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Abstract. The Rapid-Attention, Back and Forth, and Communication
(Rapid ABC) assessment is a semi-structured play interaction during
which an examiner engages a child in five activities intended to elicit
social-communication behaviors and turn taking. The examiner scores
the frequency and quality of the child’s social behavior in each activity,
generating a total score that reflects the child’s social engagement with
her during the assessment. The standard Rapid ABC dataset contains
a daunting amount of detail. We have produced a static version that
captures the action-reaction dynamic of the assessment as frames. We
have conducted a user study on our dataset to see if subjects can predict
the engagement of a child in the video. We presented subjects both frames
from our staticMMDB dataset and the full video of the original MMDB
dataset and found little difference in their performance. In this paper we
show that computer vision methods can predict children’s engagement.
We automatically identify the ease-of-engagement of a child and provide
evaluation baselines for the task.

1 Introduction

A child’s early developmental period is crucial and being able to capture char-
acteristic differences between children‘s behaviors is important. The Rapid ABC
assessment is a standardized play assessment for eliciting early social-interactive
behaviors in toddlers [1]. Such assessments are common in developmental psy-
chology research, where they are used both to understand typical behavior and
to identify children who may be experiencing delays, such as autism. The Rapid
ABC scores children on how they participated in the assessment by checking for
specific behaviors and the overall ease of engagement. During this assessment an
examiner prompts a child and measures the child’s response. The examiner then
scores the child.

We use the Multimodal Dyadic Behavior Dataset (MMDB), a dataset with
videos of children undergoing the Rapid ABC assessment [2]. This dataset con-
tains hours of videos in which examiners and children are interacting. The dataset
has annotations of behavior, speech, and the child’s engagement in tasks. It is
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Fig. 1. The original MMDB dataset contains videos of scripted interactions with chil-
dren that are broken into five stages. During each stage, the examiner scores the engage-
ment of the child. We have created the staticMMDB dataset by capturing the most
important interactions during the assessment. We extracted frames to represent the
stimulus-response pairings of each interaction.

a rich resource for structured examiner prompts and spontaneous child reactions.
An examiner follows a script and will prompt a child identically in every Rapid
ABC assessment making the examiner actions across assessments equivalent.
The reactions from children however, are unscripted and varied.

Our goal is to summarize the MMDB Dataset (visualized in Fig. 1) so that
visually important interactions are highlighted. We label the videos in the
MMDB dataset so that every important visual interaction (when an examiner
prompts a child) is represented by a stimulus and a response. Our resulting
dataset, the staticMMDB dataset, supplements the original dataset and is com-
prised of time-stamps that identify important interaction frames. Our dataset
gives indices into the data that correspond to the most interesting visual events.
The staticMMDB dataset gives the opportunity to explore very hard questions,
like how engaged a child is during interactions and what is the appropriate
response to a stimulus.

Our labelling supplements the original dataset. It is comprised of time-
stamps that identify important interaction frames and gives the vision com-
munity indices into the dataset that correspond to the most interesting visual
events. Our dataset still encapsulates the hard aspects of the data and removes
distractions. Even though we select frames to represent the video we still retain
the ability to compute video features. It is easy to extract video data surrounding
those frames to use for experimentation.

We automatically identify the engagement of children from the frames in
the staticMMDB dataset. Our predictions agree with those of the examiner. We
can predict the engagement of children not present in the training set, and most
importantly, we can identify disengaged children. Our dataset and the evaluation
task serve as baselines for future work to build on.

In order to verify that the staticMMDB dataset is as informative as the orig-
inal MMDB dataset we conducted a user study. The user study tested whether
subjects could accurately predict a child’s engagement in an activity from clips
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of video (the original MMDB) and from frames of video (our staticMMDB).
The subjects in our study did very well at identifying engaged children but had
difficulty identifying disengaged children. This highlights how difficult this task
is. We also compared subject performance when using just videos or just frames
to make their decision. The study showed that frames and video are equally
informative for predicting engagement. This indicates that our dataset contains
the same information for this task as the original dataset.

Contributions:

1. We have summarized an extensive video dataset, the MMDB, to provide a
series of standard interactions that emphasize visual events. Our summary,
called the staticMMDB dataset, provides time stamps of frames and is a
structured annotation for the MMDB dataset.

2. We have conducted a user-study that demonstrates the difficulty of the task
and validates our claim that the staticMMDB dataset is as informative for
engagement prediction as the original MMDB dataset.

