
Entity Extraction and Correction Based
on Token Structure Model Generation

Najoua Rahal1(B), Mohamed Benjlaiel2, and Adel M. Alimi2

1 Tunis el Manar University, FST, Tunis, Tunisia
najoua.rahal.tn@ieee.org

2 Sfax University, ENIS, Sfax, Tunisia
benjlaiel@yahoo.fr, adel.alimi@ieee.org

Abstract. The logical and semantic structure analysis is a basic process
for invoice understanding. Be able to carry out a robust layout analysis
is very difficult due to highly heterogeneous invoice templates. In this
paper, we propose a local structure for entity extraction and correction
from scanned invoices. It attempts to extract entity in contiguous and
noncontiguous structure by automatic finding the local structure of each
entity without structure model matching and user intervention. Firstly,
the entities are labeled in OCRed invoice. Combining labeled entities
with geometric and semantic relations, token structure models are gen-
erated. These models are used for entity extraction and mislabeling cor-
rection by ignoring some superfluous tokens detected by labeling step.
The correction module to the contiguous structure differs from that of
the noncontiguous structure. The obtained results with a dataset of real
invoices are reported in experimental section.

Keywords: Contextual search · Contiguous and noncontiguous struc-
ture · Mislabeling correction · Token structure models

1 Introduction

In accordance with [1], Automatic document processing refers to three main cat-
egories; doctype classification, data capture/Functional Role Labeling, and doc-
ument sets. Doctype classification is to assign a document image to a prestored
template. Data capture represents the extraction of relevant human understand-
able information from document image. The category Document sets relates
between documents and their contents depending on business logic. In this paper,
we focus on automatic data capture from invoices regardless of their high geo-
metric variations.

Figure 1 shows some examples of entities in contiguous (Fig. 1(a)) and non-
contiguous (Fig. 1(b)) structure. It illustrates how closeness, direction and graph-
ical elements may differ in conjunction Reference Words (RWs) e.g., “FAC-
TURE No”, “Date”, “Net à payer”, etc. with Key Fields (KFs) e.g., “006651”,
“22/08/2015”, “228 276.300”, etc. for an entity, in various invoices.

c© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 401–411, 2016.
DOI: 10.1007/978-3-319-49055-7 36



402 N. Rahal et al.

Fig. 1. Sample of entities showed the diversity of layout styles used in invoice. (a)
Entity in contiguous structure. (b) Entity in noncontiguous structure.

In this context, many initiative works, like [2], learn a local structure lay-
out from training document and reuse it for extracting the fields in the test
document. The weakness of such work is that require the human intervention
for labeling semantic fields. Authors in [3,4] propose to correct the mislabeling
by adding the missing labels. However, they require high regularity of struc-
tures and automatic blocks and segments obtained by OCR (Optical Character
Recognition). Also, the mislabeling correction is based on matching a structure
graph with a model graph.

Experimental studies have shown that the mismatch between unstructured
data obtained by the OCR, like Tesseract1 (OCR without layout analysis), and
its physical representation generates another type of mislabeling called superflu-
ous tokens. This problem is caused by mishandling of spaces by OCR. Figure 2
shows sample of entities with superfluous tokens mislabeling. At the bottom of
Fig. 2(a), there is the result of labeling applied to the text of OCR to extract the
“Balance Due”. At the top, there is the physical representation of this labeling.

Fig. 2. (a) Entity in noncontiguous structure with superfluous tokens. (b) Entity in
contiguous structure with superfluous tokens (Color figure online)

1 https://github.com/tesseract-ocr.

https://github.com/tesseract-ocr


Entity Extraction and Correction Based 403

The final impact of this mishandling is a wrong extraction of an entity in which
“0,000” represents a noisy token.

In an earlier work [5], we have proposed a method for treatment entity in
contiguous structure. However, it does not able to extract entity in noncontiguous
structure. Also, it does not benefit of physical and logical structure of the entity
in the invoice which is the purpose of this work. The ultimate goal of our method
is to extract only the relevant tokens from an entity (framed in red color) and
increases the accuracy of the extraction process.

