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Abstract. Real data often consists of multiple views (or representa-
tions). By exploiting complementary and consensus grouping information
of multiple views, multi-view clustering becomes a successful practice for
boosting clustering accuracy in the past decades. Recently, researchers
have begun paying attention to the problem of incomplete view. Gener-
ally, they assume at least there is one complete view or only focus on two
view problems. However, above assumption is often broken in real tasks.
In this work, we propose an IVC algorithm for clustering with more than
two incomplete views. Compared with existing works, our proposed algo-
rithm (1) does not require any view to be complete, (2) does not limit
the number of incomplete views, and (3) can handle similarity data as
well as feature data. The proposed algorithm is based on the spectral
graph theory and the kernel alignment principle. By aligning projec-
tions of individual views with the projection integration of all views,
IVC exchanges the complementary grouping information of incomplete
views. Consequently, projections of individual views are made complete
and thereby resulting the consensus with accurate grouping information.
Experiments on synthetic and real datasets demonstrate the effectiveness
of IVC.

Keywords: Multi-view clustering · Incomplete view clustering ·
Spectral clustering

1 Introduction

Many datasets in real world are naturally comprised of heterogeneous views (or
representations). Clustering with such type of data is commonly referred to as
multi-view Clustering. With the assumption of complementary data representa-
tion and consensus decision of clusterings, multi-view clustering has the potential
to dramatically increase the learning accuracy over single view clustering [1]. The
main problem in multi-view clustering is how to integrate grouping information
of individual views. Existing works can be roughly classified into three categories.
(1) Multi-kernel learning based approach. The most representative work of this
category is Multi-kernel Kmeans [2]. It first uses kernel representation for each
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view, and then it incorporates different views by seeking optimal combination
of multiple kernels of different views. (2) Subspace learning based approach. It
obtains a latent consensus subspace shared by multiple views and cluster the
instances on the latent subspace. There are many research works in this cat-
egory, including CCA-based methods [3], spectral graph based methods [4–6],
matrix factorization based methods [7,8]. (3) Ensemble learning based approach.
[9] takes a decision in each individual view separately and then combines all deci-
sions of distinct views to establish a consensus decision by determining cluster
agreements/disagreements.

Traditional research assumes data are complete in all views. However, in
many real applications, parts of instances are not available in some views. For
example, in a news story clustering task, articles are collected from different
on-line news sources. Only a part of news are reported in all views. No single
source includes all news. Another example is image clustering. Images are based
on multiple visual and textual features. Some images have only a fraction of
visual or textual feature sets.

Recently, a few attempts have been made for multi-view clustering with
incomplete views. The first work to deal with incomplete view clustering was pro-
posed in [10]. It uses one view’s kernel representation as the similarity matrix and
complete the incomplete view’s kernel using Laplacian regularization. However,
this approach requires that there exists at least one complete view containing
all the instances. Shao et al. [11] relax the above constraint. They collectively
complete the kernel matrices of incomplete datasets by optimizing the align-
ment of shared instances of the datasets. Furthermore, a clustering algorithm is
proposed based on the kernel canonical correlation analysis. However, this app-
roach focus on two view problem. It can not exploit relation among more than
two views. Li et al. proposed a Partial view clustering algorithm (PVC) [12].
Based on non-negative matrix factorization (NMF), PVC works by establishing
a latent subspace where the instances corresponding to the same example in
different views are close to each other. PVC concentrates on two views problem.
Extending PVC to more views suffers from computational problem. In most
recently, Shao et al. developed an incomplete view clustering algorithm (MIC)
[13]. MIC handles the situation of more than two incomplete views. With joint
weighted non-negative matrix factorization, it learns a L2,1 regularized latent
subspace for multiple views. With mean value imputation initialization, MIC
gives lower weights to the incomplete instances than the complete instances.
During optimization, MIC pushes multiple views towards a consensus matrix
iteratively. But, there are some limitations about MIC. It converges slowly and
contains too many parameters, which makes it difficult to operate. Moreover,
both PVC and MIC are NMF based method. Both of them inherit the limita-
tions of NMF: (1) It cannot well deal with data with negative feature values.
while in many real applications, the non-negative constraints can not be satisfied.
(2) It is essentially linear, and thus cannot disclose non-linear structures hidden
in data, which limits its learning ability. (3) It only deals with feature values,
while in some applications we know the similarities (relationships) of instances
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while the detailed feature values are unavailable. Yin et al. [14] proposed a sub-
space learning algorithm. It utilizes a regression-like objective to learn a latent
consensus representation. Besides, it explores the inter-view and intra-view rela-
tionship of the data examples by a graph regularization. However, it converges
too slowly. It achieves optimal results with about one hundred iterations. This
make it difficult to extend to more than two views.

