
Time and Resilient Master Clocks
in Cyber-Physical Systems

Andrea Ceccarelli1(&), Francesco Brancati2, Bernhard Frömel3,
and Oliver Höftberger3

1 Department of Mathematics and Informatics, University of Florence,
Florence, Italy

andrea.ceccarelli@unifi.it
2 Resiltech SRL, Pisa, Italy

francesco.brancati@resiltech.com
3 Institute of Computer Engineering, Vienna University of Technology,

Vienna, Austria
{froemel,oliver}@vmars.tuwien.ac.at

1 Introduction: Challenges for Time-Aware Cyber-Physical
Systems-of-Systems

1.1 On the Role of Time in Cyber-Physical Systems-of-Systems

Since many years, it has been acknowledged that the role of time is fundamental to the
design of distributed algorithms [21]. This is exacerbated in cyber-physical distributed
systems, and consequently in Systems-of-Systems, where it is sometimes impossible to
say which one of two observed environmental events occurred first.

Computers, and consequently constituent systems (CSs), use at least a basic
mechanism for local time keeping, in the form of incremental timers. In fact, each
autonomous CS has its own oscillator that swings freely and is uncoordinated with
respect to the oscillation of the oscillator in any other autonomous CS. These oscillators
are often adequate to make local duration measurements, generate alarms by time-out,
etc. However, there are reasons for resorting to clocks that give you an absolute notion
of time. Clocks are the only way to achieve tightly synchronized actions of an
ensemble of nodes in a System-of-Systems [23].

For example, synchronized clocks make it possible to measure the duration of some
action that starts in one node and ends in another node [22]. This is a common
requirement in many applications, where the duration between events that occur in the
environment of the different CSs of an SoS must be determined. It is not possible to
measure the duration between events that occur in the physical environment of different
CSs if no global notion of time of adequate precision is shared by all CSs of the SoS.

If a global timestamp is assigned to every significant event, then the duration
between any two significant events occurring at any place within the whole SoS can be

This work has been partially supported by the FP7-610535-AMADEOS project.

© The Author(s) 2016
A. Bondavalli et al. (Eds.): Cyber-Physical Systems of Systems, LNCS 10099, pp. 165–185, 2016.
DOI: 10.1007/978-3-319-47590-5_6

calculated easily. For example, we can consider the temporal validity of real-time data.
An observation of a dynamic entity, e.g., the state of traffic light, e.g., green, can only
be used for control purposes within a validity interval that depends on the dynamics of
the entity (the traffic light). If the observation of the environment is performed by a CS
that is different from the CS that uses the observation, then, based on the timestamp of
the observation, the user can determine if the given observation is still valid to use at a
particular later instant [1, 2]. Given that such a global SoS time is available, this global
time can be used to radically simplify the solution of many other temporal coordination
problems in an SoS [1, 2].

As an SoS is sensitive to the progression of time, such global notion of time is
required in order to [2, 6], amongst other: (i) enable the interpretation of timestamps in
the different CSs; (ii) limit the validity of real-time control data; (iii) synchronize input
and output actions across nodes, with specific reference to stigmergic and message-
based information exchange; (iv) specify the temporal properties of interfaces;
(v) perform prompt error detection; (vi) strengthen security protocols; (vii) allocate
resources conflict-free (e.g., in time-triggered communication, scheduling).

A dependable global (physical) time is thus needed to establish the backbone of the
temporal infrastructure of an SoS. Every CS in the SoS that is subject to physical time
requirements should be able to measure time with an appropriate precision, and achieve
a quality of time synchronization which is deemed sufficient [24]. Such a dependable
global (physical) time is a fundamental requirement for time-aware SoS, although we
remark that it is well-known that it is impossible to precisely synchronize the clocks in
a distributed computer system. A measurement error in the timestamps of events is
unavoidable. This measurement error can lead to inconsistencies between the actual
and recorded temporal order of events [1, 25].

1.2 Towards a Dependable Global Time-Base

In an SoS, external clock synchronization is the preferred alternative to establish a
global time, since the scope of an SoS is often ill defined and it is not possible to
identify a priori all CSs that must be involved in the (internal) clock synchronization.
A CS that does not share the global time established by a subset of the CSs cannot
interpret the timestamps that are produced by this subset. The preferred means of clock
synchronization in an SoS is the external synchronization of the local clocks of the CSs
with the standardized time signal distributed worldwide by satellite navigation systems,
such as GPS, Galileo or GLONASS. Standalone satellite navigation systems are based
on receivers processing GNSS (Global Navigation Satellite Systems) satellite signals.
GNSS currently have two core constellations: Global Positioning System (GPS) of the
United States and the Global Navigation Satellite System (GLONASS) of the Russian
Federation. Other similar systems are the upcoming European Galileo positioning
system, the Japanese Quasi-Zenith Satellite System (QZSS), and the proposed
COMPASS-Bediou Navigation System of China.

Reasons which may affect the availability and signal quality of the standalone
satellite navigation systems and related algorithms, and consequently quality of clock
synchronization, have been extensively discussed in literature e.g., a comprehensive

166 A. Ceccarelli et al.

overview can be found in [18, 19]. Special considerations related to the availability of
GPS signal refer specifically to mobile CSs. GPS is not available in building or under
roofing (e.g., in a wood), which is very likely to (temporarily) happen for mobile CSs.
Such mobile CSs that operate on batteries are energy sensitive. Since a GPS sensor is
very expensive in terms of consumed energy these mobile applications can benefit by
switching off the GPS whenever possible and as long as possible, still maintaining the
required synchronization quality.

