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Abstract. In this paper, we introduce the approach of graph densifica-
tion as a means of preconditioning spectral clustering. After motivating
the need of densification, we review the fundamentals of graph densifiers
based on cut similarity and then analyze their associated optimization
problems. In our experiments we analyze the implications of densification
in the estimation of commute times.
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1 Introduction

1.1 Motivation

Machine learning methods involving large graphs face a common problem,
namely the natural sparsification of data as the number of dimensions d increases.
In this regard, obtaining the proximity structure of the data is a key step for the
subsequent analysis. This problem has been considered from two complementary
perspectives: efficiency and utility. On the one hand, an efficient, i.e. scalable,
proximity structure typically emerges from reducing the O(dn2) time complexity
of kNN graphs, where n is the number of samples. The classical approach for
dealing with large graphs is the Nyström method. It consists of sampling either
the feature space or the affinity space so that the eigenproblems associated with
clustering relaxations become tractable. For instance, in [10] there is a varia-
tional version of this method. In [6] an approximated kNN is obtained in O(dnt)
with t ∈ (1, 2) by recursively dividing and glueing the samples. More recently,
anchor graphs [13,15] provide data-to-anchor kNN graphs, where m � n is a
set of representatives (anchors) typically obtained through K-means clustering,
in O(dmnT + dmn) where O(dmnT ) is due to the T iterations of the K-means
process. These graphs tend to make out-of-the-sample predictions compatible
with those of Nyström approximations, and in turn their approximated adja-
cency/affinity matrices are ensured to be positive semidefinite.

On the other hand, the utility of the kNN representation refers to its suit-
ability to predict or infer some properties of the data. These properties include
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(a) their underlying density and (b) the geometry induced by both the shortest
path distances and the commute time distances. Concerning the density, it is well
known that it can be estimated from the degrees of the kNN graph if its edges
contain the local similarity information between the data, i.e. when the graph
is weighted. However, when the kNN graph is unweighted the estimation is only
acceptable for reasonably dense graphs, for instance when kd+2/(n2 logd n) → ∞
as proposed in [20]. However, these densities are unrealistic, since the typical
regime, the one adopted in practice, is k ≈ log n. A similar conclusion is reached
when shortest path distances are analyzed both in weighted and unweighted kNN
graphs. The shortest path distance computed from an unweighted kNN graph
typically diverges from the geodesic distance. However this is not the case of the
one computed from a weighed kNN graph. The solution proposed in [1] consists
of assigning proper weights to the edges of the unweighted kNN graphs. Since
these weights depend heavily on the ratio r = (k/(nμd))1/d, where μd is the
volume of a d−dimensional unit ball, one expects r → 0 for even moderate val-
ues of d, meaning that for high dimensional data both unweighted and weighted
graphs yield similar, i.e. diverging, estimations. Finally, it is well know that for
large k−NN (unweighted) graphs the commute time distance can be misleading
since it only relies on the local densities (degrees) of the nodes [21,22].

Therefore, for a standard machine learning setting (n → ∞, k ≈ log n and
large d) we have that kNN graphs result in a sparse, globally uninformative rep-
resentation. This can be extended to ε−graphs and Gaussian graphs as well. As
a result, machine learning algorithms for graph-based embedding, clustering and
label propagation tend to produce misleading results unless we are able of pre-
serving the distributional information of the data in the graph-based representa-
tion. In this regard, recent experimental results with anchor graphs suggest a way
to proceed. In [5], the predictive power of non-parametric regression rooted in
the anchors/landmarks ensures a way of constructing very informative weighted
kNN graphs. Since anchor graphs are bipartite (only data-to-anchor edges exist),
this representation bridges the sparsity of the pattern space because a random
walk traveling from node u to node v must reach one or more anchors in advance.
In other words, for a sufficient number of anchors it is then possible to find links
between distant regions of the space. This opens a new perspective for computing
meaningful commute distances in large graphs. It is straightforward to check that
the spectral properties of the approximate weight matrix W = ZΛZT , where
Λ = diag(ZT 1) and Z is the data-to-anchor mapping matrix, rely on its low-
rank. Then, it is possible to compute a reduced number of eigenvalue-eigenvector
pairs associated with a small m × m matrix, where m is the number of anchors
(see [16] for details). In this way, the spectral expression of the commute dis-
tance [18] can accomodate these pairs for producing meaningful distances. Our
interpretation is that the goodness of the eigenvalue-eigenvector pairs is a con-
sequence of performing kernel PCA process over ZZT where the columns of Z
act as kernel functions. This interpretation is consistent with the good hashing
results obtained with anchor graphs [14,16] where the kernel encoded in the
columns of Z is extensively exploited.
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Although anchor graphs provide meaningful commute distances with low-
complexity spectral representations, some authors have proposed more efficient
methods where anchor graphs are bypassed for computing these distances. For
instance, Chawla and coworkers [9,11] exploit the fact that commute distances
can be approximated by a randomized algorithm in O(n log n) [19]. Then, using
standard kNN graphs with low k for avoiding intra-class noise, their method
beats anchor graphs, in terms of clustering accuracy, in several databases. These
results are highly contradictory with respect to the von Luxburg and Radl’s fun-
damental bounds (in principle commute distances cannot be properly estimated
from large kNN graphs [22]). The authors argue that this can only be explained
by the fact that their graphs are quite different from those explored for defining
the fundamental bounds (particularly the ε−geometric graphs). Their estima-
tor works better than anchor graphs in dense datasets, i.e. in settings with a
low number of classes and many samples. Our preliminary experiments with the
NIST database, with ten classes, confirm that their technique does not improve
anchor graphs when data is sparse enough as it happens in a standard machine
learning setting.

