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Abstract. Energy-based Markov–Gibbs random field (MGRF) image
models describe images by statistics of localised features; hence selecting
statistics is crucial. This paper presently a procedure for searching much
broader than typical families of linear-filter-based statistics, by alter-
nately optimising in continuous parameter space and discrete graphical
structure space. This unifies and extends the divergent models deriving
from the well-known Fields of Experts (FoE), which learn parametrised
features built on small linear filters, and the constrasting FRAME (expo-
nential family) approach which iteratively selects large filters from a
fixed set. While FoE is limited by computational cost to small filters,
we use large sparse (non-contiguous) filters with arbitrary shapes which
can capture long-range interactions directly. A filter pre-training step
also improves speed and results. Synthesis of a variety of textures shows
promising abilities of the proposed models to capture both fine details
and larger-scale structure with a low number of small and efficient filters.

1 Introduction

An increasing variety of energy-based models have been proposed for image
and texture modelling, motivated by their applicability to both generation (e.g.
image synthesis and inpainting) and inference (e.g. classification and segmen-
tation), and as building blocks of higher-level computer vision systems. These
models estimate the density function of the data and depend on the selection of
features whose statistics identify relevant data attributes. In particular, tradi-
tional statistical texture models are maximum-entropy Markov–Gibbs random
fields (MGRFs), i.e. MRFs with Gibbs probability distributions, with parame-
ters adjusting the strength of the Gibbs factors/potentials which are learnt by
maximum likelihood estimation (MLE). Recently a number of non-max-entropy
models have been proposed with much more complex parameterised potentials
(usually interpretable as compositions of linear filters) and which often also
incorporate implicit or explicit latent variables. Fields-of-Experts (FoE) [17] and
restricted Boltzmann machines (RBMs) [9] are influential models of this class.
Although not the max-entropy solutions, the MLEs are computed identically.

Learning of MGRFs by “model nesting” [2,21,23], also known as the minimax
entropy principle [22,23], is the application of the max-entropy principle to iter-
ative model selection by repeatedly adding features/potentials to a base model.
c© Springer International Publishing AG 2016
A. Robles-Kelly et al. (Eds.): S+SSPR 2016, LNCS 10029, pp. 379–389, 2016.
DOI: 10.1007/978-3-319-49055-7 34



380 R. Versteegen et al.

Each iteration selects features estimated to provide the most additional informa-
tion (about disagreements between the model and data), then learns parameters
that encode that information. We generalise this procedure, moving beyond tra-
ditional MGRF models, which are parametrised only with “natural parameters”
which select the model with maximum entropy among those with given suffi-
cient statistics, to consider those with potentials additionally parametrised with
“feature parameters”, such as filter coefficients. Both are optimised simultane-
ously with MLE, as in FoE. This unifies FoE (which pre-specified the graphical
structure, i.e. the shapes of the filters) with the well-known FRAME [23] tex-
ture models (which used pre-specified filters) and other MGRFs using iterative
selection of arbitrary features, e.g. local binary patterns [21].

Below, we apply nesting to learn MGRF texture models which capture the
marginal distributions of learnt filters. Taking advantage of feature learning,
we allow non-contiguous (sparse) filters, proposed to efficiently capture large-
scale texture-specific visual features in a much simpler way than a multi-scale or
latent-variable model. We follow FRAME and other earlier MGRFs by describing
filter outputs non-parametrically with histograms (nearly entirely abandoned
since) because the marginals become increasingly complex and multimodal as
one moves even a short way away from the simplest near-regular textures.

This paper extends our previous work [20] which introduced model nesting
with square or non-contiguous filters selected by a pre-training procedure (see
Sect. 3.3) rather than MLE filter optimisation (as in FoE and RBMs), but only
picked filter shapes heuristically. We present below a better method for learn-
ing non-contiguous filters, even adjusting their shapes during gradient descent,
by using regularisation. We retain the cheap pre-training step, finding that it
improves results compared to initialising to noise. Texture synthesis experiments
with varied and difficult types of textures qualitatively compare the efficacy of
different modelling frameworks and show that our models can perform at least
as well as others on many textures, while only using sparse filters, minimising
the cost of sampling, and without latent variables.