Additionally, it should be considered that GPS may be subject to deliberate attacks,
which even when detected timely they still make the GPS signal unavailable for the
whole duration of the attack [5]. Amongst these, we mention [20] (i) jamming GNSS
based vehicle tracking devices to prevent a supervisor’s knowledge of a driver’s
movements, or avoiding road user charging; (ii) rebroadcasting (‘meaconing’) a GNSS
signal maliciously, accidentally or to improve reception but causing misreporting of a
position; (iii) spoofing GNSS signals to create a controllable misreporting.

In a report from the US Government Accountability Office (GAO) to the US
Congress [3] on “GPS-Disruption—Efforts to Assess Risks to Critical Infrastructure
and Coordinate Agency Action Should be Enhanced” it is pointed out that many of the
large infrastructure SoSs in the US are already using GPS time synchronization on a
wide scale and a disruption of the GPS signals could have a catastrophic effect on the
infrastructure. In this report it is noted that a global notion of time is required in nearly
all infrastructure SoSs, such as telecommunication, transportation, energy, etc. and this
essential requirement has been met by gradually using more and more often the time
signals provided by GPS, not considering what consequences a disruption of the time
distribution, either accidental or intentional, has on the overall availability and function
of the infrastructure [6].

Even more recently, on 4 February 2016 the BBC reported that “several companies
were hit by hours of system warnings after 15 GPS satellites broadcast the wrong time,
according to time-monitoring company Chronos” [4]. This led to serious problems to
many companies that resulted in money loss.

These events just confirm existing warnings from different communities. For
example, a Report from the UK Royal Academy of Engineering in 2011 [20] suggests
that the U.K. may have become dangerously over-reliant on satellite-navigation signals,
and too many applications have little or no back-up were these signals to go down. The
report concludes that several concerns are bounded to GNSS. First, non-GNSS based
back-ups are often absent, inadequately exercised or inadequately maintained”. Second,
that the jammers are easily available and that most jammers are able to block GPS,
GLONASS and GALILEO. Third, a full picture of the dependencies on GPS and
similar systems is missing.

Starting from the above concern, we can conclude that we should not entirely rely
on satellite navigation systems to build a dependable global time base in time-aware
SoS. Following this observation, this Chapter presents the design and development of a
resilient fail-silent master clock based on satellite-based time synchronization (e.g.,
GPS or Galileo signals), to provide a dependable global time base for cyber-physical
Systems-of-Systems. Such Resilient Master Clock (RMC) is intended to feature low
power consumption, low weight and low cost. The RMC should be built with hardware

Time and Resilient Master Clocks in Cyber-Physical Systems 167

Off-the-Shelf (OTS), as for example COTS MEMS sensors, and whenever possible
software OTS.

The RMC includes an independent oscillator and GPS devices complemented by
acceptance tests. In fact, software clock control techniques are devised in order to:

1. Provide a self-estimation of the quality of clock synchronization. This is achieved
via the Reliable and Self-Aware Clock (R&SAClock), which acts as an oracle of the
quality of clock synchronization. R&SAClock keeps nodes of a network aware
about the quality of synchronization: it monitors the synchronization level of the
local clock with respect to a global time reference (like the Temps Atomique
International, TAI).

2. Extend the holdover duration of the clock by compensation of local clock devia-
tions, especially in case of absence of the GPS signals. In fact, clock (crystal
oscillators) deviations may be caused by physical environmental variations, like
temperature, pressure, humidity variations, voltage. Correction techniques based on
COTS sensors are introduced to compensate local clock deviations and avoid
unsynchronized clocks in SoSs in the absence of GPS signals.

When the satellite-based time synchronization signal fails (or it is corrupted by a
security incident), for a certain amount of time, the RMC is able to maintain its clock
close to the global time within a required accuracy until the satellites signal becomes
available again.

The rest of the section is organized as follows. Section 2 presents the architecture
design of the Resilient Master Clock. The successive Sects. 3 and 4 explore the main
technical solutions that are included in the Resilient Master Clock, that are respectively
intended to discipline the clock when the GPS signal is unavailable, and to provide a
self-estimation on synchronization uncertainty. Section 5 presents conclusions.

2 Resilient Master Clock (RMC) Architecture

This section discusses the architecture of the RMC. The presentation of the architecture
is generic i.e., it is not bound to a specific board or pieces of hardware. For example, in
Sects. 3 and 4, two different instantiations of (part of) the RMC on two different boards
will be described.

The architecture of the RMC is represented in Fig. 1, and described below. In
Fig. 1, the components in light grey are required hardware and software components
that should be available for the selected OTS board. Dark grey components identify
instead the components that have been devised and developed when building the
Resilient Master Clock.

The architecture of the RMC is divided in three layers: the board (or Hardware
layer), the Operating System (or OS layer) and the Middleware. Each layer consists of
the different constituent blocks which are herewith described.

168 A. Ceccarelli et al.

Board Layer. The building blocks of this layer are hardware components. These are:

• A GPS module for receiving time messages by the GPS satellite constellation. The
messages are then provided to any enquiring hardware or software along with a
one-pulse-per-second (1PPS) signal.

• Sensors. Sensors for acquiring information about the environment. Examples are
temperature and pressure sensors.

• Comm. This block refers to the communication interface. For example, an Ethernet
Network Interface Card (NIC) can connect the RMC to a network in which CSs
slaves wait for time synchronization packets from the RMC, which acts as a master
clock node.

• CPU, Memory and the physical oscillator. These are standard components of any
hardware board. The physical clock is particularly relevant in our context.

OS Layer. This layer includes a local software clock (SW Clock) which is usually
created by Operating Systems starting from the hardware clock and that provides the
timestamps to the services executing on the board.

Middleware Layer. This layer includes OTS SW components (Synch, master PTP) and
SW components that are specific for the RMC. In particular, these are the following.

Synch. The Network Time Protocol (NTP [17]) is a networking protocol for clock
synchronization between computer systems over packet-switched, variable-latency data
networks. NTP is intended to synchronize all participating computers to within a few
milliseconds of Coordinated Universal Time (UTC). Since RMC is based on TAI, it
should be remarked that conversion UTC-TAI is trivial [26]. A synchronization module
(Synch) based on the Network Time Protocol (NTP) uses the GPS time signals to
discipline the local clock.