1.2 Contributions

We claim that one way of providing meaningful estimations of commute dis-
tances is to transform the input sparse graph into a densified graph. This implies
the inference of novel links between data from existing ones. This is exactly what
anchor graphs do when incorporate data-to-anchor edges. In this paper, we show
that the inference of novel edges can be done by applying recent results in the-
oretical computer science, namely cut densification which in turn is an instance
of graph densification. Graph densification consists in populating an input graph
G with new edges (or weights if G is weighted) so that the output graph H pre-
serves or enforces some structural properties of G. Graph densification offers a
principled way of dealing with sparse graphs arising in machine learning so that
commute distances can be properly estimated. In this paper we will introduce
the main principles of densification and will explore their implications in Pattern
Recognition (PR). In our experiments (see the Discussion section) we will show
how the associated optimization problems (primal and dual) lead to a reason-
able densification (in terms of PR). To the best of our knowledge this is the first
application of densification principles to estimate the commute distance.

2 Graph Densification

2.1 Combinatorial Formulation

Graph densification [8] is a principled study of how to significantly increase the
number of edges of an input graph G so that the output, H, approximates G with
respect to a given test function, for instance whether there exists a given cut.
This study is motivated by the fact that certain NP-hard problems have a PTAS
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(Polynomial Time Approximation Scheme) when their associated graphs are
dense. This is the case of the MAX-CUT problem [2]. Frieze and Kannan [7] raise
the question whether this “easyness” is explained by the Szemerédi Regularity
Lemma, which states that large dense graphs have many properties of random
graphs [12].

For a standard machine learning setting, we have that G is typically sparse
either when a kNN representation is used or when a Gaussian graph, usually
constructed with a bandwidth parameter t satisfying t → 0, is chosen. Then, the
densification of G so that the value of any cut is at most C times the value of
the same cut in G is called a one-sided C-multiplicative cut approximation. This
(normalized) cut approximation must satisfy:

cutH(S)
m(H)

≤ C · cutG(S)
m(G)

, (1)

for any subset S ⊂ V of the set of vertices V , where cutG(S) =
∑

u∈S,v∈V ∼S xuv

considers edge weights {xuv}u,v∈V and xuv ∈ [0, 1]. For H we have cutG(S) =∑
u∈S,v∈V ∼S x′

uv for edge weights {x′
uv}u,v∈V also satisfying x′

uv ∈ [0, 1]. Cuts
are normalized by the total edge weight m(.) of each graph, i.e. m(G) =

∑
u,v xuv

and m(H) =
∑

u,v x′
uv.