Our contributions are: (i) a robust system for entity extraction based on
contextual search of local structure of each entity. Then, there is no need to
classify contiguous and noncontiguous structure. Our system starts its contextual
search in contiguous structure. If no result is found, then, it moves automatically
to the treatment of extraction entity in noncontiguous structure. (ii) Adoption of
correction step to eliminate the superfluous tokens caused by the labeling step.

In the remainder of our paper, we firstly describe in detail our solution. Next,
we discuss obtained experimental results. Finally, the paper is concluded.

2 Proposed Method

The overview of our proposed method is given by Fig. 3. Firstly, invoice image is
processed by OCR engine. Secondly, entities are labeled in OCRed invoice image.
Once labeled, the local structure of each entity is detected. For each entity struc-
ture, a token model is generated which aims to eliminate the superfluous tokens
caused by the labeling step. In this model, the KFs represent the tokens and
the distances represent the relationships between them. Finally, an incremental
algorithm is applied to concatenate each two consecutive tokens of which the
distance between them respects a certain threshold.

Fig. 3. Global schema of proposed method



404 N. Rahal et al.

2.1 Labeling

Entities are labeled in the invoice using Patterns of Regular Expressions (Regex).
Each invoice I is defined as:

I = {Li} (1)

Where {Li} is a set of labels. Each label is represented by:

Li = {Ri, Fi} (2)

Where Ri is the Reference Words (RWs) label and Fi is the Key Fields (KFs)
label.

2.2 Extraction Entity in Contiguous Structure

Tokenization. The tokenization allows the presentation of a label in the form
of a set of tokens, SetT , which are separated by whitespace character as:

Li = SetT (3)

The tokens of Ri are defined as:

SetR = {TR
i |SetR ∈ SetT} (4)

The tokens of Fi are defined as:

SetF = {TF
i |SetF ∈ SetT} (5)

Tokens Filtering. In this step, Algorithm 1 is iteratively used to delete SetR.
This algorithm is stopped when SetR is empty. At this stage, SetT contains
only the entire tokens SetF . Each token is stored on its bounding box which is
defined by:

TF
i → [xF

i , y
F
i , w

F
i , h

F
i ] (6)

Where xF
i and yFi represent the coordinate of upper left corner, wF

i the width
and hF

i is the height of the rectangle.

Algorithm 1. Tokens filtering

1: Input: SetT = SetR.SetF // Set of tokens
2: Output: SetT = SetF
3: begin
4: while SetR �= ∅ do
5: SetT = SetT/TR

i

6: end while
7: return SetT = SetF
8: end



Entity Extraction and Correction Based 405

Relevant Tokens Clustering. In this step, we propose a correction module
for elimination the superfluous tokens. It represents the arrangement of relevant
tokens of local entity. The geometric relations of a structure is modeled by dis-
tances measuring. The clustering of relevant tokens and eliminating the noisy
content require the distances measuring between consecutive tokens TF

i and TF
j

(j = i + 1). Each distance is calculated as:

dij = xF
j − (xF

i + wF
i ) (7)

The incremental algorithm, detailed in Algorithm 2, is applied to concatenate
relevant tokens. SetF contains at least one token. In this case, the latter repre-
sents the relevant token. If SetF > 1, then, we need to cluster relevant tokens.
To achieve this goal, a threshold S is defined as the maximum distance between
two consecutive tokens. This threshold is empirically defined. The measured dis-
tance is compared with S. If dij ≤ S, then, the tokens are concatenated. If it is
not the case, then, the algorithm is stopped and the rest of tokens, SetN , are
ignored.

