
Chapter 6

LIGHTWEIGHT JOURNALING
FOR SCADA SYSTEMS
VIA EVENT CORRELATION

Antoine Lemay, Alireza Sadighian and Jose Fernandez

Abstract Industrial control systems are not immune to cyber incidents. However,
the support for incident responders and forensic investigators is low. In
particular, there are limited journaling capabilities for operator actions.
Barring the preservation of full packet captures and operator worksta-
tion security logs, which can generate unmanageable amounts of data
on production networks, it is generally not possible to attribute con-
trol events (e.g., opening a valve or operating a breaker) to individual
operators. This information can be necessary to perform security inves-
tigations, especially in cases involving malicious insider activities. This
chapter presents a lightweight journaling system for SCADA networks
based on event correlation. By correlating network events and operating
system logs, a journal is generated of all Modbus protocol write events
along with the usernames of the operators who performed the actions.
The journal is much more compact than a full packet capture, achiev-
ing compression ratios of around 570 to 1 in conservative conditions and
more than 2,000 to 1 in typical operating conditions, allowing for the
preservation of valuable information for security investigations.

Keywords: SCADA networks, network forensics, journaling, event correlation

1. Introduction
The number of cyber incidents has been rising in recent years. Industrial

control networks (also referred to as supervisory control and data acquisition
(SCADA) networks) are not immune to cyber threats; examples are the Havex
malware [10] and a serious incident at a German steel mill [1]. This trend un-
derscores the need for better incident response capabilities in industrial control
or SCADA networks.

c© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing AG 2016. All Rights Reserved

M. Rice and S. Shenoi (Eds.): Critical Infrastructure Protection X, IFIP AICT 485, pp. 99–115, 2016.

DOI: 10.1007/978-3-319-48737-3 6



100 CRITICAL INFRASTRUCTURE PROTECTION X

One of the first instincts of an incident responder is to review logs to find
clues about the incident. However, this is usually not possible in SCADA
networks. In the vast majority of these networks, the control systems do not
support the journaling of relevant security information. This lack of journaling
is critical from a security perspective. In a SCADA system, the controllers
perform all the interactions with the physical network. An attacker who wishes
to create a physical impact must interact with the controllers. Yet, there is no
convenient way to track these attacker interactions.

Full packet captures can be used to track most interactions with controllers.
Typical controllers do not possess any keyboards or user displays and, unless
an individual is performing maintenance using physical access, the controllers
are usually only accessed remotely via the control network. In this sense, full
packet captures record the interactions with the controllers. However, they also
contain large volumes of irrelevant network activity, preventing their storage
for extended periods of time.

As an example, the limited test network used in this research generates traffic
in the order of gigabytes per month. In a production network, with many more
controllers and field devices, the network traffic would be orders of magnitude
higher. As such, there is a need to preserve summary information that would
enable incident responders to gather key information about the interactions
with controllers. This chapter describes an event correlation approach that
creates a log of interactions between operators and controllers by combining
data from network sensors and data from security logs in operator workstations.

2. Background
This section presents background information about SCADA systems. In

particular, it describes the architecture and operation of SCADA networks
that use the popular Modbus protocol.

Many SCADA networks are organized around the Purdue Enterprise Ref-
erence Architecture [15]. In this architecture, Level 0 is the physical process.
Intelligent field devices, namely, sensors, actuators and their controllers, are lo-
cated in Level 1. Higher level controls, such as SCADA systems, are in Level 2.
All Level 1 equipment is grouped together on the same local-area network (plant
local-area network). Similarly, all Level 2 equipment is grouped in the control
center local-area network.

Figure 1 presents the architecture of a Modbus system. In the architecture,
each operator workstation hosts a SCADA program. The SCADA program
comprises two main components. The first component is the master terminal
unit (MTU), which is responsible for maintaining information about the state
of the physical process in the operator workstation. In Modbus, this is accom-
plished by continually polling each controller to request updates on the states
of all the field devices attached to the controller. Every few seconds, the ex-
act time being defined by the polling interval configuration option, the master
terminal unit sends a Modbus read packet to each controller. The controller



Lemay, Sadighian & Fernandez 101

Figure 1. Modbus system architecture.

responds with a read response packet containing the values of all the requested
registers. This process is referred to as polling traffic in the rest of this chapter.