MasterPTP. The Precision Time Protocol (PTP, [7]) is a protocol used to synchronize
clocks throughout a computer network. On a local area network, it achieves clock
accuracy in the sub-microsecond range, making it suitable for measurement and control

Fig. 1. Resilient Master Clock architecture.

Time and Resilient Master Clocks in Cyber-Physical Systems 169

systems. PTP is defined in the IEEE 1588-2008 standard. A master Precision Time
Protocol (PTP) module is available on the RMC, and it allows broadcasting a time
synchronization packet according to the protocol IEEE 1588 PTP to the nodes of the
subnetwork to which the board is connected through Comm.

R&SAClock. The R&SAclock uses the offset and drift obtained from the synchro-
nization module to estimate the uncertainty of the time provided by the local clock over
time.

Clock Drift Compensation (CDC). The CDC module generate a clock-drift compen-
sated Pulse Per Second (PPS) signal when the GPS signal is unavailable. The com-
pensation mechanism provided by the CDC module is based on: (i) the values
measured by the dedicated sensors (e.g., temperature), and (ii) a-priori knowledge of
the frequency deviation caused by environmental changes on the onboard crystal
oscillator (e.g., temperature variations).

Checker. A checker module checks the uncertainty associated to the time of the local
clock provided by the R&SAclock; consequently, it decides if the RMC can be con-
sidered a reliable time source and allows or blocks the PTP synchronization. For
example, it can be implemented as a process which periodically checks the quality of
the local time provided by the R&SAClock. On the other hand, when the quality of the
local time is outside acceptable thresholds, the PTP synchronization beans must be
stopped because the RMC cannot be considered a time reference.

3 The Clock Drift Compensation Module

This section discusses the Clock Drift Compensation (CDC) module that provides a
periodic Pulse Per Second (PPS) time signal to the Synch module (cf. Fig. 1). During
normal operation, the CDC module forwards the high quality, externally provided time
signal (e.g., generated by a GPS receiver). In case the externally provided time signal
becomes unavailable, the CDC module switches seamlessly without interruption of the
output PPS signal to holdover mode until the external time signal becomes available
again. During holdover mode the CDC module internally generates the output PPS
time signal for the Sync module from a local clock based on a common (quartz) crystal
oscillator. This local clock is drift compensated with respect to the – now in holdover
mode unavailable – external time signal. The drift compensation improves the precision
of the internally generated PPS time signal and consequently allows for a prolonged
holdover duration compared to a crystal oscillator based clock that is not clock drift
compensated.

In the following subsections we detail our clock drift compensation method and
present a proof-of-concept prototype implementation which we used for calibrating and
evaluating the CDC module.

170 A. Ceccarelli et al.

3.1 Compensating the Drift of Clocks Based on Crystal Oscillators

Clocks in computer systems are usually realized by a digital counter register and a
crystal oscillator whereas each oscillation generates a tick event that increments the
counter register. The oscillator frequency output slightly deviates from its designed
nominal frequency output, because of (1) mechanical imperfections introduced during
manufacturing of the oscillator, (2) dynamic deviations caused by aging of the oscil-
lator, and (3) environmental conditions (e.g., temperature, acceleration, humidity)
acting on the oscillator. The static and dynamic deviations from the nominal frequency
are the cause for clock drift: Any two clocks of the same design, even when perfectly
started at the same instant, will eventually drift apart as time progresses.

For establishing a global time in Cyber-Physical Systems-of-Systems (CPSoSs), we
need to periodically resynchronize the local clocks of the Constituent Systems (CSs) by
external clock synchronization (e.g., synchronization with the GPS time source). The
resynchronization is necessary to ensure a bounded offset, also called precision, among
the clocks of the CSs. A critical parameter of clock synchronization is the resyn-
chronization period which needs to be short enough to keep all clocks within the
required precision. By actively compensating the clock drift, the duration between two
resynchronization instants can be increased. This is of particular interest if the source
for external synchronization is unavailable (e.g., losing the GPS signal when driving
into a tunnel, turning the GPS receiver off to save power), while the synchronization
precision of the clocks of the CSs has to be maintained until the external source
becomes available again.

Drift Compensation Method. In order to compensate clock drift, the effects of
internal and external sources of oscillator frequency deviations must be negated. This
requires to measure these effects or know a-priori about them, but also to apply cor-
rective actions on the clock. There are two options to apply corrections: (1) control the
enclosing environment of the oscillator (e.g., oven-controlled or voltage-controlled
oscillators) such that the output frequency is corrected, or (2) to periodically correct the
counter register by adding each correction period a correction value that compensates
for the frequency deviations.

The first approach requires, additionally to the measurement of the enclosing
environment, possibly expensive and power-demanding actuation hardware (e.g., heat
source), insulation, or is in case of some effects (e.g., acceleration) infeasible. However,
for some effects (for example, temperature, humidity, pressure, aging) this approach is
technically more simple, as it only requires to steer the oscillator frequency close to the
external clock source and then maintain the same environmental conditions during
holdover mode.

The clock drift compensation of the CDC module is based on the second correction
approach which also depends on measuring the oscillator environment, but – besides
that – can be realized purely in software. This software implements a compensation
model which predicts for each correction period an accurate correction value in clock
ticks. To achieve a high level of accuracy, the clock drift compensation model fuses
several sources of information (a-priori knowledge, sensor observations).