In this paper, we focus on the problem of incomplete view clustering with
more than two views. We propose a novel incomplete multi-view clustering (IVC)
algorithm. Aiming at completing incomplete views, IVC first integrate individual
views by collective spectral decomposition. Then, IVC aligns each individual with
the integration respectively. In this way, complementary grouping information is
shared among views and missing values of incomplete views are estimated. With
estimated individual views, IVC constructs the latent consensus space. At last,
clustering solution is obtained by applying the standard spectral clustering on
the consensus space. As compared with previous works, the proposed algorithm
has several advantages: (1) It does not require any view to be complete. (2)
It does not limit the number of incomplete views. (3) It can handle similarity
data (or kernel data) as well as feature data. (4) Since it has few parameters to
be set, it is easy-implemented. (5) Due to the non-iterative optimization, it is
efficient than most iterative algorithms such as MIC. Moreover, it shows better
performance. We demonstrate it in the experiment.

The rest of this paper is organized as follows: In Sect. 2, we give a brief review
of the spectral clustering and the kernel alignment principle which is our basis.
Section 3 presents details of the proposed algorithm. In Sect. 4, we validate the
proposed algorithm. Section 5 concludes the paper.

2 Preliminary

In this section, we give a brief review of the spectral clustering and the kernel
alignment principle, which provide the necessary background and pave the way
to the proposed algorithm.

2.1 Spectral Clustering

Spectral clustering is a theoretically sound and empirically successful clustering
algorithm. It treats clustering as a graph partitioning problem. By making use
of the spectrum graph theory, it project original data in a low-dimensional space
that contains more discriminative grouping information. Algorithm 1 briefly
describe the spectral clustering algorithm [15] which is the basis of our work.

The equivalent optimization formular of Algorithm 1 is Eq. 1.

max
U∈�N×M

Trace
(
UTLU

)
, s.t.UTU = I (1)
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Algorithm 1. Normalized Spectral Clustering
Require:

Similarity matrix: S ∈ �N×N , Number of clusters: K;
1: Compute the symmetrical normalized lapacian matrix L = D(−1/2)SD(−1/2).
2: Compute the first K largest eigenvectors u1, u2, ...uK of L.
3: Let U ∈ �N×K be the matrix containing the first k eigenvectors u1, u2, ...uK .
4: Normalize the rows of matrix U by scaling the norm to be 1.
5: For i = 1, 2, ..., n, let yi ∈ �K be the vector corresponding to the i-th row of U.
6: Cluster the points {yi}i=1,2,...,N with K-means algorithm into cluster

C1, C2, ...CK .
7: return {Ci}, i = 1, 2, ...K;

2.2 Kernel Alignment

Kernel alignment is a measurement of similarity (or dissimilarity) between dif-
ferent kernels. Let S(1) and S(2) be two positive definite kernel matrices such
that ‖S(1)‖F �= 0 and ‖S(2)‖F �= 0. Then, the dissimilarity between S(1) and
S(2) is defined by Eq. (2) [16], where 〈S(1),S(2)〉F =

∑N
i=1

∑N
j=1 S

(1)
i,j S

(2)
i,j .

ρ(S(1),S(2)) =
〈S(1),S(2)〉F

‖S(1)‖F ‖S(2)‖F . (2)

3 Proposed Methods

In this section, we present the detail of the incomplete view clustering (IVC)
algorithm. We first describe the IVC framework and present its objectives, and
then describe the optimization procedures.