The second component residing in the operator workstation is the human-
machine interface (HMI). This component provides the operator with a visu-
alization of the state of the physical process based on the most recent values
gathered by the master terminal unit. It also provides the operator with a
graphical interface for altering the state of the system. As soon as the operator
performs the action, the master terminal unit sends a Modbus write request
to the controller that supervises the relevant field device. The controller then
alters the state of the field device and returns a write response packet. This is
referred to as command traffic in the rest of this chapter.

In a security context, polling traffic is of little interest because it is the result
of an automated process and has little impact on the well-being of the physical
process. However, command traffic is (usually) the result of deliberate hu-
man actions and has an immediate impact on the state of the physical system.
In this sense, command traffic is very relevant in a security context. Unfor-
tunately, SCADA software does not automatically log actions performed by
human operators. Therefore, if this information must be retained for investiga-
tive purposes, it is necessary to devise a method for gathering and preserving
the information.



102 CRITICAL INFRASTRUCTURE PROTECTION X

3. Journaling Use Cases
One of the most important use cases of journal examination is in the incident

response context. The presence of a journal of operator actions enables incident
investigators to correlate events in the journal with effects on the physical
system. As an example, consider an investigation of an overflow caused by the
unexpected opening of a valve. It would be possible to examine the journal
log to see if an operator sent commands around that time and question the
operator about the actions he performed around the time of the incident. This
capability is particularly useful in cases involving human error or malicious acts
by disgruntled employees.

Developing a forensics capability in an organization not only helps with
incident response, but also with incident prevention. Much like the presence of
security cameras, public knowledge of the forensics capability can actively deter
malicious activities because of the threat of being caught. The same effect is
applicable to limiting human error because of the ability to implement negative
incentives for carelessness.

A second use case of is the detection of properly-formatted malicious com-
mands. In normal control system operation, commands are sent from a limited
set of machines, typically operator workstations. Only the logs from these
machines can be correlated with network events. The flipside is that the cor-
relation would fail if the machine used to send commands was not an operator
workstation. It is unlikely that local security event logs would be collected if
an attacker has established a presence on a machine other than an operator
workstation (e.g., a controller) or has introduced a new machine in the net-
work. Thus, correlation failures are highly indicative of malicious activity and
can be used to generate alerts.

A third use case is the detection of malicious software or remote compro-
mise in an operator workstation. A situation where a Windows Management
Instrumentation (WMI) query is successfully completed (i.e. the Modbus com-
mand comes from a legitimate workstation) but the query fails to find an active
operator on the workstation would imply that the Modbus command was sent
by a remote or automated process. In the majority of cases, this would be
unusual because a human operator is expected to be involved in any system
modification and a modification made by a remote user or process may be an
indicator of malicious activity.

4. Event Correlation
Considerable research has been conducted in the area of event correlation.

However, most of the work is focused on enhancing intrusion detection systems.
For example, Valeur et al. [14] have proposed an alert correlation workflow
comprising ten steps, namely normalization, pre-processing, alert fusion, alert
verification, thread reconstruction, attack session reconstruction, focus recogni-
tion, multi-step correlation, impact analysis and prioritization, to correlate the
alerts of multiple intrusion detection systems. However, their approach, which



Lemay, Sadighian & Fernandez 103

focuses on alarm generation, is ill-suited for this research, which concentrates
on legitimate traffic.

Sadighian et al. [12] have created an ontology-based alert correlation frame-
work that, like the approach of Valeur et al. [14], could supplement this research,
but this would require significant customization because large portions of the
framework created to discover attacks would not apply. Saad et al. [11] have
proposed a hybrid alert correlation approach using semantic analysis and an
intrusion ontology to reconstruct attack scenarios, but the approach is also
difficult to adapt to the current context. Specifically, in this context, the ob-
served malicious activity is not the complex multi-step attacks for which the
approach of Saad et al. [11] is optimized. Finally, Ficco [5] has developed a
hybrid, hierarchical event correlation approach for detecting complex attacks;
unfortunately, this approach does not suit the goals of this research.

Even if the approaches described above could be applied, event correlation
techniques developed for intrusion detection suffer from a number of other draw-
backs. Yusof et al. [17] have analyzed alert correlation techniques and list many
of the drawbacks. In addition to alert flooding and false alerts, scalability and
an inability of understand contextual information are identified as limitations.
However, these limitations are not expected to impact SCADA networks, where
the context seldom changes and the scale is limited compared with traditional
information technology networks. In this sense, event correlation appears to be
appropriate for merging information from network events and operating system
events.

