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Abstract. In recent years, more and more researchers in the control community
have focused their attention on distributed coordination due to its broad appli-
cations in many fields, the consensus problem is well recognized as a fundamental
problem in the cooperation control of multi-agent systems. In this paper, we
discuss the noise problem of the discrete linear consensus protocol (DLCP) and
point out that noise of DLCP is uncontrollable. A protocol using noise suppression
function (NS-DLCP) to control the noise is put forward, the theorem about the
reasonable range of the noise suppression function is vigorously proved, and
sufficient conditions for noise controllable of NS-DLCP are further presented.

Keywords: Multi-agent system � Graph theory � Consensus protocol � Noisy
control

1 Introduction

In recent years, more and more researchers in the control community have focused their
attention on distributed coordination of multi-agent systems due to its broad applica-
tions in many fields such as sensor networks, e.g. UAV (Unmanned Air Vehicles),
MRS (mobile robots systems), robotic teams.

In the cooperative control, a key problem is to design distributed protocols such that
group of agents can achieve consensus through local communications. So far,
numerous interesting results for consensus problem have been obtained for both
discrete-time and continuous-time multi-agent system in the past decade. Reynolds
systematically studied and simulated the behavior of biological group such as birds and
fishes, and proposed Boidmodel [1] which still has a broad impact in the field of Swarm
Intelligence. Vicsek model [2] is proposed based on statistical mechanics theory in
which the movement rate of Agent on two-dimensional plane remains unchanged, and
the N agents on the 2-D plane determine their motion direction according to the
directions of their neighbor agents. One of the most promising tools are the linear
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consensus algorithms, which are simple distributed algorithms which require only
minimal computation, communication and synchronization to compute averages of
local quantities that reside in each device. These algorithms have their roots in the
analysis of Markov chains [3] and have been deeply studied within the computer
science community for load balancing and within the linear algebra community for the
asynchronous solution of linear systems [4, 5]. For linear consensus problem,
Olfati-Saber et al. established a relatively complete theoretical framework based on
graph theory and kinetic theory, and systematically analyzed the different types of
consistency issues based on the framework [6–9]. Based on the study of Olfati-Saber,
Yu et al. [10–12] discussed three necessary and sufficient conditions for the algorithm
to converge to a consistent state when the states of agents has nothing to do with the
data transferred, and conducted a meaningful analysis of its correctness, effectiveness
and efficiency with the verification in several specific applications. For multi-Agent
consensus and synchronization problems of complex networks, Li et al. in their rather
deep discussion proposed multi-Agent control architecture based on higher order linear
system with a series of fruitful results [13–15]. In [16] average consensus issues are
discussed, with the consensus algorithm formulated as matrix factorization problem,
machine learning methods are proposed to solve matrix decomposition problem.

For most of consensus results in the literature, it is usually assumed that each agent
can obtain its neighbor’s information precisely. Since real networks are often in
uncertain communication environments, it is necessary to consider consensus problems
under measurement noises. Such consensus problems have been studied, Some
research [17–19] have addressed the consensus problem of multi-agents system under
multiplicative measurement noises, where the noises’ intensities are considered pro-
portional to the relative states. In [20, 21] the authors studied consensus problems when
there exist noisy measurements of the states of neighbors, and a stochastic approxi-
mation approach was applied to obtain mean square and almost sure convergence in
models with fixed network topologies or with independent communications failures.
Necessary and/or sufficient conditions for stochastic consensus of multi-agent systems
were established for the case of fixed topology and time varying topologies in [22, 23].
Liu et al. studied signal delay of linear consensus protocol [24], and presented strong
consensus and mean square consensus concept under the conditions of the fixed
topology and the presence of noise and delay between agents, and gave theoretically
necessary and sufficient conditions of strong consensus and mean square under
Non_Leader_Follower and Leader_Follower modes. The distributed consensus prob-
lem for linear discrete-time multi-agent systems with delays and noises was investi-
gated in [25] by introducing a novel technique to overcome the difficulties induced by
the delays and noises. In [26], a novel kind of cluster consensus of multi-agents
systems with several different subgroups was considered based on Markov chains and
nonnegative matrix analysis.