Time and Resilient Master Clocks in Cyber-Physical Systems 171

Important parameters of our drift compensation method – besides the drift com-
pensation model – are the tick rate of the external time signal which should be for-
warded as the output tick by the CDC module during normal operation and generated
when absent during holdover mode, the correction period, and the internal tick rate or
oscillator frequency. The output tick rate determines the counter register size, i.e., this
register needs to be able to count the number of internal ticks that correspond to one
output tick. The output tick rate also determines the correction period, because cor-
rections predicted by the compensation model should be applied for each output tick to
avoid imprecision effects. Finally, in order to have only a small discretization error, the
clock compensation method assumes that the output tick rate (e.g., 1 Hz) is much lower
than the internal tick rate (e.g., at least a few kHz or MHz).

Compensation Model. The clock drift compensation model is based on (1) a-priori
knowledge about the oscillator (e.g., manufacturing defects, aging behavior, known
effects of environmental conditions), and (2) on the currently observed external time
signal and the environmental conditions. Environmental conditions that can be
observed by sensors are for example: temperature, barometric pressure, acceleration, air
humidity.

Explicitly defining a compensation model would be a tremendous task, because it
requires precise knowledge about all relevant physical properties of the crystal oscil-
lator, their interrelationships, and the involved sensors which – similarly to the oscil-
lator – also slightly deviate from their designed characteristics (measurement errors that
depend on currently prevailing environmental conditions). Consequently, we focus on
defining and parameterizing the compensation model by using classical machine
learning techniques where, for example, regression (curve fitting) for independent input
variables, or artificial neural networks for input variables with unknown dependency
relationships are available. The selection of a concrete machine learning technique
depends on the available sensors, available computational resources and the required
compensation quality. Regardless of the technique, training of the compensation model
is necessary by taking a set of input instances (e.g., an observation of the environmental
conditions) and adjusting the model parameters such that it maps the input data to a
known correction value for the counter register. The trained model is then available
during holdover mode for predicting correction values for new input data where the
correction value wasn’t known before.

For model training there are two methods that should be applied in combination:

• Offline-Learning/Calibration: After manufacturing the CDC module, including its
oscillator and the sensors, obtains training data by observing (using its own sensors)
the controlled environmental conditions. Under these controlled environmental
conditions, the oscillator frequency deviation is measured by external equipment
(e.g., an oscilloscope that measures the difference of the external time signal with
respect to the internally generated output tick during holdover). Training data is
collected by doing various sweeps of the controlled environmental conditions
through the range of expected environmental conditions and recording the sensor
observations together with the necessary correction value. Offline learning initial-
izes the compensation model with a-priori knowledge.

172 A. Ceccarelli et al.

• Online-Learning/Adaptation: During operation of the CDC module the compen-
sation model can be adjusted by constantly retraining it, when the external time
signal is available. Online-learning compensates for aging effects of the oscillator
and involved sensors. Also online-learning possibly allows for limiting the neces-
sary offline-learning to a smaller sample size of a production series where only
small model deviations are expected among individual CDC modules.

3.2 Proof-of-Concept Prototype

The proof-of-concept prototype is based on an implementation of the CDC module on
the SmartAP 2.01, a small embedded system originally intended for auto-piloting small
aircrafts. It consists of a STM32 ARM Cortex M4 microcontroller integrated with two
external quartz oscillators (84 MHz, and 32.768 kHz), and sensors to measure accel-
eration (Invensense MPU-6050/ MPU-9150), barometric pressure (MS5611-01BA03).
We customized the board by adding sensors to additionally measure temperature and
air humidity (Sensirion SHT75). As an external time signal we used an UBLOX
LEA-6H GPS receiver. For wirelessly communicating with the board we added a
Bluetooth module (Microchip RN42).

The microcontroller implements a data recording functionality to obtain the mea-
sured training data, and the drift compensation method including a simple variant of a
compensation model. In this prototype we did not implement online-learning, because
the effects of online-learning are minor, if the compensation model is well calibrated
and the CDC module prototype has not been left several months for aging between
calibration and evaluation.

Compensation Model Implementation. Figure 2 illustrates a simple compensation
model based on look-up tables where averaged training data can be deployed directly.
For each environmental condition a look-up table exists from which the contribution of
the measured parameter to the clock drift is obtained. Temperature is codependent with
all other environmental conditions. Consequently, the lookup tables for pressure,
humidity, and acceleration contain temperature dependent correction values. To esti-
mate the clock drift for the current correction period, the individual contributions are
summed up and added to the constant drift value of the crystal oscillator.

Training of the Compensation Model. The compensation model training data is
obtained by placing the CDC module with its sensors in an experimental chamber
within which the environmental conditions can be controlled. For each correction
period an oscilloscope records the deviation of the internally generated output time
signal from the external time signal (GPS receiver).

Figure 3 shows our prototype of such an experimental chamber. It consists of a
thermally insulated box with a Peltier element for heating and cooling, an air pump to
produce an over or under pressure inside, and a humidifier. To achieve a constant
acceleration force on the oscillator crystal, the board is mounted on a plate that can be

1 http://sky-drones.com/autopilots/9-smartap-autopilot-20.html.

Time and Resilient Master Clocks in Cyber-Physical Systems 173

http://sky-drones.com/autopilots/9-smartap-autopilot-20.html

rotated. Acceleration forces can be applied on the oscillator in X and Y directions,
depending on how the board is mounted on the rotating plate.

By using this box, one environmental condition after the other is varied from its
minimum value up to the maximum, and vice versa. For each set point the number of
oscillations of the crystal oscillator, which drives the clock, is counted several times.
The reading and resetting of this counter is triggered every second by the PPS time
pulse originating from the GPS receiver.

From the recorded training data, the constant drift at certain environmental con-
ditions – i.e., the zero conditions C0 – is obtained. C0 can be selected arbitrarily.
Furthermore, for each condition that can be observed a table entry (see lookup-based
compensation model in the previous section) is derived by averaging over the training
data that have been recorded for the same environmental conditions. These table entries
indicate the additional drift if the conditions deviate from the zero conditions C0.

