
AMADEOS SysML Profile for SoS Conceptual
Modeling

Paolo Lollini1(&), Marco Mori1, Arun Babu2, and Sara Bouchenak3

1 Department of Mathematics and Informatics,
University of Florence, Firenze, Italy

{paolo.lollini,marco.mori}@unifi.it
2 Resiltech SRL, Pisa, Italy

arun.babu@resiltech.com
3 Université Grenoble Alpes, Grenoble, France

sara.bouchenak@insa-lyon.fr

1 Introduction

In the European Union FP7-610535-AMADEOS project, a conceptual model for
Systems of Systems (SoSs) has been conceived to find a common language allowing
experts to collaborate on modelling, engineering, and analyzing SoSs (see public
deliverable D2.3 “AMADEOS conceptual model - Revised” [1]).

Analogously to the conceptual model for the architecture of software intensive
systems, we separated the description of basics SoS concepts into different perspec-
tives. These perspectives are called viewpoints, each of which is focused on different
concerns of the SoS: structure, evolution, dynamicity, dependability, security, time,
multi-criticality and emergence.

• Structure: It represents architectural concerns of an SoS. In particular it defines the
manner in which Constituent Systems (CSs) are composed [17] and how do they
exchange semantically well-defined messages [10] through their interfaces [22].

• Evolution and dynamicity: Dynamicity represents variations to the operation of SoS
that have been considered at design-time to reconfigure the SoS in specific situa-
tions e.g., either after a fault or after the variation of an external condition [21].
Evolution represents changes that have been introduced later to accommodate
modified or new requirements by means of including, removing or modifying
system functions [16].

• Dependability and security [2]: It consists of non-functional critical requirements as
availability, reliability, safety, privacy or confidentiality.

• Time: It is fundamental since SoSs are sensitive to the progression of time and it is
necessary to design responsive SoSs able to achieve reliably time-dependent
requirements [9].

This work has been partially supported by the FP7-610535-AMADEOS project.

© The Author(s) 2016
A. Bondavalli et al. (Eds.): Cyber-Physical Systems of Systems, LNCS 10099, pp. 97–127, 2016.
DOI: 10.1007/978-3-319-47590-5_4



• Multi-criticality: It aims at integrating together subsystems providing services with
different levels of criticality corresponding to different dependability and security
requirements [23].

• Emergence: It mainly denotes the appearance of novel phenomena at the SoS level
that are not observable at CSs level; managing emergence is essential to avoid
undesired, possibly unexpected, situations generated from CSs interactions as well as
to realize desired emergent phenomena being usually the higher goal of an SoS [14].

In this chapter we will focus on the basic SoS concepts belonging to the different
viewpoints and on their semantic relationships, and we will present a SysML profile to
represent the conceptual model.

The rest of this chapter is structured as follows: Sect. 2 presents the different
concepts defined in a SysML profile to model an SoS. Section 3 describes the structural
properties of an SoS in term of architecture, communication and interface. Section 4
defines the concept of evolution related to all changes of an SoS. Section 5 presents the
concept of dynamicity that represents the variation to the operation of an SoS con-
sidered at design time. Section 6 describes the concepts related dependability, security
and multi-criticality aspects. Section 7 describes the global notion of time exploited in
an SoS, while Sect. 8 defines the concept of emergence of novel phenomena at the SoS
level. Then, Sect. 9 introduces a concrete case study to illustrate the application of
basic SoS concepts. Lastly, Sect. 10 provides a brief overview of related works before
the conclusion in Sect. 11.

2 Conceptual Modeling Support: The AMADEOS
SysML Profile

This section focuses on the definition of a SysML profile as a modeling support for
representing the basic concepts for SoS and their relationships. Following the
viewpoint-driven approach previously introduced, the concepts and their relationships
have been modeled using a SysML semi-formal representation, organized in a profile1

composed by viewpoint-related packages. To this end, we have defined specific con-
structs and we have exploited already implemented stereotypes available in other
related profiles to support specific viewpoints. Our proposed profile is meant to be used
by designers in describing the static SoS structure and its dynamic behavior according
to the introduced viewpoints. Such an SoS description can be adopted to be kept
consistent across viewpoints by tools and for machine-assisted cross-viewpoint anal-
yses (e.g., finding detrimental emergent SoS behavior).