In this paper, we discussed the noise problem of the linear consensus protocol, and
gave a sufficient condition that ensure the noise of linear consensus protocol is con-
trollable. The remainder of this paper is organized as follows. Some preliminaries and
definitions are given in Sect. 2. in Sect. 3, we pointed out that noise of DLCP is
uncontrollable. in Sect. 4, we proposed the strategy of using noise suppression function
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to control noise, and put forward Theorem 1 about a reasonable range of noise sup-
pression function; Sect. 5 is devoted to show the conclusions of this paper.

2 Preliminaries

Consider n agents distributed according to a directed graphG ¼ V;Eð Þ consisting of a set
of nodes V ¼ 1; 2; . . .; nf g and a set of edges E 2 V � V. In the digraph, an edge from
node i to node j is denoted as an ordered pair (i, j) where i 6¼ j (so there is no edge between
a node and itself). A path (from i1 to il) consists of a sequence of nodes i1, i2, � � �, il, l � 2,
such that (ik, ik+1) 2 E for k = 1� � �, l − 1. We say node i is connected to node j(i 6¼ j) if
there exists a path from i to j. For convenience of exposition, the two names, agent and
node, will be used alternatively. The agent Ak (resp., node k) is a neighbor of Ai (resp.,
node i) if (k, i) 2 E where k 6¼ i. Denote the neighbors of node i by Ni = {k|(k, i) 2 E}.
For agent Ai, we denote its state at time t by xi(t) 2R, where t 2Zþ ,Zþ = {0, 1, 2, � � �}.
For each i 2 V, agent Ai receives information from its neighbors.

Definition 1: (Discrete Linear Consensus Protocol DLCP) The so-called linear con-
sensus protocol is given by the following (1):

xi tþ 1ð Þ ¼ xi tð Þþ
X

j2N�i tð Þ
aij tð Þ xj tð Þ � xi tð Þ

� � 8i; j 2 V ð1Þ

Where aij tð Þ[ 0 is a real-valued function with variable t and
Pn
j¼1

aij tð Þ� 1, it is used

to characterize the extent of the impact at time t from agent j to agent i.

Definition 2: (Weighted Laplacian Matrix) The matrix L tð Þ ¼ lij tð Þ
� �

n�n is called
weighted Laplacian matrix of graph G, where

lij tð Þ ¼
�aij tð Þ if j 2 Ni and i 6¼ jPn
j¼1

aij tð Þ if i ¼ j

0 otherwise

8>><
>>:

let X kð Þ ¼ x1 kð Þ; . . .; xn kð Þ½ �T , In denote an n order unit matrix, the matrix form of (1):

X tþ 1ð Þ ¼ A tð ÞX tð Þ ð2Þ

where A tð Þ ¼ In � L tð Þ.

Suppose r	N l; r2ð Þ is a random number that satisfies the normal distribution, let
var rð Þ represent variance r2 of r, if R ¼ r1; . . .; rn½ �T is a random vector, then var Rð Þ
represent the covariance matrix of R, var Rð Þ½ �i denotes the variance of the ith com-
ponents of R, i.e. var Rð Þ½ �i ¼ var rið Þ is ith element of diagonal of matrix var Rð Þ.
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If the received message of Agent i contains a mutually independent and normally
distributed noise interference, (1) can be rewritten as:

xi tþ 1ð Þ ¼ xi tð Þþ
X
j2Ni tð Þ

aij tð Þ xj tð Þþ rj tð Þ
� �� xi tð Þ
� � 8i; j 2 V ð3Þ

where rj tð Þ	N 0; r2j
� �

is a random number and satisfies normal distribution, which

represents the noise carried by the status information xj tð Þ. Let R tð Þ ¼ r1 tð Þ; . . .;½
rn tð Þ�T , thus (3) can be rewritten in matrix form:

X tþ 1ð Þ ¼ A tð ÞX tð ÞþW tð ÞR tð Þ ð4Þ

In the above equation, W tð Þ ¼ �L tð Þ � diag �L tð Þð Þ, diag �L tð Þð Þ is the diagonal
matrix of �L tð Þ, so we can further get:

X tþ 1ð Þ ¼
Yt
k¼0

A kð ÞX 0ð Þþ
Xt
m¼1

Yt
j¼t�mþ 1

A jð Þ
 !