Cut Similarity and Optimization Problem. The cut approximation embod-
ies a notion of similarity referred to as C−cut similarity. Two graphs G and H
are C-cut similar if cutH(S) ≤ C · cutG(S) for all S ⊂ V , i.e. if the sum of the
weights in the edges cut is approximately the same in every division. Considering
the normalized version in Eq. 1, finding the optimal one-sided C−multiplicative
cut densifier can be posed in terms of the following linear program:

P1 Max
∑

u,v

x′
uv

s.t. ∀ u, v : x′
uv ≤ 1

∀ S ⊆ V :
∑

u∈S,v∈V ∼S

x′
uv ≤ C · cutG(S)

∑

u,v

x′
uv

x′
uv ≥ 0. (2)

Herein, the term one-sided refers only to satisfy the upper bound in Eq. 1.
The program P1 has 2n constraints, where n = |V |, since for every possible
cut induced by S, the sum of corresponding edge weights

∑
u∈S,v∈V ∼S x′

uv is
bounded by C times the sum of the weights for the same cut in G. The solution
is the set of edge weights x′

uv with maximal sum so that the resulting graph H is
C−cut similar to G. The NP-hardness of this problem can be better understood
if we formulate the dual LP. To this end we must consider a cut metric δS(., .)
where [4]

δS(u, v) =
{

1 if |{u, v} ∩ S| = 1
0 otherwise (3)

i.e. δS accounts for pairs of nodes (not necessarily defining an edge) with an
end-point in S. As there are 2n subsets S of V we can define the following
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metric ρ on V × V , so that ρ =
∑

S λSδS , with λS ≥ 0, is a non-negative
combination of a exponential number of cut metrics. For a particular pair {u, v}
we have that ρ(u, v) =

∑
S λSδS(u, v) accounts for the number subsets of V

where either u or v (but not both) is an end-point. If a graph G has many cuts
where cutG(S)/m(G)∑

u,v δS(u,v) → 0 then we have that ρ(u, v) ≥ E(u′,v′)∈E ρ(u′, v′) since

E(u′,v′)∈E ρ(u′, v′) =
∑

S

λSE(u′,v′)∈E δS(u′, v′) =
∑

S

λS
cutG(S)
m(G)

. (4)

These cuts all called sparse cuts since the number of pairs {u, v} involved in
edges is a small fraction of the overall number of pairs associated with a given
subset S, i.e. the graph stretches at a sparse cut. The existence of sparse cuts,
more precisely non-ovelapping sparse cuts allows the separation of a significant
number of vertices {u, v} where their distance, for instance ρ(u, v), is larger (to
same extent) than the average distance taken over edges. This rationale is posed
in [8] as satisfying the condition

∑

u,v∈V

min
{
ρ(u, v) − C · E(u′,v′)∈E ρ(u′, v′), 1

} ≥ (1 − α)n2, (5)

where C is a constant as in the cut approximation, and α ∈ (0, 1). This means
that a quadratic number of non-edge pairs are bounded away from the aver-
age length of an edge. In other words, it is then possible to embed the nodes
involved in these pairs in such a way that their distances in the embedding do
not completely collapse. This defines a so called (C,α) humble embedding.

Finding the metric, ρ(u, v) that best defines a humble embedding is the dual
problem of P1:

P2 Minρ=
∑

S λSδS

∑

u,v

σuv

s.t. ∀ u, v : ρ(u, v) − C · E(u′,v′)∈E ρ(u′, v′) ≥ 1 − σuv

σuv, λS ≥ 0, (6)

where the search space is explicitly the power set of V .
Since the optimal solution of P2 must satisfy

σuv = max
{
0, C · E(u′,v′)∈E ρ(u′, v′) + 1 − σuv

}
, (7)

we have that P2 can be written in a more compact form:

min
ρ

∑

u,v

max
{
0, C · E(u′,v′)∈E ρ(u′, v′) + 1 − σuv

}
, (8)

which is equivalent to n2 − maxρ

∑
u,v min

{
1, ρ(u, v) − C · E(u′,v′)∈E

}
.

Therefore, a solution satisfying
∑

u,v σuv = αn2 implies that the graph has a
humble embedding since

max
ρ

∑

u,v

min
{
1, ρ(u, v) − C · E(u′,v′)∈E

}
= (1 − α)n2. (9)
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Since the σuv variables in the constraints of P2 are the dual variables of xuv in
P1, the existence of a (C,α) humble embedding rules out a C-densifier with an
edge weight greater than αn2 and vice versa.