2 Related Work

Model nesting was described independently in [2,22] and applied to text and
texture modelling respectively. Della Pietra et al. [2] used features composed
from previously selected ones, testing for the occurrence of growing patterns of
characters. The FRAME models [22,23] use histograms of responses of filters of
varying sizes, selected by model nesting from a fixed hand-selected bank. Nesting
can learn heterogeneous models; as shown in [21], texture models containing both
long-range grey-level differences (GLDs) fGLD(x1, x2) := x2 −x1 (which cheaply
capture second-order interactions) and higher-order local binary patterns are
much more capable than either alone. Feature selection for max-entropy models is
also commonly performed by adding sparsity inducing regularisation [12], which
is a variant of nesting that can also remove unnecessary features.

The FoE model [17] is a spatially homogeneous (convolutional) MGRF com-
posed of nonlinear ‘expert’ potentials, fed linear filter responses as input. The
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responses of linear filters (even random ones) averaged over natural images are
usually heavy-tailed unimodal distributions, so unimodal experts were used in
[17]. However as Heess et al. [8] argued, for specific texture classes the marginal
distributions are more complicated, and hence introduced BiFoE models with
three-parameter uni- or bi-modal expert functions. These were much more capa-
ble than FoE of modelling textures. However, as pointed out by Schmidt et al.
[18] (and further by [3]), the graph of the ideal expert function need not cor-
respond to the shape of the filter marginal; this misidentification meaning that
“the original FoE model does not capture the filter statistics”.

Many works on image modelling with learnt filters have found that many of
the filters are zero nearly everywhere, e.g. [3,17,18]. This suggests that fixing fil-
ter sizes and shapes is inefficient. (As an exception, for regular textures with very
short tessellation distance periodic filters are likely to be learnt, e.g [4].) Many
researchers have also encountered difficulties in learning FoE filters and other
parameters using gradient descent e.g. [3,8,11,17]. This is one reason why these
models have been limited to only small filters, from 7× 7 in [4,8] up to 11× 11
in [10]. Compare this to the fixed filters used in FRAME of up to 31× 31 which
were necessary to capture long range interactions, at a very high computational
cost.

Many recent MGRF image models are hierarchical, generalising the FoE by
adding latent variables, e.g. [16,18], including several works on texture mod-
elling [4,7,10,13]. With the right design, these can be marginalised out easily or
used for efficient block-Gibbs sampling; RBMs are very popular for the latter
scheme. MGRFs with sophisticated higher-order structures including variables
which locally modulate interactions, such as to represent edge discontinuities
[16], pool features, or combine multiple texture models [10], are able to model
complex textures. Building on [16], Luo et al. [13] stacked layers of latent vari-
ables to build convolutional deep belief networks (DBNs) for texture modelling,
producing a quickly mixing sampler with leading synthesis results.

Portilla and Simoncelli [15] introduced a powerful texture synthesis algorithm
which collects covariances of wavelet responses and uses iterated projections
to produce images that match these statistics. However, these are not density
models so are not as broadly applicable to different tasks. More recently Gatys
et al. [5] introduced a similar algorithm using nearly a million covariances of
features from a fixed 21 layer deep convolutional neural network, producing very
high quality synthesis results. However these hugely complex summary statistics
result in overfitting and computationally expensive texture synthesis.

3 Learning Markov–Gibbs Random Fields

Formulating as a general-form exponential family distribution, a generic MGRF
(without explicit hidden variables) can be defined as

p(g|θ,λ) =
1

Z(θ,λ)
q(g) exp(−θ · S(g|λ)) (1)
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where q(g) is the base distribution, g is an image, parameters are Λ := (θ,λ)
where θ are the natural parameters, and the feature parameters λ parametrise the
sufficient statistics S. E(g|θ,λ) := −θ · S(g|λ) is called the energy function of
the distribution and Z is the normalising constant. S is a vector of sums of feature
functions fi over subsets of the image called cliques: Si(g|λ) =

∑
c fi(gc|λi)

where gc denotes the values of the pixels of g in the clique c of fi.
The gradient of the log-likelihood l(Λ|gobs) = log p(gobs|Λ) for a training

image gobs is given by [1]

∂

∂Λi
l(Λ|gobs) = Ep(·|Λ)

[
∂E(g|Λ)

∂Λi

]

− ∂E(gobs|Λ)
∂Λi

(2)

The expectation is intractable so must be approximated, e.g. by MCMC.
If λ is empty or fixed, then the distribution is an exponential family distribu-

tion, and l is unimodal in Λ with gradient ∂
∂θi

l(θ|gobs) = Epi
[Si(g)] − Si(gobs).

