.95 99.40%
PayPal 9531 53 2.73 99.44%

Tokyo eWay 9635 60 1.17 99.37%
PayPal 9636 57 2.73 99.41%

Europe Frankfurt eWay 9092 52 1.59 99.42%
PayPal 9091 49 2.76 99.45%

Ireland eWay 9322 56 1.56 99.40%
PayPal 9323 56 2.86 99.39%

South
America

Sao Paulo eWay 8790 51 1.58 99.41%
PayPal 8790 46 2.94 99.47%

US California eWay 11029 72 1.26 99.34%
PayPal 11029 59 2.00 99.46%

Oregon eWay 16538 101 1.18 99.39%
PayPal 16538 93 2.17 99.43%

Virginia eWay 10310 61 1.39 99.40%
PayPal 10310 61 2.37 99.41%
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where Te is response time for eWay transaction, Tp is the response time for a concurrent
PayPal transaction, Te is the average response time of the eWay service and Tp is the
average response time of the PayPal service. The correlation coefficient CðTe;TpÞ for the
availability of eWay and PayPal is calculated as:

CðAe;ApÞ ¼
P ðAe � AeÞðAp � ApÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðAe � AeÞ2

P ðAp � ApÞ2
q ð8Þ

where Ae is average availability of the eWay service, Ap is average availability of the
PayPal service computed for one hour, Ae is the average availability of eWay service
during the monitoring period, and Ap is the average availability of PayPal service
during monitoring period.

It is evident from the low correlation coefficient values in Table 2 that the under-
lying factors affecting response time and availability of the two payment services are
mutually independent over the monitored period. As the two payment services share
the same network connections, this indicates that the source of QoS variability is the
service provider system, rather than the network. This implies that improved QoS
values may be achievable by deploying RBFT and DFST service substitution fault
tolerant strategies [17]. We also note that in an environments characterized by reliable
low latency network connectivity the QoS values observed at the service consumer site
will approximate those published by the service provider.

Figures 3 and 4 show the hourly average response time and availability values for
eWay and PayPal services during the monitored period between 20th and 28th August
2016 for eleven geographic locations across the globe. Figure 3 shows that the
response time of eWay services is generally better than for PayPal and that the response
time of PayPal deployed in the US and Europe is better than those deployed in Asia
Pacific. Figure 4 shows that the availability of both services varies from 98.8 to 99.8%
with PayPal availability slightly better than that of eWay.

Table 2. Response time and availability correlation coefficients for eWay and PayPal

Region Location Response time Availability

Asia Pacific Mumbai −0.0317 −0.0229
Seoul 0.0896 −0.0861
Singapore 0.0027 0.0868
Sydney 0.0947 0.0577
Tokyo −0.0867 0.1273

Europe Frankfurt −0.1168 −0.2012
Ireland −0.0169 0.0536

South America Sao Paulo 0.0648 0.0415
US California 0.0924 −0.0612

Oregon −0.0331 −0.0275
Virginia −0.0523 0.0137
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Fig. 3. Hourly average response times of eWay and PayPal services (20th to 28th August 2016)
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Fig. 3. (continued)

Fig. 4. Hourly average availability of eWay and PayPal services (20th to 28th August 2016)
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Fig. 4. (continued)
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5 Conclusion

In this paper we have argued that consumer-side monitoring of QoS characteristics of
cloud services is essential to enable service consumers to make informed decisions
about service selection at design-time, and to maintain good run-time performance of
cloud-based enterprise applications. Service consumers need to supplement QoS
information published by cloud providers with data obtained independently using
consumer side monitoring taking into account location-based information, as the QoS
values measured at the consumer deployment site (i.e. at the site where the enterprise
application is running) may vary from those published by cloud service providers.

Our results obtained using AWS (Amazon Web Services) platforms deployed in
eleven sites across four geographic regions to monitor eWay and PayPal payment
services indicate that both services achieved availability values above 99.9% during
most of the measurement period 20th to 28th August 2016. It is evident from the low
correlation coefficient values that the underlying factors affecting response time and
availability of the two payment services are mutually independent. As the two payment
services share the same network connections, this indicates that the source of QoS
variability is the service provider system, rather than the network. This implies that
improved QoS values may be achievable by deploying RBFT and DFST service
substitution fault tolerant strategies. Using a combination of QoS information published
by cloud service providers and QoS data measured at different geographic locations by
service consumers, improves the understanding of performance and reliability
trade-offs and can facilitate the selection of more effective optimization strategies.

In our future work we plan to collect QoS data over an extended period of time to
give more reliable estimates of service availability and response time. We also plan to
make our monitoring database publicly available to cloud service consumers to enable
sharing of QoS information and to promote a collaborative effort with the aim to
improve the accessibility of cloud QoS information.
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