2.2 Spectral Formulation

Since QG(z) = zT LGz =
∑

euv∈E xuv(zu − zv)2, if z is the characteristic vector
of S (1 inside and 0 outside) then Eq. 1 is equivalent to

zT LHz

m(G)
≤ C · zT LGz

m(G)
, (10)

for 0 − 1 valued vectors z, where LG and LH are the respective Laplacians.
However, if H satisfies Eq. 10 for any real-valued vector z, then we have a one-
sided C-multiplicative spectral approximation of G, where LG and LH are the
Laplacians. This spectral approximation embodies a notion of similarity between
the Laplacians LG and LH . We say that G and H are C−spectrally similar if
zT LHz ≤ C · zT LGz and it is denoted by LH 
 C · LG. Spectrally similar
graphs share many algebraic properties [3]. For instance, their effective resis-
tances (rescaled commute times) are similar. This similarity is bounded by C and
it leads to nice interlacing properties. We have that the eigenvalues of λ1, . . . , λn

of LG and the eigenvalues λ′
1, . . . , λ

′
n of H satisfy: λ′

i ≤ C · λi. This implies that
H does not necessarily increases the spectral gap of G and the eigenvalues of LG

are not necessarily shifted (i.e. increased).
Whereas the spectral similarity of two graphs can be estimated to precission

ε in time polynomial in n and log(1/ε), it is NP-hard to approximately compute
the cut similarity of two graphs. This is why existing theoretical advances in the
interplay of these two concepts are restricted to existence theorems as a means
of characterizing graphs. However, the semi-definite programs associated with
finding both optimal cut densifiers and, more realistically, optimal spectral den-
sifiers are quite inspirational since they suggest scalable computational methods
for graph densification.

Spectral Similarity and Optimization Problem. When posing P1 and
P2 so that they are tractable (i.e. polynomial in n) the cut metric ρ, which has a
combinatorial nature, is replaced by a norm in R

n. In this way, the link between
the existence of humble embeddings and that of densifiers is more explicit. Then,
let z1, . . . , zn ∈ R

n the vectors associated with a given embedding. The concept
(C,α) humble embedding can be redefined in terms of satisfying:

∑

u,v∈V

min
{||zu − zv||2 − C · E(u′,v′)∈E ||z′

u − z′
v||2, 1} ≥ (1 − α)n2, (11)

where distances between pairs should not globally collapse when compared with
those between pairs associated with edges. Then the constraint in P2 which is
associated with the pair {u, v} should be rewritten as:

||zu − zv||2 − C · E(u′,v′)∈E ||z′
u − z′

v||2 ≥ 1 − σuv. (12)
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Therefore, P2 is a linear problem with quadratic constraints. For Z = [z1, . . . , zn]
we have that ||zu−zv||2 = bT

uvZT Zbuv where buv = eu−ev. Then, a Semipositive
Definite (SPD) relaxation leads to express the first term of the left part of
each inequality in terms of bT

uvZbuv provided that Z � 0. Similarly, for the
SPD relaxation corresponding to the expectation part of each inequality, we
consider the fact that the Laplacian of the graph can be expressed in terms
of LG =

∑
u,v wuvbuvbT

uv. Since zT LGz =
∑

(u′,v′)∈E wuv||z(u′) − z(v′)||2, if
z ∼ N (0, Z), i.e. z is assumed to be a zero mean vector in R

n with covariance
Z � 0, we have that E(u′,v′)∈E ||z̃′

u − z̃′
v||2 can be expressed in terms of tr(LGZ)

(see [17] for details). Therefore the SDP formulation of P2 is as follows

P2SDP Min
∑

u,v

σuv

s.t. bT
uvZbuv − C · tr(LGZ) ≥ 1 − σuv

Z � 0, σuv ≥ 0. (13)

Fig. 1. Densification example. Graph G with n = 6 nodes. Top-left: Cuts associated
with a couple of sets S = {2, 4} and S = {1, 2}. We define Sep(S) =

∑
u,v δS(u, v). For

the cut S = {2, 4} there are 4 pairs associated with edges and 4 pairs not associated

with edges (top-right). This means that this cut is sparse since cut(S)
V ol(G)Sep(S)

= 0.0622. In
bottom-left we show the densification H result solving the spectral version of problem
P1 (Eq. 2) through the dual problem P2 (Eq. 6) for C = 2. Red-dotted lines have
weight 0.001. Some cuts have lower values, for instance the one for S = {2, 4}, whereas
others such as the cut for S = {1, 2} increase (bottom-right). This is important since

the new volume has also increased. All cuts satisfy cutH (S)
m(H)