3.3 Evaluation

The evaluation of the CDC module is conducted using the abovementioned experi-
mental chamber. In particular, only results for temperature and acceleration in X

p

h

a

constant drift

predicted
drift

Look-up

t
t

t

t

Measurement

Temperature

Barometric
Pressure

Humidity

Acceleration

Fig. 2. Clock drift compensation model based on look-up tables.

Fig. 3. Experimental chamber for obtaining training data for the compensation model. On the
right the prototype of the CDC module has been highlighted with a red circle and is mounted on
the rotating plate.

174 A. Ceccarelli et al.

direction for the 84 MHz quartz oscillator are shown here, while information also on
other environmental conditions (Y-acceleration, air humidity, barometric pressure) and
the second oscillator can be found in [15].

Obtaining Training Data. The investigated oscillator has a measured variance (i.e.,
variations in the number of oscillations when environmental conditions are stable)
around its nominal frequency of approximately 0.02381 ppm. In the following we
present frequency deviations of the oscillator when doing a temperature sweep from
0° C to 50° C and an acceleration sweep from 0 g to 5 g (g is the weight per mass unit).

Figure 4 depicts the frequency deviation over the temperature range. If, for
instance, the frequency deviation is about 2.5 ppm (e.g., at 15° C), it means that in
each second a clock driven by this oscillator deviates 2.5 µs from a clock with perfect
accuracy. Without clock synchronization, this deviation sums up to 9 ms/h, or
0.216 s/day. In Fig. 4, a positive value of the deviation denotes an increase in the
number of oscillations compared to the nominal value.

Figure 5 shows the frequency deviation of the oscillator concerning variations in
the acceleration force and temperature.

Fig. 4. Frequency deviation with respect to temperature.

Fig. 5. Frequency deviation with respect to acceleration in X-axis at different temperatures.

Time and Resilient Master Clocks in Cyber-Physical Systems 175

The results show that additionally to the significant correlation between the tem-
perature and the frequency deviation, the oscillator exhibited deviations concerning
changes in acceleration (and pressure and humidity, see [15]). All these deviations have
been higher than the variance of the oscillator at stable environmental conditions.

Evaluation of Compensation Model. The evaluation of the compensation model
carried out by recording the compensation performance over a set of test sequences
where the controllable environmental conditions are varied. Each of the test sequences
takes 240 min. Figures 6 and 7 show three of such sequences for the environmental
conditions temperature and acceleration in X direction.

Figure 8 shows the compensation performance of the CDC module in holdover
mode only for the first test sequence (1. Sequence), because all other test sequences
gave similar results. In Fig. 8 we plotted the results for two different compensation
models: basic compensation (only constant drift correction), and temperature, accel-
eration and pressure (T&A&P). Also for comparison reasons, the deviation is depicted,
when no compensation mechanism is applied. Different effects during manufacturing or
aging of the oscillator crystal lead to a permanent deviation from the nominal frequency
(here it is faster than the reference), which is about 60 ppm.

Fig. 6. Three test sequences of temperature set points.

Fig. 7. Three test sequences of X-acceleration set points.

176 A. Ceccarelli et al.

Clearly, basic compensation has the largest corrective effect and improved the mean
drift rate of the oscillator from an order of magnitude of about 10−5 to approximately
10−6. The compensation model that regarded more of the investigated environmental
conditions (T&A&P) gave a better result, as the oscillator’s drift rate is now in the 10−7

order of magnitude.
Even more improved results should be easily achievable when using more

sophisticated compensation models, sensors of better quality, and implementing
online-learning for self-fine-tuning. Consequently, this evaluation gives strong support
to the benefits of our proposed clock drift compensation method.

3.4 Summary of Main Findings on the Clock Drift Compensation Module

The proof-of-concept prototype confirms that the compensation of frequency deviations
of crystal oscillators by passive observation of the surrounding environmental condi-
tions, and using a trained compensation model leads to a significant decrease of clock
drift. The different environmental conditions indeed have an effect on the stability of
the oscillator and some of these effects can be reduced when these conditions are
known. Available protocols (e.g., the Network Time Protocol – NTP) are able to
compensate constant drifts of the local clock of a computer system, if the environ-
mental conditions are not changed after the reference clock is disconnected. However,
many CPSoSs operate in environments, within which it is infeasible – or at least only
with a considerable effort (e.g., by constantly heating the crystal oscillator) – to keep
these conditions stable. In contrast, sensors to determine the environmental conditions
are often already available in those systems, or can be installed at relatively low cost.

Fig. 8. Frequency deviation under different compensation models.

Time and Resilient Master Clocks in Cyber-Physical Systems 177

While the presented improvement by temperature, acceleration and pressure
compensation are already promising, further experiments have to be performed with
more sophisticated compensation models and a more advanced experimental equip-
ment that allows higher ranges of pressure, the up- and down variation of humidity, as
well as experiments under other environmental conditions (e.g., vibration, radiation,
electromagnetic fields).

4 Reliable and Self-Aware Clock (R&SAClock) Module

The Reliable and Self Aware Clock (R&SAClock, [12]) is a software component that
provides IEEE 1588 compliant techniques for the analysis and improvement of the
synchronization quality among CSs interacting in SoS. The R&SAClock exploits
statistical information in order to provide information about uncertainty of the current
time view.

Generally, in several contexts such as industrial automation, telecommunication or
energy distribution, SoSs require an accurate synchronization of their CSs in order to
assure the adequate Quality of Service (QoS). The statistical information collected by
R&SAClock to estimate synchronization uncertainty [8] is used as feedback about
quality of synchronization. The CSs equipped with R&SAClock are continuously
updated about the current synchronization performance.

4.1 General Concepts on R&SAClock

A CS uses R&SAClock to acquire both the time value and synchronization uncertainty
associated with the time value.

