
Improved Prototype Embedding Based
Generalized Median Computation by Means

of Refined Reconstruction Methods

Andreas Nienkötter and Xiaoyi Jiang(B)

Department of Mathematics and Computer Science,
University of Münster, Münster, Germany

xjiang@uni-muenster.de

Abstract. Learning a prototype from a set of given objects is a core
problem in machine learning and pattern recognition. A popular app-
roach to consensus learning is to formulate it as an optimization prob-
lem in terms of generalized median computation. Recently, a prototype-
embedding approach has been proposed to transform the objects into a
vector space, compute the geometric median, and then inversely trans-
form back into the original space. This approach has been successfully
applied in several domains, where the generalized median problem has
inherent high computational complexity (typically NP-hard) and thus
approximate solutions are required. In this work we introduce three new
methods for the inverse transformation. We show that these methods
significantly improve the generalized median computation compared to
previous methods.

1 Introduction

Learning a prototype from a set of given objects is a core problem in machine
learning and pattern recognition, and has numerous applications [4,6,10]. One
often needs a representation of several similar objects by a single consensus
object. One example is multiple classifier combination for text recognition, where
a change in algorithm parameters or the use of different algorithms can lead to
distinct results, each with small errors. Consensus methods produce a text which
best represents the different results and thus removes errors and outliers.

A popular approach to consensus learning is to formulate it as an optimiza-
tion problem in terms of generalized median computation. Given a set of objects
O = {o1, . . . , on} in domain O with a distance function δ(oi, oj), the generalized
median can be expressed as

ō = arg min
o∈O

SOD(o) (1)

where SOD is the sum of distances

SOD(o) =
∑

p∈O

δ(o, p).
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In other words, the generalized median is an object which has the smallest sum
of distances to all input objects. Note that the median object is not necessarily
part of set O.

The concept of generalized median has been studied for numerous problem
domains related to a broad range of applications, for instance strings [10] and
graphs [9]. As the generalized median is not necessary part of the set, any algo-
rithm must be of constructive nature and the construction process crucially
depends on the structure of the objects under consideration. In addition, the
generalized median computation is provably of high computational complexity
in many cases. For instance, the computation of generalized median string turns
out to be NP-hard [8] for the string edit distance. The same applies to median
ranking under the generalized Kendall-τ distance [3] and ensemble clustering for
reasonable clustering distance functions, e.g. the Mirkin-metric [11].

Given the high computational complexity, approximate solutions are required
to calculate the generalized median in reasonable time. Recently, a prototype
embedding approach has been proposed [5], which is applicable to any problem
domain and has been successfully applied in several domains [4–6,10]. In this
work we investigate the reconstruction issue of this approach towards further
improvement of consensus learning quality.

In the prototype embedding approach, the objects are embedded into an
Euclidean metric space using the embedding function

ϕ(o) = (δ(o, p1), δ(o, p2), . . . , δ(o, pd)) (2)

where δ() is a distance between two objects. This embedding function assigns
each object oi to a vector xi = ϕ(oi), which consists of its distance to d selected
prototype objects p1, . . . , pd ∈ O. Different methods were suggested for the proto-
type selection, for example k-means clustering, border object selection and others
[2]. Using the vectors xi, the geometric median in vector space is calculated by
the Weiszfeld algorithm [16]. Then, the geometric median is transformed back
into the original problem space, resulting in the searched generalized median.

In this work we propose new reconstruction methods to use with prototype
embedding. A comparison with several established methods is conducted to
demonstrate that the proposed new reconstruction methods can significantly
improve the quality of generalized median computation (in terms of the opti-
mization function SOD).

The remainder of the paper is organized as follows. In the next section the
prototype embedding approach is briefly summarized. In Sect. 3 we then present
various reconstruction methods proposed in this work. Experimental results are
reported in Sect. 4. Finally, we conclude our findings in Sect. 5.