W t�mð ÞR t�mð Þ
 !

þW tð ÞR tð Þ

ð5Þ

In order to facilitate the description, let
Qt

j¼t�mþ 1
A jð Þ

 !
¼ In when m ¼ 0, then

(5) can be simplified as:

X tþ 1ð Þ ¼
Yt
k¼0

A kð ÞX 0ð Þþ
Xt
m¼0

Yt
j¼t�mþ 1

A jð Þ
 !

W t�mð ÞR t�mð Þ
 !

let R t�mð Þ ¼ W t�mð ÞR t�mð Þ, Y tð Þ ¼ Pt
m¼0

Qt
j¼t�mþ 1

A jð ÞR t�mð Þ
 !

, B tð Þ ¼
Qt
k¼0

A kð ÞX 0ð Þ thus we get:

X tþ 1ð Þ ¼ B tð ÞþY tð Þ ð6Þ

Analyzing the random part Y tð Þ of (6), we can find out that it is a linear combi-
nation of several random vectors, therefore it is also a random vector satisfying normal
distribution.

Definition 3: (Noise Controllable) Assuming consensus protocol can converge to a
consistent state vectors X
 ¼ x
; . . .; x
½ �T under the noise-free conditions, we call the
consensus protocol described in (6) is noise controllable, if and only if when t ! 1,
limt!∞B(t) = X* for 8i; j 2 V and there is constant M which will make
lim
t!1 var YðtÞð Þ½ �i �M, i ¼ 1; . . .; n.
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3 Noise Uncontrollability of Discrete Linear Consistency
Protocol

For any initial state X 0ð Þ, assuming that the consistency protocol in (2) converge to a
consistent state X
 associated with X 0ð Þ, under this condition, we discuss the impact of
the noise on the protocol.

Lemma 1: Suppose Y tð Þ is random part of consensus protocol (6), when t ! 1,
limt!1 var Y tð Þð Þ½ �i¼ 1 for any initial state X 0ð Þ, i ¼ 1; . . .; n.

Proof: let yðt;mÞ ¼ Qt
j¼t�mþ 1

A jð ÞR t�mð Þ, then Y tð Þ ¼ Pt
m¼0

y t;mð Þð Þ we have:

var y t;mð Þð Þ ¼ A t�mþ 1ð Þvar
Yt

j¼t�mþ 2

A jð ÞR t�mð Þ
 !

A t�mþ 1ð ÞT

¼ A tð Þ. . .A t�mþ 1ð Þvar R t�mð Þð ÞA t�mþ 1ð ÞT. . .A tð ÞT

where var R t�mð Þð Þ ¼ W t�mð Þvar R t�mð Þð ÞW t�mð ÞT , m ¼ 1; . . .; t. It is known

that when there is no noise, and t ! 1,
Qt
k¼0

A kð ÞX 0ð Þ converges, for a determined

constant m, there always is:

lim
t!1 var y t;mð Þð Þ ¼ lim

t!1A tð Þ. . .A t�mþ 1ð Þvar R t�mð Þð ÞA t�mþ 1ð ÞT. . .A tð ÞT

¼ lim
t!1 V1 mð Þ;V2 mð Þ; . . .Vn mð Þð ÞA t�mþ 1ð ÞT . . .A tð ÞT

¼ lim
t!1 A tð Þ. . .A t�mþ 1ð Þ V1 mð Þ;V2 mð Þ; . . .Vn mð Þð ÞT

� �T
¼ f mð Þð Þn�n

Where, Vi mð Þ ¼ vi; . . .; við ÞT is a constant vector related to m, f mð Þð Þn�n is a con-
stant matrix, and f mð Þ[ 0. So that:

lim
t!1 var Y tð Þð Þ½ �i¼ lim

t!1 var
Xt
m¼0

y t;mð Þð Þ
 !" #

i

¼ lim
t!1

Xt
m¼0

var y t;mð Þð Þ½ �i ¼ 1

□

In fact, when t ! 1, B tð Þ ¼ Qt
k¼0

A kð ÞX 0ð Þ will eventually reach a consistent state.