The classification of correlation approaches provides useful research insights.
Cuppens and Miege [4] have classified attack reconstruction approaches into two
categories: (i) implicit alarm correlation; and (ii) explicit alarm correlation.
Implicit alarm correlation is based on employing machine learning and data
mining techniques (see, e.g., [7]). Explicit alarm correlation relies on the ability
of security administrators to express logical and temporal relationships between
alerts in order to detect complex multi-step attacks (see, e.g., [3]).

In the SCADA network context, the relationships between events are dic-
tated by the heavily-constrained operational context. For example, an operator
can only interact with the system via a human-machine interface. As such, ex-
plicit alarm correlation appears to be a practical choice for the operational
technology (OT) journaling approach described in this chapter.

5. Journal Generation Approach
This section details the general approach for generating the operational tech-

nology journal. The section begins by describing the general architecture and
proceeds to present the correlation methodology.

5.1 General Architecture
In a typical SCADA network, operators are only allowed to interact with con-

trollers through specific channels. Specifically, they use operator workstations



104 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 2. General architecture.

that host the proprietary software required to interact with the controllers. The
operator workstations usually run commercial off-the-shelf operating systems.
As such, the workstations routinely generate security log entries during their
operation. The security log entries allow the identification of operators based
on their usernames.

While an operator workstation creates a log entry when a user logs on, there
is limited visibility of the user actions beyond the login entry. Typically, the
program that is used to perform operations does not keep records of the actions
performed by an operator. Thus, if an actuator is activated and five operators
are present in the control room, there is no way to find out which operator
performed the action by inspecting the logs on the operator workstations alone.

Similarly, it is not possible to identify an operator by examining network
traces. The only information derived from network traces is based on the
data contained in the network packets. Typically, this includes information
about the source and destination (IP or MAC) addresses and information in the
packet payloads. Because of how SCADA protocols operate, this information
is usually sufficient to find out exactly which action occurred on a controller
and to identify the operator workstation that sent the request; however, the
identity of the operator cannot be determined.

To combine the available information from the security log with network
monitoring traces, it is necessary to correlate the network monitoring events
(packets identifying the source IP address and action performed) with the se-
curity log events from the relevant machine (identity of the logged user). Once
this is done, it is not necessary to preserve the entire contents of a network
trace or security log, only the result of the correlation, which is referred to
as the operational technology (OT) journal. Figure 2 illustrates the general
architecture.



Lemay, Sadighian & Fernandez 105

Figure 3. Relationships between concepts.

Because the operational technology journal only takes a fraction of the space
required by security logs and network traces, it is possible to preserve the
journal for long periods of time. The availability of the information might also
meet other needs such as evidence for compliance purposes or information for
performance reviews of operators.

5.2 Correlation Methodology
In order to successfully correlate events, it is necessary to find association

relationships between the events in a security log and network trace. The first
step in the correlation process is to take the specific events in the two sources
and create abstract representations of each type of event (i.e., operating system
events and network events). The components of the abstract representations
are then used to establish associations between the operating system events and
network events. The process is illustrated in Figure 3 for Windows Management
Instrumentation (WMI) as the source of operating system events and Snort as
the source of network events.

The specific components of the abstract representation used for correlation
are IP address and time. To correlate the IP address, the source IP address of
the network event is matched against the IP address of the operator workstation
that provided the event logs. When a Modbus write event is observed in the
network, the source IP address represents the workstation on which the Modbus
write command was processed. As such, the operator who was logged on at the
time that the event was sent should be the one who triggered the event.

To match the time, it is necessary to create a centralized log server or security
information and event management (SIEM) system that would help match the
timestamp of the network event with the timestamps of security events in the
operating system event log. Another option is to leverage the near-real-time
nature of network event generation to achieve the same results. In general, the
time that an interesting network event is observed is only seconds away from



106 CRITICAL INFRASTRUCTURE PROTECTION X

the time that the event was generated. Thus, if a live query of the operating
system events could be performed as soon as a network event is observed, the
responses from the operating system would be time-correlated with the network
event.

6. Performance Evaluation
This section discusses the performance of the journal generation approach.

It begins by describing the performance testing implementation. Next, the
experiment design and performance evaluation results are presented. Finally,
the results of a sensitivity analysis of the major parameters are provided.