For clarity, we report basic notions on time and clocks that are used in the rest of
this section. Noteworthy, the terminology is consistent with the terms defined in
Chap. 1. Figure 9 below is introduced to better clarify relevant aspects.

The global time is an abstraction of physical time in a distributed computer system;
it is the unique time view shared by the CSs. The reference clock is a working
hypothesis for measuring the instant of occurrence of an event of interest: it is a clock
that always holds the global time. We can say that the reference node is the CS that
owns the reference clock. Also, given a local clock c and any time instant t, we define c
(t) as the time value read by local clock c at time t.

The behavior of a local clock c is characterized by the quantities offset, accuracy
and drift. The offset of two events denotes the duration between two events and the
position of the second event with respect to the first event on the timeline; the offset
Θc(t) = t − c(t) is the actual distance of local clock c of the CS node n from the global
time at time. This distance may vary through time.

Accuracy Ac of clock c denotes the maximum offset of a given clock from the
external time reference, measured by the reference clock. An upper bound of the offset
adopted in the definition of system requirements and therefore targeted by clock
synchronization mechanisms.

178 A. Ceccarelli et al.

The precision π of an ensemble of synchronized clocks denotes the maximum offset
of (distance) respective ticks of the global time of any two clocks of the considered
clock ensemble.

The drift ρc(t) of a physical clock describes the frequency ratio between the physical
clock and the reference clock i.e., the rate of deviation of a local clock c at time t from
global time [10].

Synchronization uncertainty Uc(t) is defined as an adaptive and conservative
evaluation of the offset Θc(t) at any time t; uncertainty is such that Ac ≥ Uc(t) ≥ |
Θc(t)| ≥ 0 [8]. Hence, accuracy Ac is an upper bound of uncertainty Uc(t) and con-
sequently of the absolute value of the offset Θc(t).

When a CS asks the current time to R&SAClock, the latter provides an enriched
time value useful for time synchronization. The enriched time value is composed of a
set of values: likelyTime, minTime, maxTime and FLAG. LikelyTime is the time value
computed reading the local clock. minTime and maxTime represent left and right
synchronization uncertainty margins with respect to likelyTime. They are based on
synchronization uncertainty provided by the internal mechanisms of R&SAClock.
Finally, the FLAG takes the value 1 if requirements on uncertainty are satisfied, 0
otherwise. Details on R&SAClock and its implementation can be found in [8, 11].

It is evident that the main core of R&SAClock is the uncertainty evaluation
algorithm that equips R&SAClock with the ability to compute the uncertainty. Such an
algorithm relies on the Statistical Predictor and Safety Margin (SPS) algorithm.

Each CS that uses the R&SAClock getTime method for getting synchronization
information and each CS has the two main expectations: (i) a request for the time value

Fig. 9. Basic notions on time and clocks.

Time and Resilient Master Clocks in Cyber-Physical Systems 179

should be satisfied quickly, and (ii) the enriched time value should include the correct
real time. These are formally expressed by the two requirements in Table 1.

4.2 The Statistical Predictor and Safety Margin (SPS)

In the following the SPS algorithm is briefly described for a local software clock c that
is disciplined by an external clock synchronization mechanism. SPS computes the
uncertainty at a time t with a coverage, intended as the probability that Ac ≥ Uc(t) ≥
|Θc(t)| ≥ 0 holds. The computed uncertainty is composed by three quantities: (i) the
estimated offset, (ii) the output of a predictor function, P and (iii) the output of a safety
margin function, SM. The computation of synchronization uncertainty requires a right
uncertainty Ur(t) and a left uncertainty Ul(t): consequently, SPS has a right predictor
with a right safety margin for right uncertainty, and a left predictor with a left safety
margin for left uncertainty. The output of the SPS at t ≥ t0 is constituted by the two
values:

Ur tð Þ ¼ max(0, ~H t0ð ÞÞþPr tð Þþ SMrðt0Þ ð1Þ

Ul tð Þ ¼ min(0, ~H t0ð ÞÞþPl tð Þþ SMlðt0Þ ð2Þ

The estimated offset ~Hðt0Þ is computed by the synchronization mechanism and can
contain errors. If the estimated offset is positive, it influences the computation of an
upper bound on the offset itself and consequently is considered in (1). If it is negative, it
is ignored. A symmetric reasoning holds for (2).

The predictor functions, Pr tð Þ and Pl tð Þ, predict the behavior of the oscillator and
continuously provide bounds (lower and upper) which constitute a safe (pessimistic)
estimation of the oscillator drift and consequently a bound on the offset. The oscillator
drift is modelled with the random walk frequency noise model, one of the five
canonical models used to model oscillators (the power-law models [14]), that we
considered as appropriate and used. Obviously the parameters of this random walk are
unknown and depend on the specific oscillator used. They are computed resorting to
the observation of the last m samples of the drift (where m smaller or equal to the set-up

Table 1. Requirements for R&SAClock

Req. ID R&SAClock requirement description

REquation 1 The service response time provided by R&SAClock is bounded: there exists a
maximum reply time ΔRT from a getTime request made by a CS user to the
delivery of the enriched time value (the probability that the getTime is not
provided within ΔRT is negligible)

REquation 2 For any minTime and maxTime in any enriched time value generated at time t,
it must be minTime ≤ t ≤ maxTime with a coverage ΔCV (by coverage we
mean the probability that this equation is true). In other words, given
likelyTime = c(t), the true time t must be guaranteed within the interval
[minTime, maxTime] with a coverage ΔCV

180 A. Ceccarelli et al.

parameter M), and using a safe bound on the population variance of the estimated drift
values. The coverage of this safe bound depends on the set-up probabilities pds and pdv
defined in Table 2 together other main quantities involved in the SPS algorithm.

