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Abstract. Modern state-of-the-art computer vision systems still per-
form imperfectly in many benchmark object recognition tasks. This hin-
ders their application to real-time tasks where even a low but non-zero
probability of error in analyzing every frame from a camera quickly accu-
mulates to unacceptable performance for end users. Here we consider a
visual aid to guide blind or visually-impaired persons in finding items in
grocery stores using a head-mounted camera. The system uses a human-
in-the-decision-loop approach to instruct the user how to turn or move
when an object is detected with low confidence, to improve the object’s
view captured by the camera, until computer vision confidence is higher
than the highest mistaken confidence observed during algorithm training.
In experiments with 42 blindfolded participants reaching for 25 different
objects randomly arranged on shelves 15 times, our system was able to
achieve 100 % accuracy, with all participants selecting the goal object in
all trials.
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1 Introduction and Background

People who are blind have more difficulty navigating the world than those with
sight, even in places they have been before [8,23]. This is a condition that affects
39 million people worldwide [32]. Much progress has been achieved in developing
electronic travel aids to assist them as technology has advanced. One method is
to convert images to soundscapes which some subjects can learn to interpret well
enough to differentiate places, and to identify and locate some objects [27]. Oth-
ers include localization in an environment using stereo cameras, accelerometers,
and even wifi access points [6,13]. Advances have also been made to traditional
aids such as canes, by developing electronic replacements using, e.g., sonar to
increase their warning range or grant the same feedback but without a physical
cane [20,31], and replacing guide dogs with robots [16]. Among these devices
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many utilize computer vision to help with navigation, text reading, and object
recognition. [1,18-20,29].

Many advances have been made in computer vision, yet, even state of the
art algorithms have not yet been able to achieve perfect accuracy on standard
datasets [7,12,28]. Our algorithm’s success is founded in the areas of dynamic
thresholding and active vision [2]. Active vision is the process of changing views
to better identify what is being looked at. This can be through changing the
pose of the camera or choosing a region of interest with a larger field of view and
then attempting identification within that region using a zoomed-in image [3,
5,11,30]. Dynamic thresholding is any recognition system which has a decision
threshold more complicated than a single number. For example, some methods
include different thresholds for parts vs. whole object detection [9], adaptive
local thresholding [14,33], and connectivity based thresholding [22].

Despite the discussed advances in assistance for the blind, shopping can still
be a nearly impossible task. Many boxed and canned items have identical shapes,
which means without one of these aids, or normal vision, help from a person with
vision is required for selecting the correct item [17]. Even successful devices such
as OrCam [19] require the user to point at the desired object to be identified.
This is great for people with poor vision, but not helpful for the fully blind.
To address this, systems have been proposed that read barcodes [21] or identify
items on the shelves using computer vision algorithms [18,29]. On the one hand,
barcode scanners never make mistakes, although they can be tedious to use when
looking for a specific item in a large grocery store (as shown in our own results,
see below). On the other hand, a serious problem with using a computer vision
system for this application is that if they make too many mistakes, users will
likely stop using them [10,24]. An acceptable system cannot ever tell the user to
select an item they do not want.

2 DMotivation

In a typical object detection computer vision system each input image requires
the system to determine a confidence for how likely it is that any items trained
for are currently in that image. If the confidence is high enough it will tell the
user it has found the item. However, no matter where the confidence threshold is
set, for most objects and algorithms there will be some range of values where the
system will make mistakes [18], either false alarms or misses. If the threshold is
set too high the system can decide it has not found the item when it was present
(miss), and if the threshold is set too low and the system can decide it has found
the item when the item was not present (false alarm). This problem happens
with almost every system with a confidence threshold for detection because there
often are some images without a particular item where the confidence may be
higher than for some images with the item.