6.1 Implementation
Two prototypes, one based on Snort and the other based on the tshark

tool [16], were used to test the validity and performance of the proposed ap-
proach. The proof-of-concept implementation monitors Modbus network traffic
and logs the usernames of the operators who send commands (i.e., interact with
controllers using write commands).

The first prototype implements network monitoring as a virtual machine run-
ning the Security Onion network security monitoring image [2] in the stand-
alone mode. The popular Snort intrusion detection system is used to parse cap-
tured network packets using Modbus preprocessors. The preprocessors enable
the complete decoding of Modbus packets and the generation of alerts when
specific Modbus function codes are used.

The following alerts are used in the proof-of-concept implementation:

alert tcp any any -> HOME NET 502
(msg:"Modbus write multiple coils";
modbus func:write multiple coils; sid:9000001;rev:1;)

alert tcp any any -> HOME NET 502
(msg:"Modbus write multiple registers";
modbus func:write multiple registers; sid:9000002;rev:1;)

alert tcp any any -> HOME NET 502
(msg:"Modbus write single coil";
modbus func:write single coil; sid:9000003;rev:1;)

alert tcp any any -> HOME NET 502
(msg:"Modbus write single register";
modbus func:write single register; sid:9000004;rev:1;)

Modbus uses the standard port 502. In instances where Modbus controllers
do not use the standard port, 502 is replaced by the non-standard port number.

In the second prototype, the network monitoring component is implemented
using tshark [16] running in a Windows virtual machine. As in the case of



Lemay, Sadighian & Fernandez 107

Snort, tshark extracts all the packets with Modbus function codes correspond-
ing to write commands. For each packet, the timeframe, source and destina-
tion IP addresses, exact register accessed (Modbus reference number) and value
written to the register (Modbus data) are saved in a CSV file. This enables
the journaling of more information than the prototype based on Snort, but it
takes up more space.

The correlation engine monitors the alerts raised by both prototypes. This
is implemented by a Python script. When the correlation engine detects the
presence of an alert, the correlation engine extracts the IP address from the
alert and immediately sends WMI queries to the appropriate IP address to
obtain the name of the user who is currently logged on.

In the case of the Snort-based prototype, WMI queries are sent via a Linux
WMI client invoked by the Python correlation engine script. The first query
gathers the session IDs of all the active sessions on the machine that are of
Type 2 (i.e., interactive):

"SELECT LogonId FROM Win32 LogonSession WHERE LogonType = 2"

This represents the sessions in which the user is interacting with the machine
via a graphical user interface (i.e., operator sessions).

The second query obtains the names of the users who are currently logged
on along with their session IDs:

"SELECT * FROM Win32 LoggedOnUser"

The usernames are then matched to the interactive sessions to find the user-
names of the operators.

Similar queries are used by the tshark-based prototype. However, the
Python WMI library [6] is used instead of a Linux WMI client.

All the operator workstations are configured to accept WMI queries. When
a query arrives, the operator workstation processes the query and returns the
name of the user who is currently logged on. If the query cannot be processed, it
is usually an indicator of malicious activity. It could mean that the command
was sent by a program or a human using a remote service instead of by a
legitimate operator. Alternatively, it could mean that the command was not
sent from an authorized operator workstation.

After the response from the WMI query is received, the Python correla-
tion engine generates an operational technology journal entry comprising the
timestamp from the alert, username from the WMI response, Modbus function
code from the alert, destination controller from the alert and, in the case of the
tshark-based prototype, register location(s) and data written from the alert.
The journal entry is then recorded using the Python Syslog facility.

The log entry has the following format:

WARNING:root:[’02/12-22:21:44.927339’,
’[1:9000003:1] Modbus write single coil’, ’192.168.1.100’,
’192.168.1.101’, ’Alice’]



108 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 4. Proof-of-concept implementation.

In the case of the tshark-based prototype, the log entry has the following
format:

WARNING:root:[’Feb 26, 2015 14:56:03.503279000
Eastern Standard Time’, ’WriteSingleCoil’, ’192.168.1.100’,
’192.168.1.103’, ’3’, ’00:00’, ’Bob’]

The Warning indicator is related to the Syslog journaling level of the entry.
The indicator is followed by root, indicating the user who was responsible for
the log entry. Following this is the operational technology journal entry in
brackets, which contains the timestamp, rule number and version along with
the rule description, source IP address, destination IP address and, finally, the
username of the operator. The tshark-based version adds the register number
and the data written between the destination IP address entry and the oper-
ator entry. While the exact formatting of a production version would balance
human readability and data compression, the suggested format is appropriate
for a proof-of-concept implementation. Figure 4 presents the proof-of-concept
implementation.

