
Chapter 7

FORENSIC ANALYSIS OF A
SIEMENS PROGRAMMABLE
LOGIC CONTROLLER

Raymond Chan and Kam-Pui Chow

Abstract Programmable logic controllers are widely used in industrial control
systems and supervisory control and data acquisition (SCADA) systems.
As the potential of cyber attacks on programmable logic controllers
increase, it is important to develop robust digital forensic techniques
for investigating potential security incidents involving programmable
logic controllers. This chapter focuses on the logging mechanism of a
Siemens programmable logic controller, specifically the Siemens Total
Integrated Automation Portal V13 program (Siemens TIA Portal, also
called Siemens Step-7).

Keywords: Control systems, programmable logic controllers, forensic analysis

1. Introduction
Industrial control systems are vital to the operation of the critical infras-

tructure. Programmable logic controllers (PLCs), which are among the most
commonly used components of industrial control systems, are used to moni-
tor processes and perform control actions. Programmable logic controllers are
usually connected to human-machine interfaces (HMIs) to enable remote real-
time monitoring and control by human operators. Although modern industrial
control systems have been used for several decades, little research has focused
on forensic analysis methodologies for investigating security incidents involv-
ing control systems. The discovery of Stuxnet [10] in 2010 has significantly
increased efforts to develop sophisticated and reliable forensic techniques for
industrial control systems, including programmable logic controllers. These
techniques are vital to understand the nature and scope of security incidents
and attacks, extract evidence and potentially identify the perpetrators.

This chapter focuses on a Siemens programmable logic controller, namely
the Siemens Total Integrated Automation Portal V13 program (Siemens TIA

c© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing AG 2016. All Rights Reserved

M. Rice and S. Shenoi (Eds.): Critical Infrastructure Protection X, IFIP AICT 485, pp. 117–130, 2016.

DOI: 10.1007/978-3-319-48737-3 7



118 CRITICAL INFRASTRUCTURE PROTECTION X

Portal, also called Siemens Step-7), one of the systems targeted by Stuxnet.
In particular, this chapter discusses the information available in the Siemens
TIA Portal that could support forensic investigations and presents a forensic
analysis methodology for the Siemens programmable logic controller.

2. Related Work
Forensic analyses of industrial control systems are challenging due to the

lack of access to and knowledge about proprietary devices and protocols [1].
Taveras [7] has proposed a high-level model for live SCADA system forensics.
Spyridopoulos et al. [6] have discussed the implementation of logging capabili-
ties in a typical SCADA system architecture to support forensic investigations.
Eden et al. [3] have presented an incident response taxonomy that includes
possible attacks and forensic analysis methodologies for SCADA systems. Wu
et al. [9] have proposed a forensic capability for the Siemens S7 programmable
logic controller that uses the Siemens TIA Portal to monitor changes to data.
Patzlaff [5] has developed a forensic analysis framework for industrial control
systems that covers programmable logic controllers as well as host computers
and workstations.

SCADA network forensics is also a topic of considerable interest among
researchers and practitioners. Kilpatrick et al. [4] have proposed a SCADA
network forensic architecture for analyzing TCP/IP traffic between control de-
vices. Valli [8] has developed a Snort intrusion detection system for SCADA
networks, which is able to detect and respond to common network attacks.

Analyzing programmable logic controller firmware is also of value in incident
response and forensic investigations. Basnight et al. [2] have discussed tech-
niques for reverse engineering programmable logic controller firmware. How-
ever, the task is extremely time consuming and, due to the proprietary nature
of the hardware and security mechanisms, it may not be possible to extract
useful information for forensic investigations.

Little, if any, research has focused on practical approaches for perform-
ing forensic analyses on programmable logic controllers. To address the gap,
this chapter presents a practical methodology for analyzing a Siemens pro-
grammable logic controller along with a computer workstation installed with
the Siemens TIA Portal.

3. Forensic Analysis Methodology
Figure 1 summarizes the forensic analysis methodology. First, the foren-

sic investigator identifies the computer workstations (PCs) and programmable
logic controllers (PLCs) involved in the security incident. Next, evidence is ex-
tracted from the workstations and programmable logic controllers for analysis.
Further analysis has to be performed on the workstations that have the Siemens
Total Integrated Automation Portal V13 program (Siemens TIA Portal, also
called Siemens Step-7) installed. The identified programmable logic controllers
must be connected to the Siemens TIA Portal for further analysis. This section



Chan & Chow 119

Figure 1. Forensic analysis methodology.

focuses on the forensic examination of the Siemens TIA Portal installed on a
workstation and a method for examining the diagnostics buffer in an affected
programmable logic controller.

