JOPA: Efficient Ontology-Based Information
System Design

Martin Ledvinka™), Bogdan Kostov, and Petr Kiemen

Czech Technical University in Prague, Prague, Czech Republic
{martin.ledvinka,bogdan.kostov,petr.kremen}@fel.cvut.cz

Abstract. Creating applications on top of linked data and ontologies
brings many difficulties. The applications are either generic (and thus not
appealing to end-users), or bound to ontology structure, change of which
breaks the application. We present JOPA, a tool that formalizes the
contract between the application and the ontology, combining advantages
of both worlds. JOPA is a persistence framework for Java applications,
providing formalized object-ontological mapping, transactions, access to
multiple repository contexts, and producing linked data. The system is
demonstrated on a real use-case of a reporting tool that we develop for
the aviation industry.

1 Introduction

Keeping object-oriented applications aligned with underlying ontology commit-
ments is a challenging task. Various ontology access libraries have been intro-
duced over the last decade (these are briefly discussed in Sect.2.1). Basically,
developers either use too low-level API that is verbose and hard to use and
maintain, or a high-level API that tries to map ontology structure to the object
model which is necessarily lossy and dependent on the ontology structure.

We introduce the Java OWL Persistence API (JOPA), a tool that bene-
fits from both approaches — it provides an object-ontological mapping, but also
constructs to access all property values as well as inferred property values in
an analogous manner. Furthermore, to allow easy maintenance of the applica-
tion access to evolving ontologies, a formal contract between an object-oriented
application and the ontology is set up. The formal contract consists of a set of
integrity constraints describing the fixed part of the ontology relevant for the
application, as introduced in [9]. An advantage of this explicit contract is that
it allows rechecking ontology compliance with the application upon data update
(a third-party change), i.e. before the application itself tries to access the data.
Integrity constraint violation signalizes to the application designer the need for
formal contract redesign (or even ontology redesign).

This demo shows the features of JOPA on a simplified application for aviation
safety reporting. The full application is designed and implemented in cooperation
with several stakeholders in the Czech aviation industry, including Air Navigation
Services of the Czech Republic, or Prague Airport, for their future use.
© Springer International Publishing AG 2016

H. Sack et al. (Eds.): ESWC 2016 Satellite Events, LNCS 9989, pp. 156-160, 2016.
DOI: 10.1007/978-3-319-47602-5_31

JOPA: Efficient Ontology-Based Information System Design 157

2 Ontology Access Using JOPA

Let us briefly discuss first the JOPA framework itself and then delve into descrip-
tion of the example application and how it uses JOPA’s features.

2.1 Application Access to Ontologies

There are two main approaches to application access to ontologies.

A generic one, where data in ontologies are manipulated without any assump-
tions about their nature. Such approach is represented for example by OWL
API [7] or Sesame API [2]. This approach is suitable mostly for generic appli-
cations like ontology editors, because its use for domain-specific business logic
requires a lot of boilerplate code.

A domain-specific approach to ontology access makes use of object-ontological
mapping (OOM), which maps ontological constructs to concepts of the object-
oriented paradigm. OOM enables the application to be written in object-oriented
style, which is by far the most widespread programming paradigm nowadays.
Frameworks exploiting OOM are for example Empire [5] or AliBaba [1].

More thorough discussion of both approaches can be found in [9] or [11].

2.2 JOPA Features

JOPA tries to take the best of both the domain-specific and generic approaches.
It employs a formally defined object-ontological mapping, while providing a (lim-
ited) access to the more dynamic aspects of ontologies. Let us now briefly describe
the main distinguishing features of JOPA. More detailed explanation of its archi-
tecture and features can be found in [9-11].

Formal OOM. In contrast to ad hoc mapping used by Empire or AliBaba, the
object-ontological mapping in JOPA is based on a formally defined contract
between the ontology and the object model. This contract is described by a set
of OWL integrity constraints [13], which provide a closed-world view of a part of
otherwise open-world assuming ontology. The OOM does not attempt to provide
a complete mapping of OWL to Java, so for example only named classes and
properties are supported.