2 Prototype Embedding Based Generalized Median
Computation

The vector space embedding approach consists of three steps (Fig. 1):
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Fig. 1. Overview of prototype embedding based on [5]. *As mentioned in Sect. 1, the
generalized median computation is not in all cases NP-hard but in many domains with
well-known metrics.

1. Embed the objects into a d-dimensional Euclidean space.
2. Compute the geometric median of the embedded points.
3. Estimate (reconstruct) the generalized median of the objects using an inverse

transformation from the geometric median back into the original problem
space.

2.1 Embedding Function

Prototype embedding uses (2) to embed objects into vector space. Here two
design issues must be considered: the number d of selected prototypes and a
selection algorithm. In our work the former issue is considered as a parameter,
which will be systematically studied. For prototype selection, the so-called k-
medians prototype selector turns out to be a good choice [5,10]. It finds d clusters
in the given set of data using the k-means clustering algorithm and declares the
object with the smallest sum of distances in each cluster to be a prototype. In
this work we thus will use this prototype selection method for the experiments.

2.2 Computation of Geometric Median by Weiszfeld Algorithm

Once the embedded points are determined, the median vector has to be com-
puted. No algorithm is known for exactly computing the Euclidean median in
polynomial time, nor has the problem been shown to be NP-hard [7]. The most
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common approximate algorithm is due to Weiszfeld [16]. Starting with a ran-
dom vector m0 ∈ R

d, this algorithm converges to the desired median using the
iterative function

mi+1 =

⎛

⎝
n∑

j=1

xj

||xj − mi||

⎞

⎠
/⎛

⎝
n∑

j=1

1
||xj − mi||

⎞

⎠

2.3 Reconstruction Methods

The last step is to transform the Euclidean median from the vector space back
into the original space. In the following we summarize three established strategies
for this purpose (full details can be found in [4,5]). The foundation of all these
heuristic approaches is the concept of weighted mean. The weighted mean õ
between objects o, p ∈ O with ratio 0 ≤ α ≤ 1 is defined as

δ(o, õ) = α · δ(o, p), δ(õ, p) = (1 − α) · δ(o, p)

In other words, the weighted mean is a linear interpolation between both objects.
In many cases, this weighted mean function can be derived from the distance
function between objects [4,6].

Linear Reconstruction. Linear reconstruction uses the two objects o1 and o2
associated with the two closest points to the geometric median. The geometric
median m is projected onto the line between these points using a simple line
projection, resulting in a ratio α. The generalized median in the original space
O is then calculated as the weighted mean between o1 and o2 using α.

Triangular Reconstruction. The triangulation method first finds the three
closest points to the Euclidean median (denoted by x1, x2, x3). Then, the median
vector of these points is computed and denoted with x′. Now the method seeks
to estimate an object in the original space O which corresponds to point x′ and
is thus assumed to be an approximation of the generalized median. Two steps
have to be conducted. First, two out of the three points are arbitrarily chosen.
Without loss of generality we assume that x1 and x2 are selected and we then
project the remaining point x3 onto the line joining x1 and x2 by using x′. As a
result a point m is received, lying between x1 and x2. In this situation the linear
interpolation method can be used to recover an object, which corresponds to m.
A further application of the interpolation method then yields an object which
corresponds to x′.

Recursive Reconstruction. The recursive reconstruction method [4] is more
complex, in which the median is recursively projected onto hyperplanes of
decreasing dimensionality. The median in n dimensions is calculated as a
weighted mean between the median in n − 1 dimensions and the n-th object.
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This results in a triangular or linear reconstruction if the recursion arrives at
dimension three or two. Since this method calculates a generalized median in
each step, one can use the intermediate result with the best sum of distances as
the final result. This is the best-recursive interpolation.

3 Refined Reconstruction Methods

In this section we present several refined reconstruction methods that can be used
in the framework described above towards more accurate generalized median
computation.