3.1 Analyzing the Siemens TIA Portal
The Siemens TIA Portal is an integrated development environment for con-

figuring and developing programs, and monitoring the status of the Siemens
programmable logic controller. As such, it provides valuable information for
forensic investigations.

3.2 Analyzing the PEData.plf File
The PEData.plf project file is generated by the Siemens TIA Portal. It

contains information about the programmable logic controller program and
configuration. The PEData.plf file is generated when a new programmable
logic controller project is created. Because, the PEData.plf file records the
programmable logic controller information in plaintext, any forensic tool (e.g.,
WinHex) can be used to examine the information.



120 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 2. Hex representation of the PEData.plf file.

Analysis of the file contents revealed that all the project actions are stored in
the project file. Whenever the programmable logic controller program is mod-
ified, a PLUSBLOCK is appended to the end of the project file. The PLUS-
BLOCK provides information about the changes made to the programmable
logic controller program. By comparing the variable tags and the ladder logic
regions in the PLUSBLOCK, a forensic investigator can obtain details about
the modifications made to the programmable logic controller program.

Figure 2 shows the file structure of the PEData.plf file; the actions and
modifications are marked as COMMIT. It is possible to reconstruct the changes
that have been applied to the project file.

Figure 3 shows the MAC times (last modification time, last accessed time
and creation time) of the PEData.plf file. The information is used to determine
the modification time, last access time and creation time of the project.

Figure 4 shows the locations of the ladder logic program and tags in the
PLUSBLOCK file. This information also enables a forensic investigator to examine
the changes made to the programmable logic controller program.

3.3 Analyzing the Program Block Metadata
Programmable logic controller programs are represented as program blocks

in the Siemens TIA Portal. Each program block has its own metadata and



Chan & Chow 121

Figure 3. MAC times of the PEData.plf file.

attributes. The information includes the size of the binary file, last compilation
date and last modified date of the programmable logic controller program.

After an incident occurs, a forensic investigator needs to verify the correct-
ness of the timestamp information provided by the programmable logic con-
troller. Several timestamps are provided by the Siemens TIA Portal. Figure 5
shows the compilation timestamp and the size of the program in memory.

Figure 6 shows several useful timestamps associated with a programmable
logic controller program. The timestamps are:



122 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 4. Storage locations of the ladder logic program and tags in PEData.plf.

Block: This is the latest modification time of the programmable logic
controller program. It is either the last modification time of the program
block interface or the code/data, depending on which entity was modified
last.

Interface: This is the latest modification time of the interface of the pro-
grammable logic controller program. The interface timestamp is updated
whenever the interface is modified.

Code/Data: This is the latest modification time of the program logic or
metadata of the programmable logic controller program. The code/data
timestamp is updated when the program or metadata of the program
block are changed.

Binary: This is the latest modification time of the metadata of the
program block. It corresponds to the time when the compiled binary
component was loaded into the programmable logic controller.

The compilation time (compilation timestamp in Figure 5) and last loaded
time (load-relevant timestamp in Figure 6) enable a forensic investigator to
ascertain when a program was compiled and loaded on the programmable logic
controller. In a normal situation, the last loaded time should be after the
compilation time. If the last loaded time is earlier than the compilation time,
then the program was (possibly updated and) compiled, but not yet loaded on
the programmable logic controller.



Chan & Chow 123

Figure 5. Program compilation information.

4. Analyzing the Diagnostics Buffer
The Siemens programmable logic controller has a diagnostics buffer that

records its behavior and interactions with the Siemens TIA Portal. For each
event, the diagnostics buffer records the timestamp, event id and detailed de-
scription of the event. Since the buffer is read-only, it is not possible for an at-
tacker to modify its contents. Due to the limited memory in the programmable
logic controller, the diagnostics buffer can only record about 1,300 to 3,000 re-
cent events. During normal operation, the diagnostics buffer should be able to
record an adequate number of programmable logic controller events for foren-
sic analysis. During an investigation, a forensic professional should switch the
programmable logic controller from the RUN mode to the STOP mode before
examining the diagnostics buffer. Omitting this step may cause information
about the earliest events to be overwritten by new events. Figure 7 shows the
event log maintained by the diagnostics buffer.