3.1 Model Description

Given V incomplete views and the similarity matrices are S(i), i = 1, 2, ..., V . The
cluster number is K. Incomplete views contain different numbers of observed val-
ues. In order to make these kernel matrices co-operable (or with the same size N),
we initialize incomplete kernels by filling missing entries with the corresponding
average of the column (i.e. early estimation).

First, we exploit the discriminative grouping information of each individual
view by spectral decomposition on its similarity matrix S(i), i = 1, 2, ..., V .

max
U(i)∈�N×K

Trace
(
U(i)TL(i)U(i)

)
, s.t.U(i)TU(i) = I (3)

Note that U(i) is a recasted matrix of the original feature matrix. Each row
of U(i) is a new representation of an instance with lower dimension and more
discriminative grouping information.
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Next, in order to make different views consistent, we push them towards
a latent consensus matrix U∗. Because U(i) is a projection of original feature
matrix, S(i) = U(i)U(i)T can be seen as a new kernel representation. Similarly,
the latent consensus kernel can be decomposed as S∗ = U∗U∗T , where U∗ is
the latent projected matrix. Note that U(i)s are derieved by kernels with early
estimation. We call U∗ as early consensus projection.

Borrowing the idea from kernel alignment, we measure the dissimilarity
between early consensus and each view by Eq. (4).

ρ(U∗,U(i)) = ‖ U∗U∗T

‖U∗U∗T ‖2F
− U(i)U(i)T

‖U(i)U(i)T ‖2F
‖2F (4)

Minimizing the sum of dissimilarities between early consensus and all individuals,
we get objective function (5), where λi is the tradeoff between different views
and expresses the importance of view i in clustering.

max
U∗∈�N×K

∑

i

λiρ(U∗,U(i)), (5)

Since that ‖U(i)U(i)T ‖2F = K, ‖U∗U∗T ‖2F = K, by ignoring constant factors
and trace property (trace(AAT ) = ‖A‖2F ), we rewrite the objective function (5)
as follows.

max
U∗∈�N×K

∑

i

λiTrace(U(i)U(i)TU∗U∗T ) (6)

Now, we retransmit the early consensus back to individuals. Specifically, we

reorder each individual view as U(i) =

[
U(i)

a

U(i)
e

]

, where U(i)
a is the part derived

by available (observed) values, while U(i)
e is the part derived by estimated (or

missing) values. Correspondingly, we reorder U∗ as
[
U∗

a

U∗
e

]
. Then, we update

each U(i)
e by aligning U(i) with U(∗). According to Eq. (4), we get the objective

function (7).

max
U

(i)
e

Trace(
[
U∗

a

U∗
e

] [
U∗

a

U∗
e

]T
[
U(i)

a

U(i)
e

] [
U(i)

a

U(i)
e

]T

) (7)

In this way, complementary grouping information is exchanged among incom-
plete individuals. With updated U(i)s, we construct the final consensus U∗

f by
Eq. (6). U∗

f contains more accurate grouping information than U∗. At last, we
apply standard K-means clustering on U∗

f to get the final decision.
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3.2 Model Training

In this subsection, we demonstrate how does IVC optimizes Eqs. (6) and (7).
By the cyclic property of the trace, we transform optimization problem (6)

into (8), which is equivalent to a standard spectral clustering with graph lapla-
cian

∑
v λvU(v).U(v)T . The solution of U(∗) is just the optimal consensus eigen

vectors of all individual views.

max
U∗∈�n×K

Trace(U∗T (
∑

v

λiU(i)U(i)T )U∗)

s.t.U∗TU∗ = I
(8)

Transforming and expanding Eq. (7) as Eq. (9), then, taking its derivative
w.r.t. U(i)

e and setting it to zero, we get the solution as in Eq. (10). To the ends,
U(i)

e is calculated.

max
U

(i)
e

Trace(
[
U∗

aU
∗
a
T U∗

aU
∗
e
T

U∗
eU

∗
a
T U∗

eU
∗
e
T

] [
U(i)

a U(i)
a

T
U(i)

a U(i)
e

T

U(i)
e U(i)

a

T
U(i)

e U(i)
e

T

]