Similarly, for a specific constant m, var yðt;mÞð Þ will eventually tend to a stable con-
stant when t ! 1, and var Y tð Þð Þ just is the infinite series accumulated by var yðt;mÞð Þ,
So it will not converge, i.e. the consensus protocol (6) is noise uncontrollable.
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4 Noise Suppression Discrete Linear Consensus Protocol
(NS-DLCP)

We reconstruct the state transition matrix A tð Þ, let Le tð Þ ¼ e tð ÞL tð Þ, where e tð Þ :
Rþ ! Rþ is a function whose independent variable is t, e tð Þ[ 0 and when t ! 1,
e tð Þ ! 0, we call e tð Þ as noise suppression function, Let Ae tð Þ ¼ In � e tð ÞL tð Þ, replace
A tð Þ in (2) with Ae tð Þ, we get:

X tþ 1ð Þ ¼ Ae tð ÞX tð Þ ð7Þ

Here we call (7) as Noise Suppression Consensus Protocol(NS-CP), then we
rewrite (7) as the relation between X tþ 1ð Þ and the initial state X 0ð Þ, and consider the
noise carried by Agent, then (7) is rewritten as:

X tþ 1ð Þ ¼
Yt
k¼0

Ae kð ÞX 0ð Þþ
Xt
m¼0

Yt
j¼t�mþ 1

Ae jð Þ
 !

We t�mð ÞR t�mð Þ
 !

ð8Þ

Similarly, let Re t�mð Þ ¼ We t�mð ÞR t�mð Þ , Ye tð Þ ¼
Xt
m¼0

Yt
j¼t�mþ 1

Ae jð ÞRe t�mð Þ
 !

,

Be tð Þ ¼
Qt
k¼0

Ae kð ÞX 0ð Þ then (8) is simplified as:

X tþ 1ð Þ ¼ Be tð ÞþYe tð Þ ð9Þ

Lemma 2: Suppose consensus protocol (2) can converge to a consistent state X
 under
the noise-free conditions, if noise suppression function e tð Þ is the low-order infinites-
imal of t�1, then limt!1 Be tð Þ ¼ X
.

Proof: Study formula (10), we have X tþ 1ð Þ ¼ Be tð Þ in the case without noise, from
the conclusion in [11] we know that X tþ 1ð Þ � X
k k� le2 tð Þ X tð Þ � X
k k for any
determined t, where le2 tð Þ is the second largest eigenvalues of matrix
1
2 Ae tð ÞþAe tð ÞT
� �

, let k2 tð Þ be the second smallest eigenvalues of 1
2 L tð ÞþL tð ÞT
� �

,

obviously, le2 tð Þ ¼ 1� e tð Þk2 tð Þ, thus:

Be tð Þ � X
k k�
Yt
k¼1

1� e kð Þk2 kð Þð Þ X 0ð Þ � X
k k ð10Þ

Let k
2 be the smallest one in the second smallest eigenvalues of 1
2 L tð ÞþL tð ÞT
� �

,

according to the known conditions that O eðtÞð Þ\O t�1ð Þ, then we can deduce that

limt!1 1� e tð Þk
2
� �t¼ 0, and because e kð Þ[ 0, thus for 8t, 0� Qt

k¼1
1� e kð Þk2 kð Þð Þ�

1� e tð Þk
2
� �t

, when t ! 1, from squeeze theorem we can obtain: limt!1
Qt
k¼1

1� e kð Þð
k2 kð ÞÞ ¼ 0, that means:
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0� lim
t!1 Be tð Þ � X
k k� lim

t!1

Yt
k¼1

1� eðkÞk2 kð Þð Þ Xð0Þ � X
k k ¼ 0

Then we have limt!1 Be tð Þ � X
k k ¼ 0, i.e. limt!1 Be tð Þ ¼ X
.