The SoS profile will be used as an abstract model to represent the topology and the
state evolution of an operational SoS. The profile diagrams contain the SoS basic
concepts distributed in sub-packages as follows:

1 https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git - GitHub public
link to the AMADEOS SysML profile and the Smart Grid application.

98 P. Lollini et al.

https://github.com/AMADEOSConceptualModel/SysMLProfileAndApplication.git


• SoS Architecture: describes the basic architectural elements and their semantic
relationships.

• SoS Communication: provides the fundamental elements in order to describe the
behavior of an SoS in terms of sequence of messages exchanged among CSs.

• SoS Interface: describes all the points of integration that allow the exchange of
information among the connected entities.

• SoS Dependability: provides the basic concepts related to SoS dependability.
• SoS Security: provides the basic concepts related to SoS security.
• SoS Evolution: provides the main elements to describe the process of gradual and

progressive change of an SoS.
• SoS Dynamicity: provides basic concepts related to SoS dynamicity.
• SoS Scenario-based reasoning: provides the basic concepts for supporting the

generation, evaluation and management of different scenarios resulting from SoS
dynamicity, thus supporting decision-making in an SoS.

• SoS Time: provides the fundamental elements to describe time concepts.
• SoS Multi-Criticality: provide the basic concepts to describe the multi-criticality

aspects of an SoS.
• SoS Emergence: provides the main elements to describe the SoS emergence

concepts.

It is worth noticing that most of the above packages come from a direct mapping to
the views previously defined except for SoS Architecture, SoS Communication and SoS
Interface that all together implement the Structure view, and for SoS Dynamicity and
SoS Scenario-based reasoning that map into the Dynamicity view.

We have implemented the whole profile by exploiting the Eclipse integrated
development environment, jointly with Papyrus. Eclipse is an open source environment
and offers all the related advantages in terms of cost, customizability, flexibility and
interoperability. Papyrus is an Eclipse plugin, which offers a very advanced support to
define UML profiles.

In the following sections, we will discuss the key elements of the conceptual model
for each identified viewpoint. All the new introduced stereotypes extend the “Block”
stereotype of SysML, if not differently specified. For the sake of readability, we will
not represent such relations in the SysML diagrams describing the different packages.

3 Structure Viewpoint

The viewpoint of structure represents architectural concerns of an SoS. In particular, it
defines the manner in which CSs are composed [17] and how do they exchange
semantically well-defined messages [10] through their interfaces [22].

The static structure of an SoS is based on the concept of a Constituent System (CS),
which is ‘An autonomous subsystem of an SoS, consisting of computer systems and
possibly of a controlled objects and/or human role players that interact to provide a
given service’. A CS exchanges information that is either represented by things/energy
or data with its environment by means of interfaces. The environment of a CS includes

AMADEOS SysML Profile for SoS Conceptual Modeling 99



all entities that are able to interact with the CS, including other CSs. In our context,
information is a proposition about the state of or an action in the world, which is either
an attribute of a physical thing (e.g., temperature of a room) or an attribute of an
abstract construct (e.g., execution time of a program).

The interfaces among which the CSs interact one another are the Relied Upon
Interfaces (RUIs). As such, the CS service – which is its intended behavior – is
provided at this interface. RUI is further structured in the Relied Upon Message
Interface (RUMI) and the Relied Upon Physical Interface (RUPI). RUMI allows for
message-based communication of CSs over cyberspace (e.g., the Internet) while RUPI
enables the indirect physical exchange of things or energy among CSs over their
common environment. It consists of sensors and actuators that take and time-stamp
observations of and/or act at a defined deadline on some physical state (e.g., the
temperature of a room) in the physical environment according to their design. Envi-
ronmental dynamics (e.g., heat dissipation through walls) act additionally to other CSs
on the physical state. CSs that interact with each other over a common physical
environment establish a stigmergic channel, i.e., they communicate indirectly over
influencing and measuring the physical state. For more details on the interface topic,
please refer to [11], and Chapter 2 of this book.