This shows that the MLE distribution p∗ satisfies the constraint Ep∗ [S(g)] =
S(gobs). Further, the MLE solution is the maximum entropy (ME) distribution,
i.e. it is the distribution meeting this constraint which deviates least from q(g).

3.1 Model Nesting and Sampling

For completeness, model nesting is outlined briefly here (see [21] for details).
Nesting iteratively builds a model by greedily adding potentials/features f (and
corresponding constraints Ep∗ [Sf (g)] = Sf (gobs)) which will most rapidly move
the model distribution closer to the training data, and then learning approx-
imate MLE parameters to meet those constraints (i.e. repairing the difference
in statistics). An arbitrary base distribution q can be used, as it does not even
appear in the gradient (Eq. (2)). However, we do not need these constraints to be
satisfied completely (by finding the MLE parameters), but only wish to improve
the model by correcting some of the statistical difference on each iteration. Thus
we can make the approximation of not drawing true samples from the model,
but only finding images with which to approximate Ep∗ [Sf (g)].

Each iteration a set or space of candidate features is searched for one or more
which might most increase the likelihood p(gobs). This is normally estimated with
a norm of the gradient (2) w.r.t. to the parameters θf of the new potential f ,
i.e. ||Epi

[Sf (g)]−Sf (gobs)||1. This can be approximated using samples obtained
from the model during the previous parameter learning step. Running time is
quadratic in the number of nesting iterations.

Sampling. To rapidly learn parameters and obtain approximate ‘samples’ from
the model we use a slight variant of persistent contrastive divergence (PCD) [19],
earlier called CSA [6], starting from a small ‘seed’ image of random noise and
interleaves Gibbs sampling steps with parameter gradient descent steps with a
decaying learning rate, while slowly enlarging the seed. When feature parameters
are fixed, the resulting image comes close to matching the desired statistics,
which means this approximates Gibbs sampling from the model with optimal
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natural parameters [21]. This is sufficient to estimate the required expectations,
even if still far from the MLE parameters. However a longer learning process
with smaller steps is needed to get close to the MLE, or when the model has
poorly initialised feature parameters in which case there are no real desired
statistics to begin with. We used 200 PCD/Gibbs sampler steps for each nesting
iteration, to produce a 100× 100 image (after trimming boundaries), and 300
steps to synthesise the final images shown in the figures. Feature parameters
were kept fixed while performing final synthesis, because there the intention is to
match statistics, not tune the model. These hyperparameters were set to produce
reasonable results quickly, rather than approach asymptotic performance.

3.2 Filter Learning

For filter w the marginal histogram is Sw(g) := [
∑

c bini(w ·gc) : i ∈ {1, . . . , k}],
where bini : R → [0, 1] is the non-negative band-pass function for the ith bin,
with

∑
i bini(x) = 1. In experiments we used 32 bins stretched over the full

possible range (usually less than half of the bins were nonempty). While per-
forming Gibbs sampling we use binary-valued bins for speed but in order to have
meaningful gradients or subgradients some smoothing is required. Hence for the
purpose of computing the energy gradient we use a triangular bin function which
linearly interpolates between the centres of each two adjacent bins.