6.2 Performance Evaluation
The performance evaluation was performed on a test Modbus network imple-

mented in an industrial control system sandbox [9]. The Modbus network was
chosen due to the availability of a Modbus preprocessor in Snort and the avail-
ability of Modbus clients to send commands. The test network incorporated
three Modbus controllers running Modbus servers developed using Modbus-



Lemay, Sadighian & Fernandez 109

tk [8]. Each controller had four operable coils representing on/off switches.
Each controller also had four binary input points replicating the states of the
on/off switches and four holding registers containing values derived from the
states of the switches.

The number of measurement points has a direct impact on the amount of
polling traffic (irrelevant traffic from a security standpoint) in the network –
the greater the number of points, the greater the amount of irrelevant traffic.
Also, the greater the proportion of irrelevant traffic, the higher the compression
factor. As such, it is believed that the limited amount of points do not deter
from the generality of the performance evaluation because the solution performs
better as the size of the network increases.

The network also contained two operator workstations with several users
logged on. Each workstation ran a Modbus master terminal unit that populated
a human-machine interface constructed using SCADA-BR [13]. The polling
interval was ten seconds for each remote terminal unit. This value is larger than
the two to five seconds used in the industry because the shorter the interval,
the greater the amount of polling traffic in the network. Because polling traffic
is irrelevant from a security standpoint, smaller polling intervals produce better
compression results.

Additionally, on each workstation, a Python script was executed that con-
tinually sent write commands to a randomly-selected coil and then waited for
a random amount of time (between 10 and 120 seconds). This traffic is inter-
esting from the security perspective, so a shorter wait period produces a lower
compression factor. However, it is important to note that operators perform
actions by clicking on elements on a graphical interface and are supposed to
operate these points only when changes are needed to the physical process. As
such, these values represent a fairly high volume of activity in comparison with
a real operator.

Finally, a Security Onion network monitoring virtual machine was launched
to capture network traffic. The Security Onion machine also ran the Snort-
based operational technology journal prototype. The Snort-based prototype
produced log entries that were slightly smaller than the tshark-based proto-
type. This had a marginally positive effect on the compression ratio. However,
it was at the expense of the quantity of information preserved. Figure 5 presents
the layout of the test network.

With all the machines in place, the experiment was executed for one hour
and the following metrics were recorded:

Logs of the coils operated from each workstation (ground truth).

Size of the full packet capture.

List of the operational technology journal entries.

Size of the operational technology journal.

The list of operational technology journal entries was then compared with
the logs of the coils operated from each workstation. This helped validate that



110 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 5. Test network diagram.

the approach performs according to design. Next, the size of the operational
technology journal was compared with the size of the full packet capture to
obtain a compression ratio. Higher compression ratios enable longer periods of
storage for the operational technology journal and provide greater utility for
forensics and incident response activities. As such, this was the main perfor-
mance metric used in the experimental evaluation.

6.3 Experimental Results
Because the number of operator actions was generated at random, ten in-

stances of the experiment were conducted. The raw metrics were recorded for
each run. The average and standard deviation values over the ten runs were
then computed. Table 1 presents the results.

The results show that the number of operations recorded is always equal
to the number of operations performed. This implies that the prototype suc-
cessfully records all the legitimate operations. Furthermore, the journaling
functionality is implemented properly.

Over one hour of operation, an average of 12.3KB of operational technology
journal data was recorded. This yields a compression ratio of around 1:572,
which is comparable with the rule-of-thumb ratio of 1:1,000 or 1:2,000 typi-
cally used for Netflow flow summary information. Since this ratio is achieved
given the high level of operator activity, low polling frequency, small number



Lemay, Sadighian & Fernandez 111

Table 1. Experimental results.

Run Operations Operations OT Journal pcap File Compression
Performed Recorded Size (KB) Size (MB) Ratio

1 95 95 12 7.0 1:582
2 98 98 12 7.0 1:583
3 102 102 13 7.2 1:553
4 94 94 12 6.9 1:572
5 92 92 12 6.8 1:570
6 99 99 12 7.1 1:588
7 105 105 13 7.3 1:562
8 99 99 12 7.0 1:585
9 95 95 12 6.8 1:570
10 105 105 13 7.2 1:555

Avg 98.4 98.4 12.3 7.0 1:572
SD 4.5 4.5 0.5 0.2 13

of points and controllers and lack of optimization of the journal format, the
approach is viable in terms of long-term preservation. The choices were made
to create a challenging benchmark but, even if more realistic parameters had
been used, a compression ratio exceeding that achieved by Netflow would have
been obtained.