To show this point using the set of 25 objects used in our experiments below
(Fig. 1), a dataset of pictures was collected in our simulated grocery store setting.
A camera was placed in a fixed position and objects were arranged in front of
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Fig. 1. Template images for objects in database by row, left to right. 1, Cereal: PEB,
CP, HNC, LUC, MGC. 2, Snacks: SR, HBN, OCP, PS, NB. 3, Pasta: HH, KRA, PR,
MAC, VEL. 4, Tea: SM, LIP, FTS, FR, STA. 5, Candy: NRD, HT, GNP, MD, JM.

it with their centers two feet away from the camera. Objects were then rotated
vertically and horizontally at 15° degree intervals for each picture from nega-
tive 45° to positive 45° offset giving a total of 1225 images. Images in which
the object pose (homography, discussed in the following section) could not be
recovered by our algorithm were not included because the system would not be
able to guide the user from those images. Removing these images left a total of
1112 usable images or 44.5 images on average per item. Figure 2-A shows receiver
operating characteristic (ROC) curves for recognizing each of the objects in the
dataset individually and Fig. 2-B shows one ROC curve over all objects. Confi-
dences were calculated using the SURF [4] algorithm. Some objects had less of
a problem than others, with a smaller portion of overlap between the highest
confidence without the object and the lowest confidence with the object. Only
2 objects had no overlap at all. This means just these 2 objects of 25, with the
images collected, would yield no mistakes with a fixed threshold. The ROC curves
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for some of the other items are quite good as well; however, even an error rate of
only 1%, might cause an error every 25s in our system that runs in real time at
approximately 4 frames per second. In the discussion section we will detail why
every mistake is a large issue for the user. The only way to solve this problem is
to not have a yes/no threshold, and instead allow the system to output that it
is unsure within this range of values where there will be uncertainty.
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Fig. 2. (A) ROC curves of confidence values over all images and all objects collected.
PEB and HNC are the only ones where all confidences for images of other objects are
lower than all confidences for images of themselves. (B) ROC curve for correctness with
a single fixed threshold over all objects being tested on.

3 Proposed System

The proposed system consists of a camera mounted on a pair of glasses, which
captures images in real time. Users can provide instructions as to which object
they want to reach for next (in experiments, that was controlled by the experi-
menter). Camera images are then analyzed as the user moves through the envi-
ronment until at least some weak evidence for the presence of the object is
determined by the vision algorithm. If there is evidence that the object may
be present, but the system is uncertain (as further detailed below), the user
is not yet told that the object has been found. Instead the user is instructed
to turn, move, strafe, or crouch in a way that will decrease the difference in
object pose between the current camera view and the system’s template image
for that object. Template images for the objects are front and centered. As the
viewpoint changes and provides increasingly more front and centered views of
the object, confidence of the vision algorithm is expected to increase. When
confidence exceeds the threshold necessary to ensure no mistake, the object is
declared found. The user may still be further guided so that the object becomes
centered in the camera’s field of view. At this point the user is informed that the
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Fig. 3. Flow diagram of choices algorithm makes.

object is straight in front of their face and that they should reach out to grasp
it. A simple flow diagram of this process is shown in Fig. 3.

Thus, our approach uses the cognitive abilities of the users (to understand
instructions) and their mobility (to execute the suggested moves) to improve
the quality of the view of an object as captured by the head mounted camera.
Because our main application is for blind users, the system never needs to rely
on any human visual ability.