Algorithm 2. Incremental algorithm

1: Input: SetF // Entity containing at least one token and may contain noisy
tokens SetN = {TN

i |SetN ⊂ SetF}
2: Output: RT = SetF/SetN// Relevant tokens
3: begin
4: while SetF �= ∅ do
5: if SetF = 1 then
6: RT = SetF
7: elseif SetF > 1 then
8: for j = 1 : SetF − 1 do
9: if dij ≤ S then
10: TF

i = concat(TF
i , TF

j )
11: TF

j = []
12: elseif dij > S then
13: RT = SetF/SetN
14: end if
15: end for
16: return RT = SetF/SetN
17: end if
18: end while
19: end

2.3 Extraction Entity in Noncontiguous Structure

Entity in noncontiguous structure means that RWs and KFs appear in the invoice
in vertical structure. Since the drawing of relationships between RWs and all the
KFs is time consuming and no avail, we propose to filter the labels. This requires
the detection of KFs in a given region.



406 N. Rahal et al.

For relevant entity extraction, we build a graph of structural relationships.
This graph is called Noncontiguous Graph.

Noncontiguous Graph Building. For noncontiguous entity structure extrac-
tion, as detailed in Algorithm 3, a graph is built G = (N,M,E) in which N is a
node of the label Ri. M is a set of finite nodes that represent the labels Fj having
the centers under the center of N . E ⊆ N × M is a finite set of arcs which repre-
sent a geometric relationships between the node N and the nodes of M . Each arc
eij ∈ E relating the node N and mj is represented by Nmj . We define a feature
vector which describes the geometric relationships between N and mj .

aij = (CNi, Cmj , eij) (8)

Where: CNi is the center of the node N (step 4 in Algorithm 3). Cmj is the center
of each node mj (step 6 in Algorithm 3). eij is the distance that separates the
bounding boxes of the labels corresponding to N and mj (step 10 in Algorithm
3), as we can view in Fig. 4. The idea is to detect the nearest mj to N (step 13
in Algorithm 3). We consider only the nodes having the centers under the center
of N . The distances are calculated as:

eij =

{
1, if Cmj(2) > CNi(2)
0, else

(9)

Where: Cmj(2) is the second coordinate (ordinate) of the center Cmj . CNi(2)
is the second coordinate of the center CNi. eij is calculated to filter the KFs
labels i.e., we bethink only the centers having the upright under the center of
N .

The centers are calculated to determinate the nearest mj to N . In Fig. 4,
m4 represents the nearest label KFs node to N i.e., m4 is the relevant KFs.
However, the latter may contain noisy tokens that must be eliminated. So, we
need to tokenize the relevant KFs (step 14 in Algorithm 3) for clustering relevant
tokens and ignore the noisy one.

Fig. 4. Noncontiguous graph



Entity Extraction and Correction Based 407

The difficulty of detecting the relevant tokens of field in a vertical structure
resides in this step. In a horizontal structure, the starting token from which
begins the clustering of tokens is known. In addition, noisy tokens are found
only on the right side. By cons, in a vertical structure, it is first necessary to
determine the starting token. Then, we have to perform a sweeping to eliminate
noisy tokens to the left and then to the right. To achieve this goal, a subgraph of
relationships is built between the node N and the tokens K = {kj} of the nearest
node m4. The nearest token is the frame used for a sweeping. To determinate the
nearest token, we calculate the distance pij between the node N and each token
kj (step 16 in Algorithm 3). The nearest token possesses the minimum distance
with N (step 18 in Algorithm 3). We call this token “ind” as it represents an
index from which begins the sweeping. In Fig. 5, the “ind” is k2.

Sweeping. The sweeping is the exploration token by token of an entity. It is
done in both directions to the left (step 20 in Algorithm 3) and then to the
right (step 23 in Algorithm 3) for superfluous tokens elimination. The geomet-
rical relationships, provided by the distances measured between tokens inside
Left M , are used to concatenate relevant tokens. This matrix is defined as:

Left M = (K(1 : ind)) (10)

Whenever, we calculate two distances between two consecutive tokens. The first
distance is calculated as:

nZ−1,Z = Left M(Z,1) − (Left M(Z−1,1) + Left M(Z−1,3)) (11)

This distance must not exceed the threshold S previously identified (explained
in Sect. 2.3).