With regard to preservation, even in the face of high operator activity with
an average of more than 98 state alterations per hour, the volumes of the oper-
ational technology journals suggest that long-term retention would be feasible.
Upon extrapolating the values obtained over one hour, a full day’s worth of
operational technology journal entries would be around 295KB and an entire
year’s worth of entries would be less than 108MB. In contrast, given the vol-
ume of polling traffic, preserving the full packet captures would require around
62GB of storage. Since the polling traffic was obtained from a small experi-
mental network, a production network would require some orders of magnitude
greater than 62GB of storage, almost certainly requiring the implementation
of the proposed approach.

It is important to note that the size of the operational technology journal
scales with the number of operations while packet capture scales with the num-
bers of controllers and points. Thus, the retention costs of the operational
technology journal would be much less than the retention costs of full packet
captures when scaled to the size of an enterprise.

6.4 Sensitivity Analysis
Sensitivity analysis experiments were conducted to ascertain the impact of

the environmental parameters selected in the experiments. A single experimen-
tal run was conducted for each variation of the parameters.



112 CRITICAL INFRASTRUCTURE PROTECTION X

Figure 6. Impact of polling interval on compression ratio.

The first sensitivity experiment used the tshark-based prototype instead
of the Snort-based prototype. When comparing the results against an exper-
imental run with a similar number of operations, an increase of around 17%
of the size of the operational technology journal was observed. This represents
a very modest increase and suggests that the cost of preserving the additional
information obtained from tshark is negligible compared with the standard
storage size. In the case of the example discussed above, an entire year’s worth
of information would be 125MB instead of 108MB in size. It would difficult
to imagine that an organization willing to store 108MB of information would
not store 125MB, just 17MB more information.

The second sensitivity experiment evaluated the impact of the polling inter-
val on the compression ratio. Starting from the basic experimental layout, the
polling interval between the master terminal unit and remote terminal unit was
modified. A single experiment was run for intervals of 2, 4, 7, 15 and 30 seconds
and the compression ratios were compared with the average compression ratio
obtained in the basic experiment.

Figure 6 presents the results. As expected, the compression ratio decreases
with a higher polling interval as the ratio of irrelevant traffic to relevant traf-
fic decreases. Regression shows that the decrease follows a power-law-based
function. This means that, for polling intervals commonly used in industry
(i.e., two seconds), the compression ratio obtained using the proposed research



Lemay, Sadighian & Fernandez 113

Figure 7. Impact of number of remote terminal units on compression ratio.

is comparable to the compression ratio expected for traffic record summaries
(i.e., around 2,000 to 1).

The third sensitivity experiment evaluated the impact of the number of
remote terminal units on the compression ratio. Starting from the basic ex-
perimental configuration, the number of remote terminal units used in the
experiment was modified. A single experiment was run for 4, 6, 8 and 12 re-
mote terminal units and the compression ratios were compared with the average
compression ratio obtained in the basic experiment.

Figure 7 presents the results. As expected, adding more remote terminal
units adds more irrelevant traffic and increases the compression ratio. Regres-
sion shows that the compression ratio increases linearly with the number of
remote terminal units. A compression ratio comparable to traffic record sum-
maries is expected for around fourteen remote terminal units.

Similar experiments could have been run for other design choices such as the
rate of operation and the number of points per remote terminal unit. How-
ever, the current results show that the compression ratio follows the expected
trends and that the design choices are sufficiently conservative to represent a
lower bound on the performance of the proposed system. This performance,
given more realistic parameters, may well surpass the compression ratios of
traditional mechanisms such as flow summary records.



114 CRITICAL INFRASTRUCTURE PROTECTION X

7. Conclusions
This chapter has presented an event correlation approach for creating a

journal of operational events. The operational technology journal combines
information obtained from network events such as Snort alerts and operating
system events gathered via WMI queries to create entries of all write operations
with the usernames of the operators who performed the operations. The journal
is useful for incident handling, attack deterrence and even attack identification.