3. We demonstrate a method that is able to identify the engagement of children
and beat baseline evaluations for the task.

2 Background

2.1 The Multimodal Dyadic Behavior Dataset

The Multimodal Dyadic Behavior (MMDB) dataset presents a unique oppor-
tunity to investigate real interactions between two people. It is different from
existing behavior datasets because the actions that we see are not drawn from a
curated collection like the internet. Children’s responses are open-ended and do
not fall naturally into categories of behavior.

Engagement. For every child’s video there exist a fixed number of important
interactions when the examiner prompts the child and the child reacts. The
examiner scores the child’s engagement based upon that reaction. The examiner
tries to engage the child during five substages: greeting, ball play, book, putting
on a hat, and tickling. Each substage is identically structured and contains many
interactions that occur in the same order in each video. The examiner scores
the level of engagement of the child during each substage. An example of the
evaluation script an examiner uses is shown in Fig. 2.

2.2 Engagement Prediction

There is little work on the Multimodal Dyadic Behavior dataset and in engage-
ment prediction. We are aware of three works, Rehg et al. [2], Presti et al. [3], and
Gupta et al. [4] that predict engagement on this data. The three works address
the question of ease-of-engagement classification and approach the problem as a
binary ([2,3]) or three-class [4] classification problem.



The Static Multimodal Dyadic Behavior Dataset for Engagement Prediction 389

1.D )

Harg o engage chtd 20)

»@@o

S > p——— @I

Fig.2. A portion of the scoring form an examiner completed during a Rapid ABC
assessment. The assessment is broken into five stages, one of which is the Book stage. An
examiner scores explicit actions of the child during the assessment and also the overall
ease with which she engaged the child. These two values are summed to produce the
engagement score of the stage. In this example the ease class is 1 and the engagement
score is 6. In this work we predict the ease-of-engagement of the child as a binary task.
Engaged children have an ease-of-engagement score of 0 and disengaged children have
a score of 1 or 2.

Rehg et al. [2] introduce the MMDB dataset. They detect gaze direction,
smiles, and predict the ease-of-engagement in the videos. When using vision-
features, they predict whether a child is engaged (binary task) in two substages
(‘ball’” and ‘book’) on 14 test videos. After incorporating speech features, they
are able to predict whether a child is engaged during all five substages for those
14 videos. Gupta et al. [4] perform a 3-way classification task on the ease of
engagement (0 - easy to engage, 1 - moderately easy, 2 - hard to engage) using
prosodic speech cues. They report their performance on 74 test videos using a
stage-wise per-class recall. Presti et al. [3] predict a binary ease-of-engagement
class using vision features. They propose a Hidden Markov Model for predicting
the engagement class on 33 test videos. They also classify the stage (greeting,
ball, book, hat, tickle) of each video clip.

None of the existing work is comparable. Each work uses different subsets
of the original dataset that each contain a different distribution of disengaged
children. The dataset we have created solves this problem. Our dataset summa-
rizes the original MMDB dataset in a way that allows for comparisons between
different methods and between various time points in the exam.

3 The staticMMDB Dataset

The original MMDB dataset contains a lot of extraneous video, and our summa-
rization removes unnecessary noise while preserving the structure of the assess-
ment. The reduced dataset we create is still a very hard dataset. We labeled
the original dataset to create a more concise representation of the two-person
interactions occurring in the videos. For each video we selected frames to repre-
sent key interactions between the examiner and child. The staticMMDB dataset
summarizes every video and creates a more tightly defined task to which future
work can compare.

We summarize the dataset so that every important interaction (when an
examiner prompts a child) is represented by a stimulus and a response. The deci-
sions we made when selecting interactions were based on the original dataset’s
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annotations. We chose examiner speech and motion cues that would elicit visual
responses from the child. We have identified 22 stimuli in the examination that
represent the most significant examiner prompts (seen in Fig. 4).

For each video we use two camera angles: the camera positioned behind
the child and the camera positioned behind the examiner. We will call frames
from the camera positioned behind the examiner ‘child-frames’ because they
are focused on the child. In a child-frame, the child and the adult holding the
child are in the middle of the frame. The back of the examiner is also visible in
the child-frame so that the frame captures the whole interaction. An ‘examiner-
frame’ is focused on the examiner with part of the child’s back visible.

The examiner-frame was extracted at the start of a stimulus and the child-
frame was selected to capture the child’s response to the examiner’s prompt.
To find an accurate portrayal of the child’s interaction around a time-slot, we
sampled a number of frames for 10s after the examiner-frame. We then looked
at the subset of frames and chose the one we thought best described the child’s
interaction.