3.1 Linear Recursive

In linear reconstruction, only the two nearest neighbors of the median vector
are considered for the reconstruction. While this is fast and easily done, using
only two objects restricts the search for a median object to the weighted mean
between these objects. Therefore, we propose to consider the weighted mean
between other objects as well. In linear recursive reconstruction, not only the
nearest pair of neighbors is considered, but also the next nearest pair and all
following ones. The objects are paired as (o1, o2), (o3, o4), . . . , (on−1, on) with
δe(m,ϕ(oi)) ≤ δe(m,ϕ(oi+1)),∀1 ≤ i < n. In this way, the two nearest neighbors
are selected as a pair, then the two next neighbors etc. If n is odd, then the last
object is not processed in the current iteration, but directly taken over for the
next iteration. Each pair is linearly reconstructed (see Sect. 2.3), resulting in n/2
median objects. This process is repeated using only the reconstructed objects,
resulting in n/4 objects. After log(n) steps, only one object remains. The object
with the best SOD from all intermediate results is returned as the generalized
median. Naturally, this reconstruction method is at least as good as the linear
reconstruction, since it is included as the first pair.

An example using four objects can be found in Fig. 2. The median vector m
is first projected on lines connecting each pair of objects. Then, the median is
recursively projected on lines connecting pairs of these projections.

m m

Fig. 2. Linear recursive reconstruction. Result after the first (left) and second iteration
(right).
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3.2 Triangular Recursive

Triangular recursive reconstruction is very similar to linear recursive reconstruc-
tion. The difference is that objects are grouped in triplets instead of pairs, using
the triangular reconstruction (Sect. 2.3) to generate n/3 objects as a result. This
is again repeated until only one object remains. For cases in which only two
objects are present, linear reconstruction is used instead.

3.3 Linear Search

The above mentioned reconstruction methods calculate an approximation of the
generalized median from the geometric median in vector space. Linear search
improves this result by searching for a better approximation. It is reasonable to
expect that a true generalized median is very similar to the calculated approxi-
mate one. Therefore, the region around the prior result should be searched for an
object with lower SOD, see Fig. 3. Using weighted means (black dots) between
the previous calculated median object ō and objects in the set, an object with a
lower SOD is searched (red dot). This process is repeated with the new object,
until the change in SOD is sufficiently small. Since the generalized median serves
as a lower bound of the sum of distance and this method reduces the SOD in
each step if possible, it eventually converges to an optimal solution. Using this
method only lines between given objects are searched instead of the full neigh-
borhood of ō. Therefore, it is not guaranteed to arrive at the true generalized
median and could result in a local minimum.

The linear search is a refinement performed the original domain O. It can be
combined with any reconstruction method, which calculates an approximation
of the generalized median from the geometric median in vector space.

Fig. 3. Linear search reconstruction. This refinement search is performed the original
domain O. (Color figure online)

4 Experimental Evaluation

In this section we present experimental results. These results were generated
using four datasets of two different types. First, we describe the datasets we
used in our evaluation. Then, we show the results using our methods followed
by a discussion of these results.
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4.1 Datasets

Our methods were evaluated using four datasets in total, each consisting of
several sets of objects. Table 1 shows some information about the used datasets.

Table 1. Evaluated datasets

Dataset Type Number of
sets

Number of objects
in each set

Distance
function

Darwin String 36 40 Levenshtein

CCD String 22 100 Levenshtein

UCI Cluster Cluster 8 25 Partition distance

Gen. Cluster Cluster 8 20 Partition distance

The first two datasets consist of strings. The Darwin dataset is artificially
generated with lines from Charles Darwins famous work “On the Origin of
Species”. Each set of 40 strings was created from one line of length between
70 and 140 symbols, which was randomly distorted using probabilities based
on real world data [10]. The Copenhagen Chromosome Dataset (CCD) includes
22 sets of genetic strings created by Lundsteen et al. [12]. Each string encodes
selected parts of a chromosome. Each set consists of 100 strings with lengths
from about 20 to 100 symbols. In both cases, the Levenshtein distance [15] is
used.