The main benefit of the operational technology journal is that it requires
much less space than the combination of full packet captures and operating
system logs. Under conservative conditions, compression ratios exceeding 570
to 1 were achieved. Indeed, the compression ratio can even surpass the 2,000 to
1 ratio usually attributed to flow summary records in realistic conditions. This
enables the preservation of the operational technology journal for long periods
of time for network forensic purposes.

While the correlation approach is very general, the implementation described
in this chapter is limited to SCADA protocols for which parsers are available.
Future research will attempt to extend the implementation to cover major
proprietary protocols. In addition, research will focus on a security information
and event management (SIEM) system. Finally, extending the approach to
other types of events of security interest, such as uploading new configurations
from engineering workstations, will also be investigated.

Acknowledgements
This research was partially funded by the Canadian Center for Security

Science (CSS). In addition, the authors wish to thank the National Energy
Infrastructure Test Center (NEITC) for their testing and support.

References

[1] BBC News, Hack attack causes “massive damage” at steel works, Decem-
ber 22, 2014.

[2] D. Burks, Security Onion Project (github.com/Security-Onion-Solu
tions/security-onion), 2016.

[3] B. Cheng and R. Tseng, A context adaptive intrusion detection system for
MANET, Computer Communications, vol. 34(3), pp. 310–318, 2011.

[4] F. Cuppens and A. Miege, Alert correlation in a cooperative intrusion
detection framework, Proceedings of the IEEE Symposium on Security and
Privacy, pp. 202–215, 2002.

[5] M. Ficco, Security event correlation approach for cloud computing, In-
ternational Journal of High Performance Computing and Networking, vol.
7(3), pp. 173–185, 2013.

[6] T. Golden, WMI 1.4.9 (pypi.Python.org/pypi/WMI), 2003.



Lemay, Sadighian & Fernandez 115

[7] M. Hoque, M. Mukit and M. Bikas, An implementation of an intrusion de-
tection system using a genetic algorithm, International Journal of Network
Security and its Applications, vol. 4(2), pp. 109–120, 2012.

[8] L. Jean, modbus tk 0.4.3 (pypi.python.org/pypi/modbus_tk/0.4.3),
2014.

[9] A. Lemay, J. Fernandez and S. Knight, An isolated virtual cluster for
SCADA network security research, Proceedings of the First International
Symposium for ICS and SCADA Cyber Security Research, pp. 88–96, 2013.

[10] NETRESEC, Full Disclosure of Havex Trojans, Orsundsbro, Swe-
den (www.netresec.com/?page=Blog&month=2014-10&post=Full-Disc
losure-of-Havex-Trojans), 2014.

[11] S. Saad and I. Traore, Extracting attack scenarios using intrusion seman-
tics, Proceedings of the Fifth International Symposium on the Foundations
and Practice of Security, pp. 278–292, 2013.

[12] A. Sadighian, J. Fernandez, A. Lemay and S. Zargar, ONTIDS: A highly
flexible context-aware and ontology-based alert correlation framework,
Proceedings of the Sixth International Symposium on the Foundations and
Practice of Security, pp. 161–177, 2014.

[13] SourceForge, ScadaBR (sourceforge.net/projects/scadabr), 2016.
[14] F. Valeur, G. Vigna, C. Kruegel and R. Kemmerer, Comprehensive ap-

proach to intrusion detection alert correlation, IEEE Transactions De-
pendable and Secure Computing, vol. 1(3), pp. 146–169, 2004.

[15] T. Williams, The Purdue Enterprise Reference Architecture, Computers
in Industry, vol. 24(2-3), pp. 141–158, 1994.

[16] Wireshark Foundation, tshark (www.wireshark.org/docs/man-pages/
tshark.html), 2016.

[17] R. Yusof, S. Selamat and S. Sahib, Intrusion alert correlation technique
analysis for heterogeneous log, International Journal of Computer Science
and Network Security, vol. 8(9), pp. 132–138, 2008.


	6LIGHTWEIGHT JOURNALING FOR SCADA SYSTEMS VIA EVENT CORRELATION
	1. Introduction
	2. Background
	3. Journaling Use Cases
	4. Event Correlation
	5. Journal Generation Approach
	5.1 General Architecture
	5.2 Correlation Methodology

	6. Performance Evaluation
	6.1 Implementation
	6.2 Performance Evaluation
	6.3 Experimental Results
	6.4 Sensitivity Analysis

	7. Conclusions
	Acknowledgements
	References