By considering a sparse non-contiguous filter as a large square filter with
most coefficients zero, filter shapes can be learnt by using sparsity-inducing reg-
ularisation. Calculating Sw(gsamp) or ∂

∂λw
Sw(gsamp), or performing one step of

Gibbs sampling (with caching of filter responses) are all linear in the filter size,
hence starting from a large square filter and waiting for it to become sparse would
be slow. Instead, we start with a sparse filter (see below), and on every MLE
gradient ascent iteration consider a subset of a larger set of available coefficients
(we used an area of 25× 25), looping through all possibilities every 10 iterations
in a strided fashion. The majority of time is spent in Gibbs sampling, so consid-
ering extra coefficients only in the gradient calculation step has an insigificant
cost. We apply l1 regularisation to filter coefficients and limit the number of
coefficients which are nonzero - when this constraint is exceeded, the regularisa-
tion amount is temporarily increased to force sufficient coefficients to zero. Once
zero, a coefficient is removed from the filter until it randomly re-added to the
active set. This directly imposed limit requires less finetuning than the indirect
limit imposed by the l1 penalty. Filters were constrained by projection to have
zero mean and bounded coefficients.

3.3 Filter Pre-training

Optimising natural parameters and filters simultaneously according to (2) cre-
ates a non-convex objective. For example, since ∂

∂λi
l(Λ|gobs) ∝ θi, if a potential

has no influence then its filter will not be changed and it remains useless, the
vanishing gradient problem. One way to simplify the learning procedure is to
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learn feature parameters and natural parameters separately, doing so in the fea-
ture selection step of nesting rather than the MLE step. That is, we attempt to
find the coefficients of an ideal filter to add to the current model by maximising
the expected gain in information by doing so. This objective function of for a
new filter w is the error

e(w) := ||Sw(gobs) − Sw(gsamp)||1 ≈ || ∂

∂θw
�(Λ|gobs)||1 (3)

(presented for the simple case where we have a single sample gsamp synthesised
from the current model, from the previous MLE step). The new filters are indi-
rectly pushed away from existing filters, which would provide little information.
Figure 1 compares filters found with and without pre-training and MLE.

Fig. 1. Examples of learnt filters (GLD filters excluded) for texture D22. Rnd-MLE:
starting from random noise then MLE-optimised. PT: pre-learnt filters kept fixed (only
natural parameters adjusted during MLE). PT-MLE: pre-learnt then MLE-optimised.

We initialise filters to random noise, and follow the gradient while periodically
doubling the number of empirical marginal bins, starting from 4. This allows
the coefficients to be tuned to shift the mass of the empirical marginal around
and gradually refine it, while overcoming the localised gradient associated with
individual empirical marginals. It can be seen as a discrete version of a similar
empirical marginal-smoothing technique used in [23].

4 Experimental Results

Models composed solely of GLD filters at appropriate offsets capture a major-
ity of second order interactions and are relatively cheap to sample from. This
frees other potentials to focus on more complex structure. The addition of GLD
resulted in vastly improved models compared to those with only pairwise or only
higher-order potentials. Hence in the majority of experiments we start with a 1st
order potential to describe the grey-level histogram and then select 3 GLDs per
nesting iteration, of offset up to 40 pixels, before adding filter potentials one at a
time. For comparability with [21] and to avoid the randomness of a stopping rule



Markov–Gibbs Texture Modelling with Learnt Freeform Filters 385

we used the same fixed number of nesting iterations: 8 of GLDs and 8 of filters.
Typical learning time for a nested model was 8–11 min (<1 min for nesting with
only GLD potentials), mainly spent in the single-threaded Gibbs sampler.

Unfortunately quantitative evaluation of texture synthesis is very difficult,
and most texture similarity measures implicitly make a choice of relevant sta-
tistics; We agree with Luo et al. [13] that the quantitative measures used in
[8] are flawed, and since they are only applicable to highly regular textures as
used in [8] and later, visual inspection of results on more challenging textures is
necessary. Figure 2 provides comparison to all recent works which gave results
for a set of 8 popular regular textures, following the same procedure of down-
scaling the original texture and using the top half for training; we quantised
images to 16 grey levels so that Gibbs sampling could be used. For all other
synthesis experiments we used 8 grey levels. Synthesis results comparing dif-
ferent methods of filter learning are shown in Fig. 3. We include a comparison
(third column) to FoE-style unnested models by starting with 8 random noise