The profile supports the description of the static and dynamic structure of an SoS
representing: the basic architectural elements and their semantic relationships; the
sequence of messages exchanged among CSs in an SoS; the points of integration, i.e.,
interfaces, allowing the exchange of information/energy among connected entities.

The structural properties of an SoS are described using three different packages
“SoS Architecture” (Sect. 3.1), “SoS Communication” (Sect. 3.2), and “SoS Interface”
(Sect. 3.3). The first defines Stereotypes useful to describe the topology of an SoS; the
second provides Stereotypes to describe the communication aspects between the
Constituent Systems of an SoS; finally, “SoS Interface” semi-formalizes internal and
external points of interaction of an SoS.

3.1 SoS Architecture Package

Architectural components are defined within the “SoS Architecture” package (see
Fig. 1). This package extends SysML Block Definition Diagram (BDD) in order to
model the topology and the relations of an SoS. Blocks in SysML BDD are the basic
structural element used to model the structure of systems (Wolfrom) and they can be
used to represent: systems, system components (hardware and software), items, con-
ceptual entities and logical abstractions. A Block is depicted as a rectangle with
compartments that contain Block characteristics such as: name, properties, operations
and requirements that the Block satisfies. A Block provides a unifying concept to
describe the structure of an element or a system: System, Hardware, Software, Data,
Procedure, Facility and Person.

This type of diagram helps a system designer to depict the static structure of an SoS
in terms of its constituent system and possible relationships.

100 P. Lollini et al.



The first Stereotype is “entity” and it extends the SysML metaclass “Block”. We
distinguish between two different kinds of entities: “thing” or “construct”. They
extend the properties of “entity” and so they are also represented as Blocks.

A “System” is a type of entity (thereby a Block), it has the same characteristic but it
is also capable of interacting with its environment. As it is expressed by the “sys_type”
Enumeration, a system can be:

• “autonomous” - A system that can provide its services without guidance by another
system;

• “monolithic” - if distinguishable services are not clearly separated in the imple-
mentation but are interwoven;

• “open” (or “closed”) - A system that is interacting (or is not interacting) with its
environment during the given time interval of interest;

• “legacy” - An existing operational system within an organization that provides an
indispensable service to the organization;

• “homogeneous” - A system where all sub-systems adhere to the same architectural
style;

• “reducible” - A system where the sum of the parts makes the whole;

Fig. 1. SoS Architecture package

AMADEOS SysML Profile for SoS Conceptual Modeling 101



• “evolutionary” - A system where the interface is dynamic (i.e., the service speci-
fication changes during the given time interval of interest);

• “periodic” - A system where the temporal behavior is structured into a sequence of
periods.

• “stateful” (or “stateless”) - A system that contains (or does not contain) state at a
considered level of abstraction.

A system can be influenced by an “architectural_style”, it can provide a com-
munication “interface” and it has a “boundary”. A “subsystem” is a subordinate
system that is part of a system and it is related to “system” by a composite relation.

A Constituent System or “CS” is an autonomous subsystem of an SoS, consisting
of human machine interfaces “HMI” and possibly of physical “controlled_object” and
it provides a given “service” by interacting with “role_player” through the “RUMI”
(that is introduced in SoS Communication package). RUMI represents a message
interface where the services of a CS are offered to other CSs of an SoS, and “RUPI”
Stereotype represents a physical interface where things are exchanged among the CSs
of an SoS. A wrapper represents a new system with at least two interfaces, which is
introduced between interfaces of the connected component systems to resolve property
mismatches among these systems, which will typically be legacy_systems. A prime
mover is a human that interacts with the system according to his/her own goal. In the
profile, the “wrapper”, the “legacy_system” and the “prime_mover” are “CS”, which
is a Stereotype that extends the property of “system” that contains multiple
“sub_system”, which in turn can be “CS”. A system has a “state_space” composed of
states described by the variables that may be accessed by the CS service. In addition, a
CS interacts with cyber-physical systems. “SOS” Stereotype represents the integration
of systems, i.e., CSs which are independent and operable, and which are networked
together for a period of time to achieve a certain goal. As expressed by the “sos_type”
Enumeration, an SoS can be:

• “directed” - An SoS with a central managed purpose and central ownership of all
CSs;

• “acknowledged” - Independent ownership of the CSs, but cooperative agreements
among the owners to an aligned purpose;

• “collaborative” - Voluntary interactions of independent CSs to achieve a goal that
is beneficial to the individual CS;

• “virtual” - Lack of central purpose and central alignment.

A Cyber-Physical System (“CPS”) is composed by a set of “cyber_system” (i.e.,
computer systems), and “physical_system” (i.e., controlled objects).

3.2 SoS Communication Package

The “SoS Communication” package (see Fig. 2) is composed of CSs that exchange
information with other elements. In order to represent the exchanged information during
the progression of time we use a SysML Sequence Diagram and we represent a CS not
only as a Block entity of BDD but also as “Lifeline”metaclass. “Lifeline” is a metaclass

102 P. Lollini et al.



and part of Sequence Diagrams. Through a Sequence Diagram it is possible to represent
the behavior of a system in terms of a sequence of messages exchanged between parts
and a “Lifeline” defines the individual participants in the interaction (Constituent Sys-
tem). Moreover, through a “Lifeline” it is possible to describe the temporal behavior of
an SoS. The time is showed by the length of the “Lifeline” and it passes from top to
bottom: the interaction starts near the top of the diagram and ends at the bottom.

A “RUI” Stereotype represents an external interface of a CS where the services of a
CS are offered to other CSs. It extends “external_interface” (defined in “SoS Inter-
face” package) and guarantees the exchange of information among CSs (“CS” is
defined in “SoS Architecture” package). A RUI can be represented also as a Sequence
Diagram in which CSs are represented by the lifelines that exchange information.
A RUI, can be either a “RUMI” or a “RUPI” and it is monitored through “probes”.
A RUI connecting strategy is part of the interface specification that searches for
desired, w.r.t. connections available, and compatible RUIs of other CSs and connects
them until they either become undesirable, unavailable, or incompatible. A RUI,
having a “connection_strategy”, is instantiated complying to possibly multiple “de-
pendability_guarantees” and satisfying “security” constraints.

A “RUMI” represents a message interface for the exchange of information among
two or more CSs and extends the “RUI” Stereotype. While messages are exchanged
through the RUMI, physical elements are exchanged among the CSs of an SoS through
the “RUPI”; physical elements are things or energy.

Fig. 2. SoS Communication package

AMADEOS SysML Profile for SoS Conceptual Modeling 103



In this package we also model the concept of a stigmergic channel. This type of
channel transports information via the change and observation of states in the envi-
ronment. To represent a stigmergic mechanism, we have introduced the “environ-
ment” Stereotype that is affected by the RUI.

A message is a data structure that is composed by a “data_field”, a “header” and a
“trailer” and it flows through a “transport_service”. The main transport protocol
classes to send a message from a sender to a receiver are listed in the “trans-
port_service” Enumeration data type, i.e.:

• “datagram” - A best effort message transport service for the transmission of
sporadic messages from a sender to one or many receivers;

• “PAR-Message” - A PAR-Message (Positive Acknowledgment or Retransmission)
is an error controlled transport service for the transmission of sporadic messages
from a sender to a single receiver;

• “TT-Message” - A TT-Message (Time-Triggered) is an error controlled transport
service for the transmission of periodic messages from a sender to many receivers.

A message can be classified as:

• “valid”- A message is valid if its checksum and contents are in agreement;
• “checked” - A message is checked at the source (or, in short, checked) if it passes

the output assertion;
• “permitted” - A message is permitted with respect to a receiver if it passes the input

assertion of that receiver. The input assertion should verify, at least, that the mes-
sage is valid;

• “timely” - A message is timely if it is in agreement with the temporal specification;
• “correctness” - A message is correct if it is both timely and value correct.