Ezxplicit Inferred Knowledge. JOPA provides explicit access to inferred knowl-
edge in the object model. Inferred statements cannot be treated as asserted ones
on the object level, because they cannot be directly changed. Therefore, JOPA
enables the developer to explicitly mark attributes as inferred, which means they
may contain inferred knowledge and are thus read-only.

Types and Properties. Besides mapping properties to attributes, JOPA also pro-
vides access to the more dynamic parts of the ontology. Namely, every instance
can contain a set of ontological types (@Types field), to which the individual rep-
resented by this instance belongs. It can also contain a map of property values,
which are not mapped by the object model. This gives, although limited, access
to the ontological structure which is not directly compiled into the object model.

158 M. Ledvinka et al.

Separate Storage Access. By separating the actual storage access into the Onto-
Driver layer, JOPA enables the application to easily switch between different
storages. Such change thus comprises merely modifying a few lines in a configu-
ration file. Similarly, Empire [5] uses pluggable storage access components.

JPA Features. JOPA was inspired by the JPA specification [8] for object-
relational mapping in Java. As such, it supports transactional processing,
caching, cascading. JOPA also supports executing SPARQL [6] and SPARQL
Update [3] statements and mapping their results directly to entities. While the
API of JOPA is inspired by JPA, it is not exactly the same. This is because it
tries to take into account features specific to ontologies, like contexts and sup-
port for types and unmapped properties. Empire, on the other hand, goes even
further and does actually implement a subset of the JPA specification.

Contexts. Some ontological storages support the notion of RDF named graphs,
which enable data to be further structured. JOPA enables the application to
exploit this feature both on object and attribute level.

2.3 Demo Application

The demo application showcases all of the features described in Sect.2.2. The
application is build for a use case in aviation safety. When a safety man-
ager/aviation authority performs a safety audit, a checklist of several questions
guides him/her through the audit agenda. The questions are linked to expected
answers and whenever the actual answer does not match the expected one, it
signalizes a possible safety issue.

The audit scenario is only a small part of a much larger field of aviation safety,
which we are currently tackling in one of our projects'. The whole domain is
described by a documentation ontology, which is based on the unified founda-
tional ontology (UFO) [4].

For the purposes of our application, we create a set of integrity con-
straints [13], which restricts a part of the documentation ontology in order to
make it suitable for an object-oriented application.

In the demo, a user can create audits, which are documented by reports.
Every report contains a set of records, which are question-answer pairs. The
records can be classified to express whether the answer was satisfactory or not.

From Ontology to Object Model. To give a glimpse of the design process,
take for example the portion of the documentation ontology Op shown in Table 1.
A set Sy¢ of integrity constraints provides a closed-world view on Op for the
purpose of our application. When an integrity constraint is violated, the ontology
becomes incompatible with the application.

! For JOPA, this is actually its second deployment. An early prototype was used in a
tool called StruFail in the domain of structural failures of buildings.

JOPA: Efficient Ontology-Based Information System Design 159

Table 1. Op represents an excerpt of the documentation ontology used in the demo
application. S;¢ depicts a set of OWL integrity constraints used as a contract between
the application (its object model) and the ontology.

Op = {Event C Entity, Src = {Report C Vdocuments - Event,
Report C Entity, Report C (= 1documents),
Person C Agent, Report C VhasAuthor - Person,
T C VhasAuthor - Agent, Report C (= 1 hasAuthor),
Report C Idocuments - Entity, Report C 3documents - Entity,
documents = isDocumentedBy~ } Audit C VisDocumentedBy - Report}

Based on Op and S;¢, transformation to the object-oriented paradigm yields
a model shown in Fig. 1. The actual object model is generated from the integrity
constraints by the OWL2Java tool, which is a part of JOPA.