Fig. 2. Comparison of synthesis results against previously published works (images
scaled, grey levels reversed and individually renormalised to allow comparison): (a) the
eight original 98×98 Brodatz textures; results of (b) Multi-Tm [10] (a single model for
all 8 textures); (c) a 2-layer TssDBN [13]; (d) nesting with jagstar-BP13 (local binary
pattern features) [21]; (e) our proposed nested models with 7×7 filters; (f) our proposed
nested models with non-contiguous filters.
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Fig. 3. Synthesis results comparing filter learning approaches. Columns are: First :
Brodatz D103 and Simoncelli’s stone-wall4 (http://www.cns.nyu.edu/∼lcv/texture/).
Second : nested models with 24 GLD potentials. Third : FoE-style model with eight 7× 7
filter histogram potentials and no pre-training or nesting. Following : nested models
with 24 GLDs and filters; see Fig. 1 for headings. NC: Non-contiguous filters.

7× 7 filters and performing 800 PCD/Gibbs steps (restarting every 200 steps),
so that the total computation was about the same as the others. These models
without long-range GLD or filter potentials suffer badly when modelling any
image detail or structure more than 7 pixels across, producing jumbled images.
If the image is regular, adding GLD potentials works very well, but this fix does
not work for irregular textures. Figure 4 shows further examples on a broader

Fig. 4. Synthesis results. First row : training images from Brodatz, VisTex and Simon-
celli. Second : Results by [15] as a baseline (quantised after synthesis). Third row : our
synthesis results with nested MGRFs, 24 GLDs and square 7× 7 filters. Fourth row :
our results with 24 GLDs and non-contiguous filters.

http://www.cns.nyu.edu/~lcv/texture/
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range of challenging textures. Results for additional textures and models, and
source code for the experiments are available on the accompanying website at
http://www.ivs.auckland.ac.nz/texture modelling/sparsefilt/.

5 Conclusions

Our synthesis results, using models with only at most 8 small filters plus simple
GLD features and no latent variables, are comparable with those of other models
(Fig. 2)—the best performing of which have up to hundreds of filters (in [13]
and the multi-texture models of [10]) or up to 4096 parameters per potential
[21]—and show ability on irregular textures which are seemingly too difficult
for many previous works to attempt. The combination of learning the structure
of a MGRF model (as in FRAME) and optimising the feature parameters (as
in FoE) appears to allow complex textures to be reproduced more easily by
considering a more general set of possible models, although suffering potentially
longer learning times due to the iterated nesting procedure.

Filter pre-training instead of starting from random filters was essential for
our potentials (results were poor without it), because the gradient can not push
mass between histogram bins that are not adjacent, a major disadvantage of
using histograms. This is likely a reason that learning sometimes failed to find
sensible filters. An alternative parametrisation of the histogram with overlapping
coarse and fine bins may provide a more navigable optimisation landscape. Per-
forming MLE learning of filter coefficents gave mixed results, sometimes leading
to worse or better results than using purely pre-trained filters, possibly due to
the non-convexity of the optimisation problem and the use of histograms. Non-
contiguous and contiguous filters also showed tradeoffs; in experiments we found
that the noncontiguous ones are more able to handle larger-scale textures, and
are more robust because models using square filters will produce bad results if
the filters are too small. On the other hand for many textures with small localised
details it appeared to be better to use traditional square filters instead. Ideally,
such tradeoffs would be made by the nesting algorithm itself, by providing the
right stopping rule and regularisation/prior. Unfortunately, this further increases
the number of hyperparameters to be tuned, and there are already a relatively
large number; there is a tradeoff between selecting model aspects manually (e.g.
graphical structure), which may be easier but less robust, and having to tune
hyperparameters to select them automatically.

More sophisticated image statistics in [5,14,15], notably filter response inter-
dependencies/co-occurrences, have proven to be powerful texture descriptors
when used for synthesis of complex and inhomogeneous textures. However,
energy-based texture models with such sophisticated statistics are surprisingly
yet to be investigated. This paper has focused on learning of linear filters as a
case study, but future work should clearly attempt to bridge the gap between
these fields by incorporating such kinds of powerful co-occurrence statistics.

http://www.ivs.auckland.ac.nz/texture_modelling/sparsefilt/
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