The safety margin functions SMrðt0Þ and SMlðt0Þ aim at compensating possible
errors in the prediction or in the offset estimation. The safety margin function is
computed starting from the collection of the last n samples of the estimated offset
(where n is smaller or equal to the set-up parameter N). A safe bound to the population
variance of the estimated offset is computed. The coverage of this safe bound depends
on the set-up probabilities pos and pov (see Table 2).

The parameter t0 is the time in which the most recent synchronization is performed.
At time t0 the synchronization mechanism computes the estimated offset ~Hðt0Þ and
possibly the estimated drift ~q t0ð Þ (if not provided by the mechanism, it can be easily
computed by R&SAClock itself).

4.3 Proof-of-Concept and Exemplary Runs

The R&SAClock has been implemented in the Beagle Bone [16] board with
Debian OS as described in the AMADEOS deliverable D4.4 [15]. The R&SAClock
uses GPS for clock synchronization; it acquires data on the estimated offset and drift
from the Network Time Protocol (NTP) [9] component.

When the synchronization uncertainty exceeds a given threshold, the Checker
module is notified by reading the FLAG field of the enriched time value. The com-
munication channel between the Checker and the R&SAClock is socket-based.

Table 2. SPS parameters

Symbol Definition

t0 time in which the most recent synchronization is performed
~Hðt0Þ estimated offset at time t0
~qðt0Þ estimated drift at time t0
M, m maximum and current number of (most recent) samples of the estimated drift that

the UEA collects (0 < m ≤ M)
N, n maximum and current number of (most recent) samples of the estimated offset that

the UEA collects (0 < n ≤ N)
pds probability that the population variance of the estimated drift is smaller than a safe

bound on such variance
pdv a safe bound of the drift variation since t0 is computed with probability pdv
pds ◦
pdv

the joint probability of these two values represents the coverage of the prediction
function

pos probability that the population variance of the estimated offset is smaller than a
safe bound on the variance

pov a safe bound of the offset at t0 is computed with probability pov
pos ◦
pov

the joint probability of these two values represents the coverage of the safety
margin function

Time and Resilient Master Clocks in Cyber-Physical Systems 181

In the following we show an exemplary run with the R&SAClock executing on the
Beagle Bone board proof-of-concept. We acknowledge that an extensive assessment
activity is required [13] (i) to give evidence that the defined software executing on the
proof-of-concepts satisfies the identified requirements, and (ii) to opportunely tune the
R&SAClock parameters (Table 2). Still, we present this exemplary run because it
explains intuitively the behavior of R&SAClock.

In the considered run, reported in Fig. 10, the x-axis (in seconds) corresponds to the
likelyTime collected reading the local clock. The maxTime and minTime computed by
R&SAClock are respectively the two lines above and below the x-axis. In fact, the y-
axis (in milliseconds) shows the maxTime and minTime with respect to likelyTime i.e.,
maxTime-likelyTime and likelyTime - minTime. The FLAG value is not shown in this
figure.

In the present run, the R&SAClock was already running for 30000 s (see x-axis).
As long as the connection with the GPS signal is stable, NTP reliably disciplines the
local clock: an accurate estimation of offset is provided, and synchronization uncer-
tainty is a small interval (in the order of few microseconds or less). As it can be shown
in the time interval between second 30000 and 30600, the synchronization uncertainty
is slightly reduced through time. In fact, the R&SAClock “studies” the past behavior of
the local clock, understand that it is overall stable and trustable, and reduces syn-
chronization uncertainty.

Instead, at approximately second 30700, an instability in the local clock and NTP is
detected, most likely due to the temporary unavailability of the GPS signal (signal
loss). Synchronization uncertainty is increased, because no fresh information on the
clock behavior w.r.t. the reference time is provided.

At approximately second 31900, the synchronization uncertainty steadily increases
through time. In fact, GPS signal is lost and no fresh information from the time source
is provided. There are no guarantees that the clock is disciplined correctly.

When the GPS signal is newly available (approximately at second 33200), a new
accurate estimation of the offset is provided. Consequently, the synchronization
uncertainty is reduced again. However, from now on, the synchronization with the GPS

Fig. 10. Exemplary run of R&SAClock on the proof-of-concept.

182 A. Ceccarelli et al.

is unstable: there are only few, sparse synchronizations. This determines the behavior
of the R&SAClock, which cannot trust the local clock and consequently the syn-
chronization uncertainty grows.

4.4 Summary of Main Findings on R&SAClock

The R&SAClock was initially proposed in [8, 11, 12] to monitor the software clock in
distributed system. In such works, R&SAClock was implemented and exercised on a
fixed node, and with the intention of supporting only the node itself.

Instead, in the RMC, the R&SAClock is intended to operate as a failure detector for
a Master clock: in other words, the Checker module of the RMC can read the FLAG
value of the R&SAClock, and decide if the RMC can act as a master clock or not.

In addition, we implemented the R&SAClock on a light board which has small
requirements for power consumption. This improves the range of applicability of the
R&SAClock w.r.t. the previous environments described in [12], which are distributed
servers. The experiments, although still preliminary, confirm that the R&SAClock
behaves as expected also confirming, in a different environment, the results shown in [12].

5 Conclusions

This Chapter discussed the role of time in Systems-of-Systems. Building on the terms,
definition and knowledge defined in Chap. 1, this Chapter identified motivation, with
examples, for the prominent role of time and clocks in time-aware Systems-of-Systems.
Further, the Chapter discussed the challenges of resilient time keeping and it presents
the Resilient Master Clock (RMC), a hardware-software solution that acts as an
accurate, fail-silent global time base which is externally synchronized to a
satellite-based time source.

The design of the RMC is presented, its main algorithm illustrated including results
from the execution on two different prototypes. Although significant work is still
needed to consolidate results, the RMC appears a promising approach to provide a
low-cost, low-power consumption solution for resilient time-keeping and resilient
master clock in Systems-of-Systems.