The dataset frames were selected by a labeler who was shown a subset of
frames for every interaction and asked to select the best child-response frame.
They selected 22 child and 22 examiner frames for each subject. We used 98
subjects and their corresponding engagement scores for our experiments.

3.1 Stimulus Selection

When making the staticMMDB dataset, we wanted the examiner’s speech and
actions to be identical across the videos we used. Every video in the original
MMDB dataset has been annotated with 11 elements (seen in Fig. 3) [2]. The
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Fig. 3. A screenshot to show both the child and examiner video along with the anno-
tation provided with each video in the MMDB dataset. The annotations are rich and
many overlap making it unnecessary for us to use all of them in our dataset. For exam-
ple, ‘ball present’, ‘look at my ball’ and ‘let’s play ball’ all occur at about the same
time. We chose to represent all three by using the single stimulus ‘look at my ball’.



The Static Multimodal Dyadic Behavior Dataset for Engagement Prediction 391

Example annotated sequence from staticMMBD

Greeting Play with new toys  Look at my ball Ready, set, ... Ballturn Ball return Ready, set, ... Ball turn

Ball return Ready, set, ... Ball turn Ball return Book present Book turn Book play Where is the book?
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SCh

Its a hat!
It's on my head! Gonna getyou Tickle tickle tickle Gonna get you Tickle tickle tickle  Tickle tickle tickle Interaction title
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Fig. 4. This is an example of one annotated video in the staticMMDB dataset. Each
stimulus-response pair represents one interaction. The color of the line under the inter-
action represents the stage in which the interaction occurred. The title of the interaction
is the action of the examiner or the speech of the examiner that serves as the stimu-
lus. The examiner-frame chosen to represent a stimulus is the first frame in the video
labeled as a specific stimulus. The child-frame was selected within 10 s of the examiner’s
stimulus. (Color figure online)

figure shows each element as a row in which a professional annotator has indi-
cated if a specific type of action is occurring. We are interested in visually inter-
esting actions like the child’s gestures (reaching, pointing) and the child’s gaze
direction (at the examiner, the book, the ball). Of the videos given to us we
chose the 98 videos with identical speech cues. For example, we excluded videos
that used ‘one, two, three’ instead of ‘ready, set, go’ in the ball phase. We also
chose to use videos for which the cannon cameras had been annotated. This was
to ensure the same view direction and resolution between subjects.

The MMDB dataset contains a plethora of annotations that do not all corre-
spond to visually interesting events. In order to create the staticMMDB dataset
we selected key interactions by dropping some annotations, consolidating others,
and creating new annotations to capture important instances.

Dropping Annotations: We used the five stages listed in the engagement
evaluation form excluding ‘name_s’ and ‘name_f’. We used the annotations in
speech_e_cv, ball_book_cv, and present_play_cv as stimuli since these are scripted
and identical across videos. Speech and actions that were not the same across
videos were not used. For example, ‘can you turn the page?’, occurs during the
book stage and the examiner asks the child to turn the page of the book. This
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speech cue can be repeated up to three times depending on the child’s initial
reaction making it different in each video.

Annotation Consolidation: We do not include all speech and actions of the
examiner because they may fall immediately after each other; for example, saying
“go!” and passing the ball to the child have been consolidated into the stimulus
‘ball turn e’. Generally, if two examiner prompts occurred within a few seconds
of each other (or simultaneously) in most videos we picked one to represent the
overlapping group. We tried to pick the first stimulus in the group though this
sometimes varied slightly between videos and so we selected to the best of our
ability. By grouping overlapping stimuli we avoided having too few response
frames to choose from and we avoided having very similar stimulus-response
pairs.

New Annotations: We also created three new stimuli by breaking the pro-
vided stimuli into two. We split ‘ball turn e’ into two stimuli (‘ball turn ¢’ and
‘ball return €’) to capture the pass to the child and the return from the child
separately. Since this action occurs three times in the video we had to create
three new instances. We did this by splitting the time block for ‘ball turn e’ into
two equally sized time blocks.

Some stimuli (such as ‘ready set ... and ‘tickle tickle tickle’) occur multiple
times throughout the video. It is important to distinguish between each instance
of the same stimulus because children will react differently every time. For exam-
ple, ‘tickle tickle tickle’ is repeated three times and children’s reactions escalate
throughout the video because they know what to expect after the first instance.
Similarly, ‘ready set ..." is followed by ‘ball turn e’ (which represents the phrase
‘go!” and ‘ball turn €’) three times. On the last ‘ready set ..." the examiner waits
a few seconds before releasing the ball to the child. In this case both the stimulus
and reaction are different highlighting the need for stimuli with the same speech
to be unique.