Training is performed to find confidence thresholds for the top and bottom of
the uncertainty range for each item. This range is defined as the values between
the lowest true positive threshold, and the highest false positive threshold. The
lowest true positive is the smallest confidence score ever given to an image that
an item is present where the item being trained for was actually in the image.
The highest false positive is the largest confidence ever given that an item was in
a training image when it was not present. Training and testing incorporate the
use of homography matrixes. A homography matrix is a representation of where
the camera is relative to a set of points in space that all lie on the same plane.
Homographies are calculated based on the relative positions of a set of points in
relation to each other in a template image compared to their relative positions
in a camera image. For example, if the points are all proportionally closer, the
homography would show the camera is further away from the object than where
it was when the template image was taken. Another example can be seen in Fig. 4.
In our case, the template points are from the goal object for which the system is
currently training. Because the points must be on the same plane, in the current
instantiation of the system objects being found must be in boxes, as opposed to
cans or other objects without a flat front surface. To calculate a homography
a keypoint matching algorithm is required. These algorithms calculate feature
descriptors in images and finds matches between similar descriptors in other
images. Matches will include a match confidence as well as the pixel positions in
both images, as needed for the homography calculation. We chose SURF [4], as
opposed to others such as SFIT [15], because of it’s speed. In the end system,
homography matrices are the method used to give instructions. To train the
lowest true positive threshold, objects are displayed to the camera and rotated
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Fig. 4. Visual representation of Homography calculation [26]. In this case the points
will be proportionally closer in the y-axis, while in the x-axis they will closer at the
top and further apart at the bottom. The calculated homography would describe a
position where the camera is looking up at the object from below.

in all directions and moved closer and farther away. The lowest true positive value
is determined to be the lowest confidence value seen where a homography is still
able to be calculated. If a homography cannot be calculated these confidences are
not used because we would not be able to direct the user from those images. The
highest false positive value is trained at the same time. While training the lowest
true positive for one object, confidences are recorded for every other object in
the database. The strongest confidence ever seen for each object, while actually
looking at other objects, sets the thresholds for the highest false positives. To
be safe, we additionally add 15 % of the range between thresholds to this value
as a buffer. An example of scores relative to these thresholds is shown in Fig. 5.

During a run, if the confidence is within the uncertainty range the system out-
puts that it doesn’t know the answer. However, it uses the information it has to
arrive at a better decision later. If the confidence is between these thresholds, and
ahomography can be calculated, the system will know where the camera is relative
to the points on the object used in the homography calculation. It can then pass
on this information to the component that moves the camera. In our application
that component is the human user. Using audio feedback our system tells the user
how to move in order to guide the camera to a better viewing angle. If homographies
continue to be calculated, eventually an ideal, front and centered, viewpoint can be
achieved. Images from this camera angle generate the most similar keypoints to the
template’s keypoints, giving the highest confidences. If the confidence of an image
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Fig. 5. Confidence threshold display for three items. Bars represent confidence values
over last 20 frames. No units are shown because display confidences for each are relative
percentage between max and min ever seen by the system when searching for each
item. Middle threshold is the highest false positive. Bottom threshold is the lowest
true positive. Top threshold is the extra buffer, 15% above of the range above the
highest false positive. Left confidence is in the range of uncertainty, if this was the
item being searched for directions would be given. Middle confidence is above the max
false positive value meaning this item is actually in the camera frame. Right confidence
is below the lowest true positive so this item is certain to not have enough keypoint
matches in the image to recover a homography.

surpasses the highest false positive value for the goal object correctness is certain.
If, with an ideal viewpoint, the item is still not above this threshold the user knows
to move on. This will happen when items have enough keypoints in common that a
homography for the goal item is still able to be calculated from keypoints found on
the alternate item. Most frequently this is seen between objects which share brand
logos or other portions of similar visuals.

The physical system consists of three components. The first is the headset,
created by attaching a webcam to a pair of glasses. The camera is attached
directly in the middle to best capture images replicating where a person would
be looking. The next is a pair of headphones to allow the user to hear the audio
feedback. The last is the computer which performs SURF template matching,
checks confidences, and gives instructions. We have used a GigaByte Brix which
is able to be placed in a backpack and powered with a battery while the user is
performing the task. These components are all controlled via SSH by a Samsung
tablet.

4 Experiment Setup

For real world applications a computer vision system must be flawless, or close
to flawless in identifying what it is being used for. A system saying it has found
what it is looking for when it has not could range from catastrophic to just
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inconvenient, but in any case it would not be widely used with more than a
minute allowance for mistakes. The goal of our system is to show that this
method of thresholding can achieve perfect accuracy. Blind grocery shopping
tests this goal. The visually impaired user is able to use human decision making
and movement for all parts of the task other than the actual vision. Grocery
shopping is also a task where a system telling the user to purchase the wrong
item even once would be considered a serious mistake.