A message is value-correct if it is in agreement with the value specification;
• “insidious” - A message is insidious if it is permitted but incorrect.

3.3 SoS Interface Package

The interfaces are the key issue to the integration of systems (see also Chap. 2 of this
book) and in this section we introduce an in-depth analysis of the SoS interface con-
cepts, which are represented in Fig. 3.

An interface can be an “internal_interface” a “physical_interface”, a “mes-
sage_based_interface” and an “external_interface”. The internal interface connects
two or more subsystems of a CS (the Stereotype “subsystem”, defined in SoS Archi-
tecture package, is connected with “internal_interface” in order to represent this rela-
tion). The physical interface consists of three different types of elements, namely
“sensor”, “actuator” and “transducer”. The “message_based_interface” allows the
transmission of message by means of “message” which are defined in terms of
“message_variable”. Finally, the external interface connects two or more CS (the
Stereotype “CS” is connected with “external_interface”). A different type of “ex-
ternal_interface” is the “utility_interface”, which is an interface of a CS that is used
for the configuration, or the control, or the observation of the behavior of the CS. The

104 P. Lollini et al.



F
ig
.
3.

So
S
In
te
rf
ac
e
pa
ck
ag
e

AMADEOS SysML Profile for SoS Conceptual Modeling 105



purposes of the utility interfaces are to (i) configure and update a CS, (ii) diagnose a
CS, and (iii) let a CS interact with its remaining local physical environment that is
unrelated to the operative services of the SoS.

The utility interface is specialized into three different types of interfaces:

• “c-interface” - configuration interface - an interface of a CS that is used for the
integration of the CS into an SoS and the reconfiguration of the CS’s RUIs while
integrated in a SoS.

• “d-interface” - diagnosis interface - an interface that exposes the internals of a CS
for the purpose of diagnosis.

• “local_IO_Interface” - an interface that allows a CS to interact with its surrounding
physical reality that is not accessible over any other external interface. For example,
a CS that controls the temperature of a room usually has at least the following local
IO Interfaces: a sensor to measure the temperature, an actuator that regulates the
flow of energy to a heater element, and a Human-Machine-Interface (HMI) that
allows humans to enter a temperature set point.

An interface has a specification (“interface_specification”) with different kind of
levels: Interface Cyber-Physical Specification (“cp-spec”), Interface Itom Specification
(“i-spec”) and Interface Service Specification (“s-spec”). “cp-spec” is extended by
“m-spec” that specifies interface properties related to cyber message. “m-spec” is
further extended by the “transport_specification” Stereotype to describe all properties
of the communication system for correctly transporting a message from the sender to
the receiver(s). “cp-spec” is also extended by “p-spec” which specifies the interfaces
properties related to physical interactions. If the interfaces are service-based, this means
that the system provides many services. We have introduced the Stereotype “SLA”
Service Level Agreement that defines the service relationship between two parties: the
“provider” and the “recipient”. “SLA” consists of one or more “SLO”, i.e., the
Service Level Objectives. In addition, we have created a new Stereotype that represents
the “reservation”. The reservation is a commitment by a service provider that a
resource that has been allocated to a service requester (upon request at “request_in-
stant”) at the reservation allocation instant (“allocation_instant”) will remain allo-
cated until the reservation end instant (“end_instant”). A “registry” contains multiple
service specifications allowing multiple “service_composition” according to the
“SLA”. A “channel” connects interfaces, and it can be physical or logical (“physi-
cal_channel”, “logical_channel”).