I Question |
_— =

hasQuestion 1
1 | - documents

* | - isDocumentedBy
*
Person I 1 /\I Report Ll 1 1I Answer |
I | (| ™~
I] hasauthor |] hasDocumentationPart | ———— hasanswer

Fig. 1. Object model of the demo application. Due to space restrictions, Op and Si¢
capture only the Audit — Report — Person part of the model.

Demo Application Overview?. To list all audits and reports, a SPARQL
query is used, whose results are directly mapped to the corresponding entities.
While every report is related to an audit by an explicit assertion, the inverse
relation is inferred, as it is not necessary to maintain both directions in the rela-
tionship. All operations on reports are cascaded to the records they contain, so
for example when a report is persisted, all its records are persisted automati-
cally as well. The same holds for the record-answer relationship. Questions are
managed separately, because they can be reused by multiple reports.

Record classification is performed by adding the record individuals into OWL
classes using the @Types field. In addition to the mapped attributes, every audit
and record can also be enhanced with values of unmapped properties.

The demo application supports two storages - a Sesame storage and OWL
files accessed by OWL API. The Sesame storage supports contexts, which is
utilized by having the reports’ authors stored in a dedicated context. The OWL
API storage, on the other hand, is used by Pellet [12] to provide additional
inferred knowledge. In our instance, it enables to show reports for each audit by
exploiting the inverse isDocumentedBy property.

2 The demo application can be found at http://onto.fel.cvut.cz/eswc2016, its source
codes are available at https://github.com/kbss-cvut/jopa-examples.

http://onto.fel.cvut.cz/eswc2016
https://github.com/kbss-cvut/jopa-examples

160 M. Ledvinka et al.

3 Conclusions

We have discussed the difficulties of application access to ontologies and pre-
sented the JOPA framework as a possible solutions to these issues. We have
demonstrated its viability as a persistence solution for ontology-based applica-
tions on a simplified demo application (a much more complex version of which
is currently being evaluated by project partners in the Czech Republic), which
nonetheless exploits most of the distinguishing features of JOPA.

Development of the aviation safety application has also shown us some short-
comings of JOPA, mainly its lack of support for OWL class subsumption (inher-
itance) and referential integrity. We plan to address these in our future work.

Acknowledgment. This work was supported by grant No. GA 16-09713S Efficient
Exploration of Linked Data Cloud of the Grant Agency of the Czech Republic and by
grant No. SGS16/229/0OHK3/3T/13 Supporting ontological data quality in information
systems of the Czech Technical University in Prague.

References

1. AliBaba. https://bitbucket.org/openrdf/alibaba/

2. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: a generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, 1., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

3. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 update. Technical report, W3C
(2013)

4. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (2005)

5. Grove, M.: Empire: RDF & SPARQL meet JPA. semanticweb.com, April 2010.
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617

6. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Technical report, W3C
(2013)

7. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies.
Semant. Web Interoperability Usability Applicability 2, 11 (2011)

8. JCP: JSR 317: Java™ Persistence API, Version 2.0 (2009)

9. Kfemen, P., Kouba, Z.: Ontology-driven information system design. IEEE Trans.
Syst. Man Cybern. Part C 42(3), 334-344 (2012). http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=6011704

10. Ledvinka, M., Kfemen, P.: JOPA: developing ontology-based information systems.
In: Proceedings of the 13th Annual Conference Znalosti (2014)

11. Ledvinka, M., Kfemen, P.: JOPA: accessing ontologies in an object-oriented way.
In: Proceedings of the 17th International Conference on Enterprise Information
Systems (2015)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 51-53 (2007)

13. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
Fox, M., Poole, D. (eds.) AAAIL. AAAI Press (2010). http://www.aaai.org/ocs/
index.php/AAAI/AAAILQ/paper/view/1931

https://bitbucket.org/openrdf/alibaba/
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931

	JOPA: Efficient Ontology-Based Information System Design
	1 Introduction
	2 Ontology Access Using JOPA
	2.1 Application Access to Ontologies
	2.2 JOPA Features
	2.3 Demo Application

	3 Conclusions
	References