3.2 Response Selection

After selecting the 22 stimuli we extracted the examiner frame at the start of
the stimulus to represent the response. The original MMDB dataset provides
timestamps corresponding to the start of each of the stimuli. We then showed a
labeler child-frames that occurred in the 10s after the examiner’s stimulus. If a
new stimulus started before 10s had elapsed we truncated the 10s so that the
child’s response would not overlap with a new stimulus.

Labeler: During labeling we showed 15 frames from the first 5s and 5 frames
from the second 5s for each response. The labeler then picked the child frame
that best captured the child’s response to the stimulus. Many of the labelling
decisions made were motivated by the data itself. For example, if the examiner
asked “look at my ball” and 10 of the 11 frames showed the child looking down,
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and only 1 frame where the child looked up, the labeler chose a frame with the
child looking down.

The labeler also made the decision to be consistent among videos for which
frames he chose to represent certain scenes. For example, if the examiner said,
“catch the ball!”, resulting frames showed a child looking in anticipation, reach-
ing their hands out, and finally holding the ball. In these scenarios, the labeler
chose a specific frame for each child that behaved in the same way. For example,
in the case of the ball being passed, he chose the frame with the child holding
the ball. This made sure that children that performed the same interactions were
indeed represented in the same way in our resulting frames.

3.3 Contributions and Challenges

The staticMMDB supports a wide variety of studies. In Sect.4 we explore the
task of engagement prediction in both the video and frames of children interact-
ing. This task is very hard to perform on this dataset. A number of sometimes
subtle actions are used to score a child. There is no single clear indicator for pre-
dicting engagement. Children of varying engagement will sit close to an adult,
will look at the examiner, and will react to the presence of an object. Further-
more, for each stage there are very few examples of low-engagement children
making the dataset very biased as seen in Fig. 5.

Distribution of Engagement-Class B Distribution of Ease-Class

Fig.5. The staticMMDB dataset has engagement scores and ease classes for every
interaction. We have plotted the scores for each of the five stages in the 98 videos. The
datasets are strongly biased towards high-engagement children (low-scoring) making
the tasks of predicting engagement and ease class very challenging.

The staticMMDB dataset gives the opportunity to explore pairing stimuli
and responses. Very hard questions, like what the best response to a stimulus is,
can be explored using this data.

4 User Study

The purpose of this study was to test whether subjects can predict a child’s
engagement in an activity from clips of video and from frames of video. Since
engagement is not a concrete action (as is smiling or gaze direction) it is difficult
to define and predict. Our user study indicates how well a user can match the
gold-standard engagement scores provided by expert examiners.



394 P.D. Tsatsoulis et al.

Our goal was also to compare the performance of the two sources (clips and
frames) in order to confirm which is more informative or if they are equally infor-
mative. We have introduced the staticMMDB dataset, a summary of the MMDB
dataset. We claim that our dataset is a cleaner version of the original dataset
and captures the information of the original MMDB dataset with less noise. By
showing that frames and video are equally informative for predicting engagement
we have shown that our dataset contains the same information for this task as
did the original dataset.

4.1 Method

We collected examples of disengaged and engaged children for each of the five
stages. We then had users look at example videos (from the original MMDB
dataset) and example frames (from our staticMMDB dataset) during each stage.
Please see Fig. 6 for an example of the interface subjects used.

Is this child

s this child engaged? engaged?

Fig. 6. Examples of the screens that would be shown to a subject during our user
study. On the left is a screen-shot of a video from the ‘Greeting’ stage. Subjects were
asked to watch the video (without sound) and then decide whether the child in the
video was engaged. On the right is a screen-shot of the frames from the ‘Greeting’
stage. Subjects were again asked to decide if the child was engaged. Each subject was
shown frames and videos from different children and from different engagement classes.

We recruited 23 users for our study. The subjects were randomly split into
three groups; each group was shown the same data to annotate. For every stage
a subject was shown 9 video examples and 9 frame examples. Six of the nine
examples were children who scored a ‘0’ (engaged), two of them scored a ‘1’
(disengaged) and one child who scored a ‘2’ (disengaged). Subjects were given
examples of dis/engaged frames and videos before making their own predictions
in order to train them on the task. They were told that engagement is determined
by a number of factors including eye gaze direction, gestures, and reciprocity.