) (9)

U(i)
e = −(U∗

aU
∗
e
T + U∗

eU
∗
a
T + 2U∗

eU
∗
e
T )

−1

× (U∗
eU

∗
a
TU(i)

a + U∗
aU

∗
a
TU(i)

a + U∗
eU

∗
e
TU(i)

a + U∗
eU

∗
a
TU(i)

a )
(10)

The specific procedure of IVC is summarized in Algorithm 2. IVC first initial-
izes incomplete kernels with early estimation. Then, it projects each individual
view into a more discriminative space by spectral decomposition. Next, IVC
establishes the early consensus projection, and thereby updating individual pro-
jections. With these updated individual projections, IVC constructs the final
consensus projection.

Algorithm 2. The Proposed algorithm
Require:

Similarity matrices: S(i), i = 1, 2, ...V ; Number of clusters: K;
1: Initialize all individual K(i)s with early estimation;
2: Do spectral decomposition for all S(i)s by Equation (3);
3: Calculate consensus eigenvectors U(∗) by Equation (8);

4: Update each individual U
(i)
e by Equation (10);

5: Construct U∗
f with updated U(i)s by Equation (8);

6: Do K-means clustering with final consensus projection U∗
f ;

7: return {Cj}, j = 1, 2, ...K;
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4 Experiment

4.1 Comparison Methods

We compare the proposed IVC with several state-of-art methods. The details of
comparison methods are as follows:

IVC: IVC is the proposed approach in this work. We set equal default value for
λi to be 1. Without prior knowledge, we treat all views equally.

MIC: Multiple incomplete view clustering [13] is one of the most recent work. It
applies weighted joint non-negative matrix with L2,1 regularization. The default
co-regularization parameter set αi and the robust parameter set βi are all set to
be 0.01 for all the views as in the original paper.

MVSpec: MVSpec is a weighted multi-kernel learning and specrtal graph theory
based algorithm for multi-view clustering. It represents views through kernel
matrices and optimize the intra-cluster variance function. We set the parameter
p and initial weights as its original paper [2].

KADD: Integrating multiple kernels by adding them, and then running stan-
dard spectral clustering on the corresponding Laplacian. As suggested in earlier
findings [17], even this seemingly simple approach often result in near optimal
clustering as compared to more sophisticated approaches.

Concat: Feature concatenation is the most simple and intuitive way to integrate
all the views. It concatenates features of all views and runs K-means clustering
on the concatenated feature set.

We also report the best performance of complete single view. Note that the
compared methods such as KADD, Concat, and MVSpec cannot directly deal
with incomplete views. Therefore, we pre-process the incomplete views by mean
imputation for these methods. We evaluate above methods by the normalized
mutual information (NMI). Besides, we use k-means to get the clustering solu-
tion at the end, we run k-means 10 times and report the average performance.

4.2 Datasets

In this paper, we use one synthetic dataset and three real-world datasets to
evaluate the comparison methods. The details of four datasets are as follows.
Table 1 presents the statistics of the datasets.

Synthetic Dataset: This dataset contains three views. For each view, we sam-
ple points from a two component Gaussian mixture model as instances. There
are two clusters (i.e. cluster A and cluster B). Both the features and views are
correlated. Specifically, the cluster means and the covariances for the three views
are listed below.
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μ
(1)
A = (2, 2)

μ
(1)
B = (4, 4)

, Σ
(1)
A =

[
1, 0.5
0.5, 2

]
, Σ

(1)
B =

[
0.3, 0.2
0.2, 0.8

]

μ
(2)
A = (1, 1)

μ
(2)
B = (3, 3)

, Σ
(2)
A =

[
1.5, 0.2
0.2, 1

]
, Σ

(2)
B =

[
0.3, 0.2
0.2, 0.8

]

μ
(3)
A = (1, 2)

μ
(3)
B = (2, 1)

, Σ
(3)
A =

[
1,−0.3
−0.3, 1

]
, Σ

(3)
B =

[
0.5, 0.2
0.2, 0.5

]

(11)

Oxford Flowers Dataset (Flowers17)1: This dataset is composed of 17 flower
categories, with 80 images for each category. Each image is described by different
visual features using color, shape, and texture. χ2 distance matrices for different
flower features (color, shape, texture) are used as three different views.