Headgear consisting of headphones,
camera attached to glasses, and
blindfold

Two bookcases with
three shelves each
and three locations
per shelf for 18 total
locations.

Algorithm run on Gigabyte Brix
contained in backpack.

Fig. 6. Experiment setup. Shown is a user confirming a selected item in the simulated
grocery store.

4.1 Environment and Instructions

Our experiment took place in a simulated grocery store aisle using blindfolded
participants as shown in Fig.6. Subjects were 42 students. We arranged two
bookshelves next to each other where our grocery store items could be placed.
Each bookshelf has three shelves and we allowed items to be placed in three
locations per shelf making 18 total locations items could be placed. During any
given run five items would be out on the shelves at a time. These items came
from one of five categories; cereal, snacks, pasta, tea, and candy. The five items
arranged together during each trial would be from the same category. Users
all performed 1 trial from each category with the same locations, and 2 trials
from each category with randomized positions which were unique, for a total
of 15 trials per subject. To begin each trial, the user would stand against the
back wall of the room facing the items. At this point the system would be
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turned on with the goal item selected. The user was instructed to move slowly
around the room, while facing the shelves, until an initial movement command
was given by the system. This would occur when SURF matches were made in
arrangements where homographies could be calculated and the confidence was
above the lower worst true positive threshold. Once an instruction was received
the user was to follow the instructions which would guide them to be centered
in front of the item. Instructions included “Left,” “Right,” “Up,” “Down,” “Left
Up,” “Left Down,” “Right Up,” “Right Down,” “Strafe Left,” “Strafe Right,”
“Strafe Up,” “Strafe Down,” “Step Forward,” “Step Back,” and “Reach Out.”
Examples of images which would elicit direction commands can be seen in Fig. 7.
Direction commands were to move in those directions, strafe commands were to
move in that direction but rotate the opposite direction, and Reach Out was the
command which was only given when the object was directly centered and the
confidence was above the worst false positive confidence plus buffer threshold.

Fig. 7. Instructions correspond to camera’s position based on homography calculation.
User is guided to make camera point directly at center of object. Center image shows
a strafe command where user would be instructed to rotate in addition to move.

When the “Reach Out” command was given users were to reach out, from the
camera, and pick up the item in front of them. Once this item was grasped they
turned 90 °, to be sure no other items from the shelves were in the background,
and confirm the item by receiving a second “Reach Out” command. This would
be done by holding the item up to the camera and moving the item based on the
audio feedback, rather than moving themselves as was done with the item on
the shelf. Sometimes users would be guided towards incorrect items when two
items had similar enough features that confidence would be high when looking
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at the wrong item and points matched in such a way that homographies could
still be calculated. However, when centered on the incorrect item the worst false
positive threshold would not be surpassed, and hence no “Reach Out” command
would be issued. It would be up to the participant to decide to move on to other
locations in the occasions where they had centered onto an object but were not
being instructed to reach out.

4.2 Training

Each participant was first briefly trained on how to use the system. Training
started with all 25 items out on the shelves. This would be more difficult than
during non-training trials, where the items would be less crowded. Participants
ran the experiment three times without a blindfold, and then three times with
a blindfold to get a feel for the system. At that time the participant continued
training until they successfully performed three trials in a row without making
a mistake. Mistakes are defined in two ways. One was if they picked up the
wrong item. Users knew not to pick anything up until they received the “Reach
Out” command, but actually reaching out towards the location directly in front
of the camera’s center of field proved to not be an inherently easy function
to perform. Some users reached slightly to the left or right, or even too high
or too low to a different shelf. The second predetermined mistake to avoid was
“losing” the item once tracking had begun. When the system was initially turned
on, instructions typically were not received as the item to be searched for was
either not in the camera frame, or far away and therefore too small in the image
to get enough keypoint matches to calculate a homography. This was the “no
instruction” condition. In this case the user was to scan the shelves without
instructions until a first instruction was given. At this point the user followed
instructions which would guide the object to the center of the camera frame. If
the user moved in such a way that the object was lost from the camera frame and
they were relapsed to the “no instruction” condition that would be considered
a failure during training. During the actual experiment, trials would not be
aborted whenever the subject “lost” an item, and users had to recover from it
on their own. Likewise, if the user picked up an item but could not confirm it
and decided they had reached incorrectly, the item would be returned to the
shelf and the trial would continue. Failures during the experiment could hence
occur if users both picked up and confirmed the wrong item, or if they gave up
on a given trial (which never happened).