The interaction enabled by the channel has the following attributes: ”trans-
ferred_info” (every interaction involves the transfer of information among partici-
pating systems), “temporal_property” (an interaction takes time, i.e., for an
interaction to occur it is initiated and completed according to system-specific temporal
properties) and “dependability_req” (e.g., interactions might require resilience with
respect to perturbation or need to guarantee security properties like confidentiality).
Through channel interactions, the information is transmitted by means of messages”.
A “channel_model” describes the effects of the channel on the transferred information.
An “interface_model” contains the explanation of the interface. An interface, asso-
ciated to an “interface_port” has an afferent and an efferent “interface_model”, which

106 P. Lollini et al.



are affected and may affect the interface, respectively. A “connection_strategy”
Stereotype is defined and connected to a RUI.

4 Evolution Viewpoint

Large scale Systems-of-Systems (SoSs) tend to be designed for a long period of usage
(10 years+). Over time, the demands and the constraints put on the system will usually
change, as will the environment in which the system is to operate. The AMADEOS
project studied the design of systems of systems that are not just robust to dynamicity
(short-term change), but to long-term changes as well. Evolution represents changes
that have been introduced later to accommodate modified or new requirements by
means of including, removing or modifying system functions [16].

In contrast to dynamicity, the concept of evolution relates to all changes of an SoS
that are not given by design, but arise by changes in the environment (primary evo-
lution), or by new or changed requirements on the SoS service itself (secondary
evolution). In the prospect of formalizing a methodology that allows evolution to take
place in a controlled manner, the concept of managed evolution is most relevant. It is
defined as the ‘evolution that is guided and supported to achieve a certain goal’ [16];

4.1 SoS Evolution Package

In order to describe this type of processes we have chosen a Block Definition Diagram,
because it is designed to show the generic characteristics and structures of a system.

The main SoS concepts are modelled within the “SoS Evolution” package of our
SoS profile. Figure 4 shows the “evolution” Stereotype as a Block of a BDD, aiming at
describing an SoS change. In our conceptual model we envision two different types of
evolution:

• “managed_evolution” - Process of modifying the SoS to keep it relevant in face of
an ever-changing environment. Examples of environmental changes include new
available technology, new business cases/strategies, new business processes,
changing user needs, new legal requirements, compliance rules and safety regula-
tions, changing political issues, new standards, etc.

• “unmanaged_evolution” - Ongoing modification of the SoS that occurs as a result
of ongoing changes in (some of) its CSs. Examples of such internal changes include
changing circumstances, ongoing optimization, etc.

An SoS evolution has a “goal”, improves the “business value” by means of the
exploit of “system_resource” and can be affected by the environment. Evolution is
achieved by modifying CSs and consequently the whole SoS.

AMADEOS SysML Profile for SoS Conceptual Modeling 107



5 Dynamicity Viewpoint

Dynamicity is the property of an entity that constantly changes in term of offered
services, built-in structure and interactions with other entities. It represents variations to
the operation of SoS that have been considered at design-time to reconfigure the SoS in
specific situations e.g., either after a fault or after the variation of an external condition
[21]. Dynamicity encompasses all interactions, e.g., message exchange over time.

Closely related to dynamicity is the concept of reconfigurability, which is the
ability of a system to change its configuration according to the current demands.

The Dynamicity components are described by means of two different packages, i.e.,
“SoS Dynamicity” (Sect. 5.1) and “SoS Scenario-based reasoning” (Sect. 5.2).

5.1 SoS Dynamicity Package

In this section we show how to use a semi-formal language in order to represent the
dynamicity of an SoS. Our objective is to (1) identify which parts of an SoS are
dynamic at a certain extent and (2) to represent the dynamic behavior through the
interactions among CSs.

As presented in Fig. 5 we have introduced the concept of “dynamicity” (belonging
to the already defined stereotype “entity”), which can be applied either to a CS or to a
whole SoS. Dynamicity may be of different nature, either “dynamic_service”, or
“reconfigurability”, i.e., the variation to the CSs architecture, or “dynamic_inter-
action”. Already defined concepts like “service” and “interaction” are the objects of a
dynamic behavior.