4.1 Starting and Stopping the Controller
The Siemens programmable logic controller has three modes: (i) STARTUP;

(ii) STOP; and (iii) RUN. When the programmable logic controller starts up
with a pre-loaded program, the diagnostics buffer records the mode change



124 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 6. Program timestamp information.

from STARTUP to RUN. If no program has been pre-loaded, then the mode
change from STARTUP to STOP is recorded. The Siemens TIA Portal can
send commands to the programmable logic controller to change its mode. Two
events are recorded after a STOP command is sent to the programmable logic
controller and three events are recorded after a RUN command is sent to the
programmable logic controller. Figure 8 shows the diagnostics buffer event
log after the STOP and RUN commands are sent to the programmable logic
controller.

4.2 Uploading a New Program
In order to upload a new program to the programmable logic controller, the

Siemens TIA Portal has to change the programmable logic controller from the
RUN mode to the STOP mode, overwrite the existing program with the new
program and change the programmable logic controller mode to STARTUP.
After the program is successfully uploaded to the programmable logic controller,
the Siemens TIA Portal issues a WARM RESTART command to change the
mode from STARTUP to RUN, thereby enabling the newly-installed program
to execute. The diagnostics buffer records a total of seven events until the
upload action is completed. Figure 9 shows the corresponding event log in the
diagnostics buffer.



Chan & Chow 125

Figure 7. Diagnostics buffer event log.

4.3 Analyzing Engineer-Defined Events
Other information is available that may be useful to determine the state of

the programmable logic controller. For example, an engineer can set the diag-
nostics buffer to log events related to the running status of the programmable
logic controller that are helpful in investigating incidents. Figure 10 shows
examples of engineer-defined events that can be logged by the programmable
logic controller.

5. Case Study
This section describes a hypothetical, albeit realistic, security incident in

which the proposed forensic analysis methodology is used to conduct the inves-
tigation.

An engineer was dismissed from his position at a water supply company as
a result of unsatisfactory performance. On December 26, 2015, the company



126 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 8. Event log generated by sending a STOP command.

incident response team received a call that the water supply system was down
due to a malfunctioning programmable logic controller. The incident response
team was requested to investigate whether or not the system was attacked.

After examining the CCTV recording, the dismissed engineer was identified
as the primary suspect. Specifically, he was seen to access a workstation with
the Siemens TIA Portal installed. The incident response team believed that the
engineer had modified the programmable logic controller program, which caused
the water supply system failure. The incident response team was tasked with
identifying the actions performed by the engineer and their times by examining
the digital traces left in the Siemens TIA Portal and the diagnostics buffer of
the programmable logic controller.

The incident response team hypothesized that the engineer modified the
program in question using the workstation and then uploaded the program to
the programmable logic controller. The team performed the following actions
and retrieved the following evidence according to the proposed methodology:

The incident response team examined the workstation used by the engi-
neer, which had the Siemens TIA Portal was installed. In the Siemens
TIA Portal, the team discovered that the last modification time of the
programmable logic controller program was 8/12/2015 3:05:58 PM, the
compilation time was 8/12/2015 5:46:36 PM and the last loaded time was
8/12/2015 5:46:38 PM. These timestamps enabled the team to identify
when the program had been modified and uploaded to the programmable



Chan & Chow 127

Figure 9. Event log generated by uploading a program.

Figure 10. Engineer-defined events recorded by the diagnostics buffer.



128 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 11. Program block timestamps in the Siemens TIA Portal.

Figure 12. Program compilation/uploading timestamps in the Siemens TIA Portal.

logic controller. Figures 11 and 12 show screenshots of the program block
information in the Siemens TIA Portal.

The incident response team proceeded to identify the programmable logic
controller with the abnormal behavior. After connecting to the pro-



Chan & Chow 129

Figure 13. Diagnostics buffer in the malfunctioning programmable logic controller.

grammable logic controller, the team extracted the event log in the diag-
nostics buffer and discovered that the programmable logic controller had
been stopped and the modified program was executed on 26/12/2015
4:18:57 AM. The information provided by the diagnostics buffer proved
that the program was modified on 8/12/2015, which matched the date
of the water supply system failure. Figure 13 shows a screenshot of the
diagnostics buffer in the malfunctioning programmable logic controller.