≤ C · cutG(S)
m(G)

. (Color figure

online)
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Then, the dual problem of P2SDP, i.e. the SDP relaxation of P1 is

P1SDP Max
∑

u,v

x′
uv

s.t. ∀ u, v : x′
uv ≤ 1

∑

u,v

x′
uvbuvbT

uv 

(

C ·
∑

u,v

x′
uv

)

LG

x′
uv ≥ 0. (14)

Fig. 2. SDP Dual Solution. Middle: Z-matrix whose columns z1, . . . , zn are the embed-
ding coordinates. Such embedding is optimal insofar it assigns similar coordinates to
vertices separated by the sparse cut S = {1, 2, 3}. Intra-class pairwise distances between
columns are close to zero where inter-class distances are close to 3.0. Then the Z matrix
encodes the sparse cut itself. Right: to estimate to what extend the columns of Z define
a humble embedding, we commence by compute the distances associated with the edges
of the graph. This yields E(u′,v′)∈E ||z′

u − z′
v||2 = 0.6 where the average is distorted

due to the edge (2, 4). Regarding edge pairs, deviations from the expectation are −1.2
for inter-class edges and +1.8 for the only inter-class edge. When considering non-edge
pairs, for inter-class pairs we have a deviation of 3.0−0.6 = 2.4, whereas for inter-class
non-edge pairs, basically (1, 3) and (5, 6) the deviation is negative: −0.6. Therefore, for
computing the humility of the embedding (see text) we have only 6 deviation smaller
than the unit: 4 of these deviations correspond to inter-class edges and 2 of them to
intra-class edges. The remainder correspond to 9 non-edge pairs. The resulting humil-
ity is 1.8 meaning that (1 − α)n2 = 1.8, i.e. α = 0.95. Therefore, the graph has not a
one-sided C-multiplicative spectral densifier with edge weight more than αn2 = 34.2.
Actually, the weight of the obtained spectral densifier is 6.12. Left: summary of the
process in the graph. The colors of the vertices define the grouping given by Z. The
colors of the squares indicate whether σuv are close to 0 (unsaturated constraint) or
close to 1 (saturated constraint). Only σ24 is unsaturated since (2, 4) distorts the expec-
tation. Variables corresponding two non-edges but linking intra-class vertices are also
saturated, namely σ13 and σ56 (both have a negative deviation). The remaining pairs
are unsaturated and they are not plotted for the sake of simplicity.
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As in the combinatorial version of densification, first we solve the dual and then
the primal. The solution of P2SDP provides σuv as well as the coordinates of
the optimal embedding (in terms of avoiding the collapse of distances) in the
columns of Z. In Fig. 2 we explain how the dual solution is obtained for the graph
in Fig. 1. We denote the right hand of Eq. 11 as humility. The higher the humility
the lower the maximum weight of the spectral densifier (as in the combinatorial
case).

3 Discussion and Conclusions

With the primal SDP problem P1SDP at hand we have that λ′
i ≤(

C · ∑
u,v x′

uv

)
λi where λ′

i are the eigenvalues of the Laplacian LH =
∑

u,v x′
uvbuvbT

uv associated with the densified graph H. For C > 1 we have that
densification tends to produce a quasi complete graph Kn. When we add to the
cost of the dual problem P2SDP the term −K log det(Z) (a log-barrier) enforces
choices for Z � 0 (i.e. ellipsoids) with maximal volume which also avoids Kn. In
this way, given a fixed K = 1000, the structure of the pattern space emerges1

Fig. 3. Densification results for the NIST database.

1 All examples/experiments were obtained with the SDPT3 solver [23] version 4.0.
In our experiments, the number of variables is |E| ≈ 4500 and the SDP solver is
polynomial with |E|.
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as we modify the C < 1 bound so that the spectral gap is minimized in such
a way that reasonable estimations of the commute distance emerge. In Fig. 3
we summarize some experiments done by subsampling the NIST digit database.
Given the densifications (more dense in red) the commute time matrix is esti-
mated and the accuracy w.r.t. the ground truth is plotted. Accuracy decreases
with the number of classes and in many cases the optimal value is associated
with low values of C. The quality of the results is conditioned by the simplicity
of the optimization problem (guided only by a blind cut similarity, which does
not necessarily impose to reduce inter-class noise) but it offers a nice path to
explore.
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