4.3 Control Experiment

Our control experiment was performed in a similar manner using a barcode
scanner. This was chosen, rather than another computer vision system, because
we were confident we could achieve perfect accuracy and wanted to test against a
second option which would have perfect accuracy [21]. The barcode scanner used
was an Amazon Dash. Experimental setup for these trials was kept as parallel
as possible to a grocery store setup. The same two bookshelves were used, again
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with 18 possible locations. As in modern grocery stores the barcodes were placed
directly on the front face of the shelf. In these trials one barcode was selected
at random as the goal. Users scanned every barcode in any order they chose
until the correct one was scanned. No mistake conditions were defined for these
trials. Training simply consisted of giving the user the scanner and a blindfold
and they were allowed to practice indefinitely until they felt confident.

5 Experimental Results

Experiments were run as described on 42 participants. For all trials with all
participants the correct item was always correctly obtained by the participant.
Barcode scanning trials also were always successful. In each trial three time
points were collected. The first was the time at which the first instruction was
received. This cutoff was included because in some trials participants would take
the majority of their total time moving blindly before receiving any instructions.
With the barcode scanner, subjects would start trials with the scanner already
held to the first barcode. The first scan would regularly take less than a second,
so we wanted to have a cutoff for the first piece of feedback for our system. The
second time recorded was the time of the first “Reach Out” command. At this
point the system was 100 % sure the user has found the item they are looking for
and it was directly in front of them. The final time recorded was the additional
time needed for the user to actually pick up and confirm the item, a final step
not taken during the barcode scanning trials.
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Fig. 8. Boxplots for total time taken for runs of the system and the barcode scanner,
“time to complete” times for the system, and first “Reach Out” times for the system.
Wilcoxon Rank Sum Tests were run on each pair to test if they could have come from
continuous distributions with equal medians. All but Barcode Time vs First Reach Out
Time had significant p-values: System Time vs Barcode Time: 1.5e-24, System Time
vs Time to Complete: 6.2e-118, Barcode Time vs Time to Complete: 2.4e-46, System
Time vs First Reach Out Time: 1.2e-34, First Reach Out Time vs Time to Complete:
7.4e-46, and Barcode Time vs First Reach Out Time: 0.18.
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Mean total time for our system was 73.1s per trial. Mean Barcode scanner
time was 49.4s. Using total time, this would mean the barcode scanner was
distinctly faster. However, mean for first instruction time with our system was
23.7s and for first “Reach Out” command was 46.5s. This gives a mean “time
to complete” with our system, time between first instruction and first “Reach
Out” command, a mean time of only 18.1s. We believe this is the time that
should be compared, as further discussed in the next section. These results are
shown in Fig. 8.

Surveyed participants were asked to assign a value 1-10 to their preference of
systems with 10 being completely preferred our system, and 1 being completely
preferred the barcode scanner. Mean score was 7.8 with only 2 participants
reporting that they preferred the barcode scanner. Many reported their prefer-
ence came from our system being able to provide more continuous feedback than
a barcode scanner as guidance to the goal object. Of course, there could be some
response bias of the subjects wanting to be “friendly” participants.