Using the proposed forensic analysis methodology, the incident response
team successfully extracted the programmable logic controller program mod-
ification time and compilation time from the Siemens TIA Portal to confirm
when the program had been changed. By retrieving the event log from the
diagnostics buffer in the programmable logic controller, the incident response
team confirmed the time when the programmable logic controller was restarted.
Upon comparing the program retrieved from the malfunctioning programmable
logic controller with the original program, the incident response team was able
to discover exactly how the program was modified and exactly what caused the
programmable logic controller to malfunction. All the events were placed on a
timeline by comparing the MAC times corresponding to the original program
and the modified program.

6. Conclusions
The discovery of Stuxnet in 2010 has significantly increased efforts to de-

velop sophisticated forensic techniques for industrial control systems. These



130 CRITICAL INFRASTRUCTURE PROTECTION X

techniques are vital to understand the nature and scope of security incidents
and attacks, extract evidence and potentially identify the perpetrators. The
proposed methodology for performing forensic analyses of programmable logic
controllers is effective and practical. In particular, it focuses on a Siemens
programmable logic controller along with a computer workstation installed
with the Siemens TIA Portal, one of the systems targeted by Stuxnet. Fu-
ture research will extend the forensic analysis methodology to cover other pro-
grammable logic controller models and their associated firmware and software.

References

[1] I. Ahmed, S. Obermeier, M. Naedele and G. Richard, SCADA systems:
Challenges for forensic investigators, IEEE Computer, vol. 45(12), pp. 44–
51, 2012.

[2] Z. Basnight, J. Butts and T. Dube, Analysis of programmable logic con-
troller firmware for threat assessment and forensic investigation, Journal
of Information Warfare, vol. 12(2), 2013.

[3] P. Eden, A. Blyth, P. Burnap, Y. Cherdantseva, K. Jones, H. Soulsby and
K. Stoddart, A forensic taxonomy of SCADA systems and approach to
incident response, Proceedings of the Third International Symposium on
ICS and SCADA Cyber Security Research, pp. 42–51, 2015.

[4] T. Kilpatrick, J. Gonzalez, R. Chandia, M. Papa and S. Shenoi, An ar-
chitecture for SCADA network forensics, in Advances in Digital Forensics
II, M. Olivier and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp.
273–285, 2006.

[5] H. Patzlaff, D7.1 Preliminary Report on Forensic Analysis for Industrial
Systems, CRISALIS Consortium, Symantec, Sophia Antipolis, France,
2013.

[6] T. Spyridopoulos, T. Tryfonas and J. May, Incident analysis and digital
forensics in SCADA and industrial control systems, Proceedings of the
Eighth IET International System Safety Conference, 2013.

[7] P. Taveras, SCADA live forensics: Real time data acquisition process to
detect, prevent or evaluate critical situations, Proceedings of the First An-
nual International Interdisciplinary Conference, pp. 253–262, 2013.

[8] C. Valli, Snort IDS for SCADA networks, Proceedings of the International
Conference on Security and Management, pp. 618–621, 2009.

[9] T. Wu, J. Pagna Disso, K. Jones and A. Campos, Towards a SCADA
forensics architecture, Proceedings of the First International Symposium
on ICS and SCADA Cyber Security Research, pp. 12–21, 2013.

[10] K. Zetter, Countdown to Zero Day: Stuxnet and the Launch of the World’s
First Digital Weapon, Crown, New York, 2014.


	7FORENSIC ANALYSIS OF A SIEMENS PROGRAMMABLE LOGIC CONTROLLER
	1. Introduction
	2. Related Work
	3. Forensic Analysis Methodology
	3.1 Analyzing the Siemens TIA Portal
	3.2 Analyzing the PEData.plf File
	3.3 Analyzing the Program Block Metadata

	4. Analyzing the Diagnostics Buffer
	4.1 Starting and Stopping the Controller
	4.2 Uploading a New Program
	4.3 Analyzing Engineer-Defined Events

	5. Case Study
	6. Conclusions
	References