The second two datasets contain clusters, encoded as label vectors. The first
sets are clusters generated with data from the UCI Data Repository [1] using k-
means clustering with different parameters. The second are artificially generated
clusters made with the method of [6]. This method uses a cluster to generate
several new ones by the substitution of labels. For the cluster datasets, we use the
partition distance [6]. This metric expresses how many labels must be changed to
result in identical partitions of the data. The labels themselves are not relevant.

4.2 Quality of Computed Generalized Median

Tables 2 and 3 show the relative sum of distances of the generalized median
acquired using the different datasets. Since the maximum number of prototypes
is dependent on the number of objects in each set, we used d = 0.1n, 0.2n, . . . , 1n.
Table 2 displays the results of the different methods averaged over all tested d.
Table 3 only includes the results of the best number of prototypes for each recon-
struction method. The sets were embedded two times for each combination of
number of prototypes and reconstruction method. The resulting SODs were aver-
aged to compensate for small random influences in the results. The linear search
method is combined with linear, best-recursive, and linear recursive methods as
base result, respectively.
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Table 2. Relative SOD results - average result

Cluster Gen. Clusters CCD Darwin
p
re
v
io
u
s

m
et
h
o
d
s linear 1.000 1.000 1.000 1.000

triangular 1.005 0.835 0.972 0.946
recursive 1.006 0.697 0.856 0.812

best-recursive 0.904 0.674 0.760 0.712

p
ro
p
o
se
d

m
et
h
o
d
s

linear-recursive 0.840 0.239 0.612 0.520
triangular-recursive 0.865 0.262 0.601 0.518
linear-search, linear 0.852 0.291 0.682 0.484

linear-search, best-recursive 0.816 0.279 0.572 0.402
linear-search, linear-recursive 0.785 0.033 0.533 0.359

Linear Reconstruction SOD 4857.29 842.82 2799.27 951.65

Lower Bound SOD 3429.25 586.00 1875.95 641.81

Table 3. Relative SOD results - best result

Cluster Gen. Clusters CCD Darwin

p
re
v
io
u
s

m
et
h
o
d
s linear 1.000 1.000 1.000 1.000

triangular 1.002 0.648 0.969 0.902
recursive 0.964 0.625 0.824 0.675

best-recursive 0.906 0.625 0.725 0.592

p
ro
p
o
se
d

m
et
h
o
d
s

linear-recursive 0.856 0.078 0.646 0.512
triangular-recursive 0.875 0.126 0.605 0.506
linear-search, linear 0.845 0.133 0.666 0.443

linear-search, best-recursive 0.807 0.063 0.574 0.326
linear-search, linear-recursive 0.805 0.000 0.563 0.327

Linear Reconstruction SOD 4783.44 773.16 2710.48 899.72

Lower Bound SOD 3429.25 586.00 1875.95 641.81

As the generalized median minimizes the SOD, a lower result means a more
closely approximated result. Since the SOD is highly dependent on the distance
function and dataset, a linear transformation x−LB

LR−LB was used to normalize the
results x and make them more easily comparable. The result (LR) using linear
reconstruction is transformed to 1, the lower bound (LB) of the SOD of the
generalized median is transformed to 0. As such, a value of 0.5 means that the
calculated generalized median has a SOD which is at half between the result of
prototype embedding with linear reconstruction and the lower bound. The lower
bound was computed using the method from [9]. Since it may not be a very
tight lower bound, it is not guaranteed that the generalized median would really
produce a result of zero with this normalization.

The new reconstruction methods described in Sect. 3 show consistent and
significant improvements of the SOD compared to previous methods both on
average and their best dimension parameter, but the extent of the improvement
is dependent on the chosen dataset. Linear-recursive and triangular-recursive
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reconstruction have similar results, with one resulting in a lower SOD in Cluster
datasets, and the other showing better results in string datasets. This indi-
cates influences of the distance and weighted mean functions on the result. As
expected, linear search methods improve their respective base results by a large
margin. Moreover, the better the base object is, the better the resulting approxi-
mated generalized median is. One should therefore use linear recursive as a basis
for this method.