Reuters Multilingual Dataset (Reuters)2: This dataset contains six sam-
ples of 1200 documents, balanced over the 6 labels (E21, CCAT, M11, GCAT,
C15, ECAT). Each sample is made of 5 views (EN, FR, GR, IT, SP) on the same
documents. The documents were initially in English, and the FR, GR, IT, and
SP views corresponds to the words of their traductions respectively in French,
German, Italian and Spanish.

Multi-feature digit Dataset (Mfeat) [18]: This dataset consists of features of
handwritten numerals (‘0’–‘9’) extracted from a collection of Dutch utility maps.
200 patterns per class (for a total of 2,000 patterns) have been digitized in binary
images. These digits are represented in terms of the following five feature sets
(files): mfeat-fou, mfeat-fac, mfeat-kar, mfeat-pix, and mfeat-zer.

Table 1. Details of the datasets

Dataset # Instance # Views # Clusters

Synth 1000 3 2

Flowers 1360 3 17

Reuters 1200 5 6

Mfeat 2000 5 10

All original datasets are complete. We simulate incomplete views for them. In
specific, we set incomplete ratio from 0% to 90% with 10% as interval. Incom-
plete instances are distributed evenly in all views. Note that for each instance,
it is available in at least one view.

1 http://www.robots.ox.ac.uk/∼vgg/data/.
2 http://lig-membres.imag.fr/grimal/data.html.

http://www.robots.ox.ac.uk/~vgg/data/
http://lig-membres.imag.fr/grimal/data.html


Incomplete Multi-view Clustering 253

4.3 Results

The NMIs of four datasets are plotted in Fig. 1. For synthetic data, IVC shows the
best NMI. IVC, MIC and Concate preform stable even when the incomplete ratio
is close to 90 %. While the NMIs of other methods drops sharply as incomplete
ratio rises.

For Flowers17, all methods present the downward trends as incomplete ratio
increasing. IVC shows relatively better NMI than others. MvSpec is the second
best method. Note that MIC shows worst performance. The possible reason is
that NMF-based method is not suitable for similarity data. (we apply MIC on
kernel data of Flower17 as in original paper [13]).

As Flowers17, similar results for Reuters. IVC demonstrates slight advantage
over MIC and more obvious advantage over others.

For Mfeat, in case of low incomplete ratio (i.e. when incomplete ratio is
below 20 %), all methods except Concate show close NMIs. As the incomplete
ratio arises, IVC shows more and more obvious superiority over others.

It can be summarized that although views are incomplete, their integration
can still be more useful than single complete view. Among above multi-view
methods, IVC achieves most accurate clustering for incomplete views in most
cases.

Incomplete Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

I

0.7

0.8

0.9

NMIs for Synth data

IVC
MIC
KADD
Concat
MVSpec
BestSingle

Incomplete Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

I

0.3

NMIs for Reuters

IVC
MIC
KADD
Concat
MVSpec
BestSingle

Incomplete Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

I

0.3

0.4

0.5

0.6
NMIs for Flowers17

IVC
MIC
KADD
Concat
MVSpec
BestSingle

Incomplete Ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
M

I

0.4

0.5

0.6

0.7

0.8
NMIs for Mfeat

IVC
MIC
KADD
Concat
MVSpec
BestSingle

Fig. 1. NMIs

5 Conclusion

In this paper, we propose the IVC algorithm for multiple incomplete view cluster-
ing. IVC initializes incomplete views with early estimation. Based on the spectral
graph theory, IVC projects original data into a new space with more discrim-
inative grouping information. Then, individual projections are integrated. By
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aligning individual projections with the projection integration, estimated part
of individual projections are updated to be more accurate. With those updated
individual projections, final consensus is established and thereby standard K-
Means is applied on. Compared with existing works, our proposed algorithm
(1) does not require any view to be complete, (2) does not limit the number
of incomplete views, and (3) can handle similarity data as well as feature data.
Experimental results validate the effectiveness of the IVC algorithm.
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