6 Discussion

The strongest algorithm from the most recent ImageNet Challenge [25] was
developed by MSRA [12]. They achieved an accuracy rate of 62.07 % (as reported
by [25]) over all object categories in the dataset, with a range of 95.93 % for
the most accurate category and only 19.41 % for the weakest. This is still an
outstanding result with the complexity of the ImageNet dataset, and impressive
work with deep residual neural networks to achieve it. However, this rate of
accuracy would be far too low for any real world applications where mistakes are
costly. In situations such as assistance to blind grocery shoppers it is essential to
not make mistakes. In earlier instantiations of our algorithm “Wrong Item” was
also an instruction. It was given when an object was centered but the worst false
positive threshold was not surpassed. The intention was to inform users they had
centered on an item with similar enough keypoints to calculate homographies
for the goal item, even though it was not the goal item itself. However, in the
cases when this happened when they were actually looking at the goal item, only
because one frame didn’t calculate good keypoints, users would typically move
away immediately. This choice sometimes added minutes more to their time
before coming back to the correct item. This is why we decided to instead give
no instruction when the item was centered but the threshold was not surpassed,
and rely on the participant to decide on their own when they had centered on
an incorrect item. As seen in the ROC curves earlier, with a fixed threshold
a SURF based algorithm could perform with reasonable error rates on all of
the items in our dataset. However, when even a single bad instruction from a
single frame can increase your time significantly, and the algorithm is running
at many frames per second, perfect accuracy is necessary for an algorithm to be
optimal. Our experiment has shown that using this human-in-the-loop system
100 % accuracy is, in fact, possible with a computer vision based system in a
real life application. Using a human’s mobility and decision making allows the
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algorithm to not have a fixed threshold and instead postpone decisions when
uncertain. Without forcing answers from uncertain conditions the algorithm is
able to never make mistakes.

Time for the barcode scanner was stopped when the user scanned the correct
barcode. These trials did not require the user to pick up an actual item or
confirm it. Removing the time to pick up and confirm with our system makes
the two more equivalent. The time before first command is also not parallel
for the barcode scanner. In barcode scanning trials the subjects were allowed
to start with the scanner already held up to the first barcode of their choice.
This often meant the first piece of feedback would be immediate. In trials for
our system the time taken before the first command was received was regularly
a large majority of the total time taken. A major cause of this was the choice
of webcam for our original system. With a low definition webcam, the smaller
items would sometimes require users to have to get within a couple feet from
the item before they took up a large enough portion of the image to detect any
keypoints. This meant the subject might have to blindly scan all 18 positions
before getting any feedback whatsoever. Sometimes they would even have to do
this more than once if they did not scan correctly the first time. With an HD
webcam the user should be able to scan all 18 positions on both bookshelves at
once from the starting position at the back wall. This would eliminate all time
taken before first command.

As evidence for this, for the larger items in the cereal category this was
already the case. With such large items initial instructions were often heard
immediately. Considering only this category, mean total time was 57.1s. How-
ever, for cereals first instruction time had a mean of 9.1s compared to 27.5 for
the other categories. With a mean time of 34.6s to pick up and confirm an item
after receiving the first “Reach Out” command this gave cereals a mean “time
to complete” time of only 13.5s and a mean time from start to the first “Reach
Out” command of 22.5s. Either of these times are more comparable to the bar-
code scanner times, since barcode trials did not require confirmation and started
feedback immediately, and both are faster.

Compared to a barcode scanner the total times for our system were slower.
However, when only considering “time to complete,” the time needed for the
subject to center the correct item in the camera frame after receiving their first
instruction, our system was faster. Also considering only time to first “Reach Out”
command, ignoring time taken to grasp and confirm the item not necessary in bar-
code scanner trials, times did not show significant difference. Importantly, sur-
veyed participants reported they preferred the constant guided feedback of our
system against the yes/no feedback the barcode scanner could provide, even in
our reduced store with only two shelves. We hence conclude that this study has
successfully demonstrated a user-in-the-loop machine vision algorithm that made
no mistakes and could be an interesting basis for a new generation of visual aids.
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