The study was divided across five days: one day for every stage (greet, ball,
book, hat, tickle). The dataset contains 98 children with very few disengaged
children. We spread the study across multiple days in order to prevent subjects
remembering the behavior of a child across stages since they could potentially
see the same child twice.

4.2 Results

Engagement Prediction: Subjects were very good at correctly identifying
engaged children as shown in the class confusion matrices in Fig.7. They did
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Fig. 7. Class-confusion matrices for the frame (top row) and video (bottom row) pre-
dictions for all examples. Subjects were very good at identifying engaged children (E)
using both frames and videos for all stages. They were not as precise when identifying
disengaged children (D) especially in the Book and Hat stages.

not do as well when predicting disengaged children. Engagement can represent
itself subtly and can vary greatly between children. For certain activities, like
greeting a person, it is much more obvious what cues to look for when making
the decision (waving, eye contact). When engaging in a book however, it can be
much more difficult to see if the child is interested and participating. Another
particularly difficult stage for subjects was the Hat stage since very few chil-
dren are disengaged (see Fig. 5 for statistics). All children in our dataset made
eye-contact with the examiner during the Hat stage but it was not enough to
decisively determine that the child was engaged.

Video vs. Frames: Correctly identifying disengaged children is critical when
using this dataset. Since disengagement is a strong indicator of developmental
delays such as autism it is most important to identify low-engagement children.
We use the F1 score to report our results. The F1 score € [0,1] captures the
method’s performance using both precision and recall F'1 = 2 x z%' The scores
for every stage, divided by performance on the engaged children (class 0) and
disengaged children (class 1), can be seen in Fig. 1.

There is little performance difference when seeing videos (the original MMDB
dataset) and our selected frames (the staticMMDB dataset). This supports our
claim that the staticMMDB dataset is a useful summary of the MMDB dataset
since it captures the important engagement information with far less data. We
report the Kolmogorov-Smirnov test’s p-value above every frame-video com-
parison. This test assumes that the data (frame predictions and video predic-
tions) are sampled from the same distribution. The hypothesis is true for all our
comparisons (Fig. 8).
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Fig. 8. For every stage we compare the F1 score of subjects when predicting the engage-
ment for engaged children (green) and disengaged children (red). There is very little
performance difference when seeing videos and frames (with the exception of disengaged
children in the book stage). This supports the fact that the staticMMDB dataset cap-
tures the important information for predicting engagement in a much smaller dataset.
We report the Kolmogorov-Smirnov test’s p-value above every frame-video comparison.
(Color figure online)

5 Engagement Prediction

5.1 Method

In our work we focus on representing the child’s face because facial expressions,
vocalizations, and gaze direction are of particular interest to examiners as out-
lined in their evaluation form.

Face Detection: Before extracting faces from the frames we cropped out a
region around the child’s face. We did this because our face detector either failed
to detect faces in the full frame or only succeeded at detecting the parent’s face.

For each child, we ran the frontal and profile Viola-Jones face detectors in
MATLAB on each of the 22 annotated child-frames in the staticMMDB. If the
algorithm detected more than one face we filtered out detections that were too
low in the frame (since the children sit at a table), that had significant overlap
with other detections, or that had very small bounding boxes. If two unique faces
remained in the image, we selected the lowest face to represent the child (since
the higher face is that of the adult). Face detections were manually checked and
corrected to ensure that a child face had been identified.

We then expanded the face detection in the 22 frames to a larger box around
the child’s face. We applied the same box to surrounding frames. For frames
located between two annotated face-box frames we applied a weighted (based
upon temporal distance) average of the crop locations. This way we had a crop
containing a child-face for every frame in the video. A visualization of our pipeline
can be seen in Fig. 9. We passed the crop from every frame through the dlib face
detector provided by [5].
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dlib face detector

V.J. on some frames with manual correction
extended between annotations across time

Fig.9. Our method’s pipeline. Frames are reduced to crops around the child’s face
using 22 corrected Viola-Jones face detections in each video. A face detector is run
over the crops of all frames in the videos. We extract VGG Face features for every face
and train a SVM to predict engagement.

Train - Test Split: We split our data into train and test sets based upon
children. Since the scores of children across frames and stages are correlated we
could not include the same child in training and testing. We split the children
into 10 groups - eight of which contained 10 children and two of which contained
9 children. The groups were split so that every stage would contain at least one
disengaged child. This allowed us to perform a 10-fold cross validation on the
data. For each fold we randomly chose 8 groups of children to use in training
and 1 to use in validation. The last group was reserved for testing.