To ensure the horizontal alignment of consecutive tokens, we need to calculate
the distance between their second coordinates. This distance must not exceed
certain threshold H and is calculated as:

gZ−1,Z = Left M(Z,2) − Left M(Z−1,2) (12)

Fig. 5. Subgraph of tokens



408 N. Rahal et al.

The left sweeping outcome is Left M containing only one element grouping the
relevant tokens. This element is added to the beginning of the created matrix
Right M for the right sweeping. So, all relevant tokens are grouped in Right M
(step 25 in Algorithm 3) which is defined as:

Right M = (K(Left M + 1 : end)) (13)

The concatenation in the right sweeping is done with the same principles
detailed in the left sweeping. Figure 5 shows the process of sweeping for tokens
concatenation. In Fig. 5(b), a subgraph of geometric relationships is established
between the nodes. The nearest token, ind, having the minimum distance with
the node N is detected. The latter is “19”. In Fig. 5(c), Left M contains two
tokens “0,000” and “19”. The distance nZ−1,Z between these tokens exceeds the
threshold S. For that, the token “0,000” is eliminated. In Fig. 5(d), Left M ,
containing one element, is integrated in the start of Right M and the right
sweeping begins. In Fig. 5(e), the right sweeping allows the concatenating of
relevant tokens (“19”, “440,000”).

3 Experiments

3.1 Dataset

For test, we use a dataset of 930 real invoices obtained from Compagnie des
Phosphates de Gafsa (CPG)2. The entities are categorized into 7 types: Invoice
Number (No), Invoice Date (DT), Account Identity (AI), Pre-tax Amount (PA),
Total Including Tax (IT), Holdback (H) and Balance Due (BA).

Algorithm 3. Noncontiguous entity structure extraction

1: Input: N // RWs
M // KFs
K // Tokens
2: Output: RT// Relevant tokens
3: begin
4: CNi = calculate Center(N)
5: for all mj do
6: Cmj = calculate Center(mj)
7: end for
8: for all mj do
9: if Cmj(2) > CNi(2)
10: eij = Euclediandist(CNi, Cmj)
11: end if
12: end for
13: RF = mj(dmin(eij))
14: K ← RF

2 http://www.cpg.com.tn.

http://www.cpg.com.tn


Entity Extraction and Correction Based 409

15: for all kj do
16: pij = Euclediandist(CNi, Ckj)
17: end for
18: ind = kj(dmin(pij))
19: while Left M �= ∅ do
20: left sweep()
21: end while
22: while Right M �= ∅ do
23: right sweep()
24: end while
25: Right M = RT
26:end

It is important to indicate that our system sustains the data extraction from
grayscale, color and bi-tonal (black and white) images. Our system is insensitive
to the multiplicity of fonts. Although the preprocessing step does not belong
of our work, our system is able to manipulate little noisy invoices with a slight
skew. These invoices contain graphical elements, logos, vertical and horizontal
lines, and tables. Some manipulated invoices are shown in Fig. 6.

We have used our ground truth to evaluate our system’s performance. This
ground truth was manually prepared.

3.2 Erroneous RWs Correction

In our system, entities are labeled using Regex. The patterns are written to allow
some OCR errors in RWs such as confusing zero with capital or lowercase O
(e.g., Facture no⇒ Facture n0). This can allow unconstrained input that nearly
matches the Regex pattern to be taken in account and significantly improve the
performance. The refined Regex has allowed us to detect correctly 62 No, 13 DT,
53 PA, 17 IT, 153 AI, and 23 BA.

3.3 Structure Correction Evaluation

To capture contiguous and noncontiguous structures of entity, a set of Regex
patterns are used in conjunction with geometric relationships between labels.
The correction step is integrated for superfluous tokens elimination. The goal is
to increase the accuracy of the extraction. The correction step has allowed us to
correct to 100 % the superfluous tokens and yielded a growth of the accuracies.
Table 1 shows the impact of this step for each entity. For that, we use two options;
without correction (W/o C) and with correction (With C). The most interesting
result is for the No entity since it has a countless number of formats. The obtained
rates justify the fixed threshold distances between any consecutive tokens. We use
two thresholds: S is around 32. It is fixed for concatenating the tokens whatever
in contiguous or noncontiguous structure. The second threshold H is around
12. It is fixed only in noncontiguous structure to ensure the alignment and the
consecutiveness of the tokens. The thresholds set show the power possessed by



410 N. Rahal et al.

Fig. 6. Sample of invoices in our dataset

our method for correction. To ensure the robustness of our correction method,
we propose to strengthen these thresholds by other features such as font size to
avoid bad detection that can be generated by using the few thresholds in other
models.