4.3 Computational Time

For the experiments we used a computer with Intel Core i5-4590 (4×3.3GHz) and
16 GB RAM, running Matlab 2015a in Ubuntu 15.10. Figure 4 shows the run time
for the UCI Cluster dataset. Since the same methods were used to calculate the
embedding and geometric median, only the time of each reconstruction method is
included. The results of the other datasets are not shown due to their similarities
to these results.

As expected, linear and triangular reconstruction are the fastest methods
because only two or three weighted means are used in their computation. The
number of dimensions is nearly irrelevant, because only very few distance calcu-
lations are needed. Recursive and best-recursive reconstruction use a number of
objects equal to the embedding methods, which results in their linear runtime.
Interestingly, the need to calculate the SOD for each intermediate result has no
negative impact on the speed of the best-recursive approach to the recursive one.
Linear recursive and triangular recursive use all objects of the set regardless of
the embedding methods, as can be seen by their constant runtime. Linear search
methods show the longest runtime, but also one that is nearly independent of
the embedding dimension. Although the proposed reconstruction methods are
on average slower than the traditional techniques, their significant improvement
of the calculated median justifies their use.
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Fig. 4. Run-time of the UCI Cluster dataset.
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5 Conclusion

Prototype embedding is a standard method for the embedding of arbitrary
objects into Euclidean space with many applications and often used as an inte-
gral part of generalized median computation. In this work, we introduce new
reconstruction methods for improving the generalized median computation. A
study was presented using these methods on several datasets. The proposed lin-
ear recursive, triangular recursive, and linear search methods have been shown
to consistently improve the results. Especially linear search using linear recur-
sive reconstruction results in a significant improvement for all tested datasets.
Although these results are derived from the datasets used in this work, our
study provides hint enough to conclude that when dealing with generalized
median computation we in general should take these reconstruction methods
into account.

This work focused on the influence of reconstruction methods on the gen-
eralized median computation. Another point of interest is the use of alterna-
tive embedding methods. Prototype embedding has been shown to produce vec-
tors for each object whose distance can be vastly different from their original
one [14]. Using distance preserving embedding methods instead shows improve-
ments of the median in several different types of datasets and distance func-
tions [13]. These methods compute vectors xi, xj for objects oi, oj such that
δ(oi, oj) ≈ δe(xi, xj), resulting in an embedding that more closely reflects the
pairwise distances of the objects and thereby lead to a more accurate median
computation. Combining the presented reconstruction methods and these dis-
tance preserving embedding methods may result in an even more accurate gen-
eralized median.
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11. Krivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta
Informatica 23(3), 311–323 (1986)

12. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized
trypsin G-banded human metaphase chromosomes. Clin. Genet. 18, 355–370
(1980)

13. Nienkötter, A., Jiang, X.: Distance-preserving vector space embedding for gener-
alized median based consensus learning (2016, submitted for publication)

14. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int.
J. Pattern Recognit Artif Intell. 23(06), 1053–1081 (2009)

15. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM
21(1), 168–173 (1974)

16. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n
given points is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)


	Improved Prototype Embedding Based Generalized Median Computation by Means of Refined Reconstruction Methods
	1 Introduction
	2 Prototype Embedding Based Generalized Median Computation
	2.1 Embedding Function
	2.2 Computation of Geometric Median by Weiszfeld Algorithm
	2.3 Reconstruction Methods

	3 Refined Reconstruction Methods
	3.1 Linear Recursive
	3.2 Triangular Recursive
	3.3 Linear Search

	4 Experimental Evaluation
	4.1 Datasets
	4.2 Quality of Computed Generalized Median
	4.3 Computational Time

	5 Conclusion
	References