References

1. Kopetz, H.: Why a Global Time is Needed in a Dependable SoS. CoRR abs/1404.
6772 (2014)

2. AMADEOS Consortium, D2.3 – AMADEOS conceptual model – Revised (2016)
3. US Government Accountability Office: “GPS Disruptions: Efforts to Assess Risk to Critical

Infrastructure and Coordinate Agency Actions Should be Enhanced”. Washington, GAO -
14-15 (2013)

Time and Resilient Master Clocks in Cyber-Physical Systems 183

4. GPS error caused ‘12 hours of problems’ for companies, 4 February 2016. http://www.bbc.
com/news/technology-35491962

5. Shepard, D.P., Humphreys, T.E., Fansler, A.A.: Evaluation of the vulnerability of phasor
measurement units to GPS spoofing attacks. Int. J. Crit. Infrastruct. Prot. 5(3), 146–153
(2012)

6. Cyber-physical Systems-of-Systems: the AMADEOS approach and Main Advances,
Webinar for the INCOSE WG on Systems-of-Systems (2015)

7. 1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems (2008)

8. Bondavalli, A., Ceccarelli, A., Falai, L.: Assuring resilient time synchronization. In:
Proceedings of the 2008 Symposium on Reliable Distributed Systems, October 06–08, 2008,
SRDS, pp. 3–12. IEEE Computer Society, Washington, DC

9. IEEE Standard for a Precision Clock Synchronization Protocol for Network Measurement
and Control Systems, IEEE Std 1588-2008 (IEEE Std 1588-2002), p. cl-269, 24 July 2008

10. Verissimo, P., Rodriguez, L.: Distributed Systems for System Architects. Kluwer Academic
Publisher, Dordrecht (2001)

11. Bondavalli, A., Brancati, F., Ceccarelli, A.: Safe estimation of time uncertainty of local
clocks. In: Proceedings of International IEEE Symposium on Precision Clock Synchro-
nization for Measurement, Control and Communication, ISPCS 2009, pp. 47–52

12. Bondavalli, A., Brancati, F., Ceccarelli, A., Falai, L., Vadursi, M.: Resilient estimation of
synchronisation uncertainty through software clocks. Int. J. Crit. Comput. Based Syst. 4,
301–322 (2013). doi:10.1504/IJCCBS.2013.059038. ISSN: 1757-8779

13. Bondavalli, A., Brancati, F., Ceccarelli, A., Vadursi, M.: Experimental validation of a
synchronization uncertainty-aware software clock. In: The 29th IEEE Symposium on
Reliable Distributed Systems, Delhi, India, October 31 – November 3, 2010, pp. 245–254
(2010). doi:10.1109/SRDS.2010.35. ISBN: 978-0-7695-4250-8

14. Barnes, J.A., et al.: Characterization of frequency stablity. IEEE Trans. Instrum. Meas.
IM-20, 105–120 (1970)

15. AMADEOS project, deliverable D4.4 “Internal Delivery- Design of Resilient Master Clock”
(2016)

16. BeagleBoard.org project Debian. http://beagleboard.org/project/debian
17. Mills, D.: Internet time synchronization: the network time protocol. IEEE Trans. Commun.

39(10), 1482–1493 (1991)
18. Beekhuizen, J., Kromhout, H., Huss, A., Vermeulen, R.: Performance of GPS devices for

environmental exposure assessment. J. Exposure Sci. Environ. Epidemiol. 23(5), 498–505
(2013). ISSN 1559-0631

19. Kaplan, E.D., Hegarty, C.J. (eds.): Understanding GPS: Principles and Applications, 2nd
edn. Artech House, Boston (2006)

20. The Royal Academy of Engineering, Global Navigation Space Systems: reliance and
vulnerabilities, March 2011

21. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

22. Verissimo, P.: On the role of time in distributed systems. In: FTDCS (1997)
23. Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects, vol. 1. Springer

Science & Business Media, New York (2012)
24. Ceccarelli, A., et al.: Introducing meta-requirements for describing system of systems. In:

2015 IEEE 16th International Symposium on High Assurance Systems Engineering. IEEE
(2015)

184 A. Ceccarelli et al.

http://www.bbc.com/news/technology-35491962
http://www.bbc.com/news/technology-35491962
http://dx.doi.org/10.1504/IJCCBS.2013.059038
http://dx.doi.org/10.1109/SRDS.2010.35
http://beagleboard.org/project/debian

25. Kopetz, H.: Real-time Systems-Design Principles for Distributed Embedded Applications.
Springer, New York (2011)

26. Levine, J., Mills, D.: Using the network time protocol (ntp) to transmit international atomic
time (tai). In: 2nd Annual Precise Time and Time Interval Systems and Applications
Meeting, 28–30, Reston, VA, USA, pp. 431–440 (2000)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Time and Resilient Master Clocks in Cyber-Physical Systems 185

http://creativecommons.org/licenses/by/4.0/

	Time and Resilient Master Clocks in Cyber-Physical Systems
	1 Introduction: Challenges for Time-Aware Cyber-Physical Systems-of-Systems
	1.1 On the Role of Time in Cyber-Physical Systems-of-Systems
	1.2 Towards a Dependable Global Time-Base

	2 Resilient Master Clock (RMC) Architecture
	3 The Clock Drift Compensation Module
	3.1 Compensating the Drift of Clocks Based on Crystal Oscillators
	3.2 Proof-of-Concept Prototype
	3.3 Evaluation
	3.4 Summary of Main Findings on the Clock Drift Compensation Module

	4 Reliable and Self-Aware Clock (R&SAClock) Module
	4.1 General Concepts on R&SAClock
	4.2 The Statistical Predictor and Safety Margin (SPS)
	4.3 Proof-of-Concept and Exemplary Runs
	4.4 Summary of Main Findings on R&SAClock

	5 Conclusions
	References