Missed entities, as detailed in Table 2, are due to the following issues: errors
in RW represent the RWs completely wrong, so, they cannot be identified by the
Regex. Errors in KF are the KFs partially corrected or completely not corrected:
if one field is not properly extracted, then, the entity was regarded as erroneous.
The confusing labels (CL) means that the label is not associated with the cor-
rect entity which leads a failed match for another entity. The OCR sometimes
missed the text zone (MT) due to: skewed image, noise, degraded characters,
bad detection of tabular structure, etc.

Table 1. Impact of correction

Entity Method (%)

W/o C With C

No 83.22 98.17

DT 97.63 98.82

BA 95.01 97.04

PA 94.01 96.72

IT 93.42 96.24

H 90.91 93.94

Table 2. Missed entities

Entity Error Types (%)

RW KF CL MT

No 29.41 29.41 11.76 29.41

DT 9.10 36.36 63.64 9.10

BA 11.76 23.53 29.41 35.29

PA 41.37 20.69 6.90 31.04

IT 41.67 33.33 8.33 16.67

AI 40.48 19.05 0 40.48

Table 3. Rates comparison

Recall(%) Precision(%)

Method [3] 88.88 95.23

Method + Module correction [3] 93.37 97.50

Our method 92.49 98.86

Our method + Module correction 96.78 98.91



Entity Extraction and Correction Based 411

3.4 Comparison with Existing System

Table 3 synthesizes the obtained Recall and Precision of our system. In this table,
we also compare our work with the results obtained by the system proposed in
[3]. Recall and Precision are defined as:

Recall =
relevant extracted entities

relevant entities
(14)

Precision =
relevant extracted entities

extracted entities
(15)

4 Conclusion

We have proposed an approach for entity extraction from scanned invoices. We
have showed how adopting a local structure of entities is very efficient for data
extraction. This represents a powerful tool in dealing with variant layout entities.
Our method is reinforced by correction step for superfluous tokens elimination.
The experimental results have showed an interesting improvement in the perfor-
mance and accuracy of the extraction process.

Acknowledgment. We are grateful to CPG Company for providing real invoices for
test.

References

1. Saund, E.: Scientific challenges underlying production document processing. In:
Document Recognition and Retrieval XVIII, DRR (2011)

2. Rusinol, M., Benkhelfallah, T., Poulain, V.D.: Field extraction from administrative
documents by incremental structural templates. In: International Conference on
Document Analysis and Recognition, ICDAR (2013)

3. Kooli, N., Belaid, A.: Semantic label and structure model based approach for entity
recognition in database context. In: International Conference on Document Analysis
and Recognition, ICDAR (2015)

4. Dejean, H.: Extracting structured data from unstructured document with incom-
plete resources. In: International Conference on Document Analysis and Recogni-
tion, ICDAR (2015)

5. Rahal, N., Benjlaiel, M., Alimi, Adel. M.: Incremental structural model for extract-
ing relevant tokens of entity. In: IEEE International Conference on Systems, Man,
and Cybernetics (SMC) (2016, to be published)


	Entity Extraction and Correction Based on Token Structure Model Generation
	1 Introduction
	2 Proposed Method
	2.1 Labeling
	2.2 Extraction Entity in Contiguous Structure
	2.3 Extraction Entity in Noncontiguous Structure

	3 Experiments
	3.1 Dataset
	3.2 Erroneous RWs Correction
	3.3 Structure Correction Evaluation
	3.4 Comparison with Existing System

	4 Conclusion
	References