Lemma 3: Suppose consensus protocol (2) can converge to a consistent state X
 under
the noise-free conditions, if noise suppression function e tð Þ is the high-order
infinitesimal of t�0:5, then there is constant M which make limt!1 var Ye tð Þð Þ½ �i �M.

Proof: let �k k1 to represent the row sum norm of the matrix, and investigate the row
sum norm of the variance matrix of Re t�mð Þ, then:

var Reðt�mÞð Þk k1¼ We t�mð Þvar Rðt�mÞð ÞWe t�mð ÞT�� ��
1

¼ e2 t � mð Þ W t�mð Þvar Rðt�mÞð ÞW t�mð ÞT�� ��
1

� e2 t � mð Þ W t�mð Þk k1 var Rðt � mÞð Þk k1 W t�mð ÞT�� ��
1

� e2 t � mð Þ var Rðt � mÞð Þk k1

let yeðt;mÞ ¼
Qt

j¼t�mþ 1
Ae jð ÞRe t�mð Þ, then Ye tð Þ ¼

Pt
m¼0

yeðt;mÞð Þ. Study the norm of

the variance matrix of yeðt;mÞ, we have:

var yeðt;mÞð Þk k1¼ Ae tð Þ. . .Ae t�mþ 1ð Þvar Re t�mð Þð ÞAe t�mþ 1ð ÞT. . .Ae tð ÞT�� ��
1

� Ae tð Þk k1. . . Ae t�mþ 1ð Þk k1 var Re t�mð Þð Þk k1 Ae t�mþ 1ð ÞT�� ��
1. . . Ae t�mþ 1ð ÞT�� ��

1
� var Re t�mð Þð Þk k1 � e2 t � mð Þ var R t � mð Þð Þk k1

In fact, var ye t;mð Þð Þ½ �i is exactly the ith element of the diagonal of the variance
matrix var ye t;mð Þð Þ, denote q ¼ max var ye t;mð Þð Þ½ �i

� �
, obviously var yeðt;mÞð Þ½ �i �

e2 t � mð Þq, then

var YeðtÞð Þ½ �i¼
Xt
m¼0

var yeðt;mÞð Þ½ �i � q e2ðtÞþ . . .þ e2ð0Þ� � ¼ q
Xt
m¼0

e2 mð Þ

According to the condition that O eðtÞð Þ[O t�0:5
� �

, therefore series q
Pt
m¼0

e2 mð Þ will

converge when t ! 1, let limt!1 q
Pt
m¼0

e2 mð Þ ¼ M, we can obtain:

limt!1 var YeðtÞð Þ½ �i �M □

From Lemmas 2 and 3, it easy to get:

Theorem 1: Suppose consensus protocol (2) can converge to a consistent state X


under the noise-free conditions, if order of e tð Þ satisfies O t�0:5
� �

\O eðtÞð Þ\O t�1ð Þ
then NS-SDLC (9) is noise controllable.
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5 Conclusion

Bases on the above theoretical results and discussion, Table 1 summarized the main
conclusions of this paper.

Our main conclusions are:

I. if e(t) = 1 (Equivalent to e tð Þ is useless) or O(e(t)) � O(t−0.5), the determined
part Be(t) of linear consensus protocol (9) can converge to consistent state
vectors X
, but the variance of its random part Ye(t) is unbounded. In this case,
linear consensus protocol is noise uncontrollable.

II. When O(e(t)) � O(t−1), the variance of its random part Ye(t) is bounded, but
the determined part Be(t) of linear consensus protocol can’t converge to con-
sistent state vectors X
, under this circumstances, linear consensus protocol is
also noise uncontrollable.

III. If O(t−0.5) < O(e(t)) < O(t−1), Be(t) will converge to consistent state vectors
X
 and the variance of Ye(t) is bounded, so linear consensus protocol is noise
controllable. At this time, every Agent’s state will be a normal distribution with
center x*.
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