VGG Face and SVM: Face identification networks extract features that
describe the face and could be useful in predicting engagement. We chose the
VGG Face network because of its state-of-the-art performance on face identifi-
cation. The VGG-Face descriptors are computed using an implementation based
on the VGG-Very-Deep-16 CNN architecture as described in [6]. We passed our
detected child faces through the VGG Face network and extracted the features
from the second-to-last layer. We normalize the feature representation and train
a SVM to predict the engagement of the child in each frame. The SVM has a
uniform prior as to not over-predict engagement.

Prediction: Children were given five ease-of-engagement scores, one score per
stage. We report our method’s performance based upon votes over the predic-
tions for a child in every stage. For each stage the staticMMDB contains a set
number of annotated frames (the Book stage has 3 frames for example). The
annotated frames vote to predict the ease-of-engagement for the child in that
stage and the final decision is what we use in evaluation.

5.2 Results

Baselines: We present two baselines for comparison. All results are computed
and reported per-stage.

Prior: The prior performance on the dataset is analogous to what would happen
if we drew a label (engaged or disengaged) from the training data’s distribution
(think of flipping a weighted coin). This strongly favors the engaged class.
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Table 1. The F1 results of our method and two baselines: a draw from the prior
distribution and human performance on frames. All methods perform much better at
predicting engaged children than disengaged children. Humans have the most difficulty
in the Book and Hat stages. Our method outperforms the Prior baseline in all stages
and outperforms humans in the Book stage (disengaged) and the Hat stage (engaged).

F1 Disengaged Class F1 Engaged Class
Greet|Ball| Book |Hat | Tickle Greet |Ball|Book |Hat| Tickle
Prior| 31 [ 17| 30 | 8 22 Prior| 65 | 79| 66 |89 | 75
Human| 71 | 63| 24 |42 | 74 Human| 87 | 87 | 78 |82 | 87
[VGG Face| 45 [17] 31 [15] 32 | [VGG Face] 80 [82] 76 [94] 84 |

Human: We compare our method’s performance to that of human prediction. It
is not our goal to outperform humans at this task but rather to understand how
much potential we have for improvement.

VGG Face Results: Our method performs strongly when predicting engaged
children. It clearly outperforms the prior in all stages and outperforms humans
in the Hat stage. Our method and humans perform worse when considering
disengaged children. Our method beats human performance on the book stage
and beats the prior baseline in all stages. Table 1 lists the F1 results on engaged
and disengaged children for the baselines and our method.

Greeting Results: Our method performs strongly on the Greeting stage. The
Greeting stage is a short and clear stage in which the child is expected to
make eye-contact with the examiner, smile, or wave. This type of engagement
is easily captured by our face features.

Ball Results: Our method struggles to rank disengaged children in the Ball stage.
The ball stage is strongly determined by the child’s interaction with the ball
itself, an interaction that is difficult to capture using face features.

Book Results: Our method performs well at this stage and outperforms humans
on the disengaged class. Humans struggle with the Book stage because of its
subtlety and because of the stark contrast in a child’s behavior between the
ball and book stages. The Book stage’s evaluation also depends on physical
interactions with the book not visible in the face.

Hat Results: The hat stage is a difficult stage as reflected by the human per-
formance on engaged children. We are able to predict engaged children more
accurately than humans but do not perform as well as humans on disengaged
children. The hat stage is evaluated using two prompts: “Where is the book?”
and “It’s a hat! It’s on my head!”. The examiner then looks to see if the
child looked at her and if the child laughed. In the data, all children (includ-
ing disengaged children) looked at the examiner. This stage also has the
smallest number of disengaged children making it a difficult stage to predict
engagement.

Tickle Results: We perform well on this stage. Children are most likely to hide
their faces and move a lot in this stage but we are able to predict their
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engagement regardless. Humans still strongly outperform our method on dis-
engaged children leaving room for improvement.

Conclusions: We have created a dataset that summarizes the very complex
MMDB dataset. Our static version captures the action-reaction dynamic of the
original assessment by highlighting the most important interactions. Our user
study shows that our dataset preserves the information needed for predicting
engagement while being much simpler than the original dataset. Our dataset
provides the opportunity to work on the important task of engagement prediction
and we have provided a baseline for future work to compare to.
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