Fig. 4. SoS evolution package

108 P. Lollini et al.



Eliciting dynamicity behavior of different nature that applies to different portions of
an SoS is not enough to have a full understanding of the dynamic behavior. With this
aim, along with the dynamicity package, we have considered interaction diagrams in
order to focus on the message interchange between a number of lifelines: Sequence
Diagrams. We propose a methodology to be used to represent dynamicity as it follows:

• Making use of Sequence Diagrams to represent the system behavior in terms of a
sequence messages exchanged between parts;

• Selecting the constituent systems involved in the communication;
• Describing the most common interactions.

This type of representation helps a system designer to understand which are the
properties of an SoS that are constantly changing and how the SoS can change and
rearrange its components. The dynamic introduction, modification or removal of
constituent systems can introduce new system behaviors that need to be analyzed.

5.2 SoS Scenario-Based Reasoning Package

Scenario based reasoning package aims at supporting dynamicity and evolution of an
SoS. By means of this component of the profile we aim at supporting the generation,
evaluation and management of different scenarios thus supporting decision-making in
an SoS. As shown in Fig. 6, the main concept of this component is “scenario” which is
composed by a set of “scenario_state” each of which associated to an “event” to be
applied at each state. A state is in instantiation of a set of “variables” which are
relevant for the decision-making. Such variables can be extracted by means of an

Fig. 5. SoS Dynamicity package

AMADEOS SysML Profile for SoS Conceptual Modeling 109



“inference_process” and they pertain to a “domain_model”. The latter defines rela-
tionships among variables in terms of correlations (“causal_model”) and causation
(“causal_graph”) dependencies.

The process of generating scenario results from the “situation assessment” that
depends on the “environment”. “decision_making” is the process to select a course
of actions among different possible alternate scenarios. A multi-criteria decision
analysis “mcda” may be also applied to improve the decision-making process. Finally,
scenarios are subject to pruning and updating operations in order to discard non-correct
or un-likely scenarios and to update scenarios dealing with newly available
information.

6 Dependability, Security, and Multi-criticality Viewpoints

In any large system, faults and threats are normal and may impact on the availability,
reliability, maintainability, safety, data integrity, data privacy, and confidentiality.
Traditional dependability and security concepts [2] like fault, error and failure, have
been included in the conceptual model. Dependability integrates the attributes of
availability, reliability, maintainability, safety, integrity and robustness, and it can be
attained by means of fault prevention, fault tolerance, fault removal and fault forecast.

Fig. 6. SoS Scenario-Based Reasoning (SBR) package

110 P. Lollini et al.



Security is impacted by threats that impose risks exploiting possible SoS vulner-
abilities. It is the composition of confidentiality, integrity, and availability; security
requires in effect the concurrent existence of availability for authorized actions only,
confidentiality, and integrity (with “improper” meaning “unauthorized”).

Confidentiality is ensured by means of encryption. Keys are used for
encryption/decryption operations, which can be public or private. In an access control
system, the security policy is enforced by what is called the reference monitor, which
represents the mechanism that implements the access control model. Authorization
assigns permissions, which are defined in a security policy. A security policy relies on
trusted systems, which encompass hardware, software or human components.

Multi-criticality aims at integrating together subsystems providing services with
different levels of criticality corresponding to different dependability and security
requirements [23].

A multi-critical SoS is a system containing several components that execute
applications with different criticality, such as safety-critical and non-safety-critical. The
architecture of safety-critical applications shall be built taking into account that while
some part of the system may have strong safety-critical requirements, other parts may
be not so critical.

For example, a railway system is a multi-criticality system, given that it consists of
components that deliver services at different criticality levels, e.g., a braking service
and a heating service. These components usually adhere to different Safety Integrity
Levels (SIL) resulting in a system exhibiting different levels of criticality.

In the following we describe the three different packages supporting the definition
of dependability (Sect. 6.1), security (Sect. 6.2) and multi-criticality (Sect. 6.3)
aspects. The terminology is based on canonical definitions of dependability and
security concerns as defined in [2].

6.1 SoS Dependability Package

Figure 7 shows the key concepts captured within the dependability package. A CS or a
whole SoS may require possible multiple “dependability_guarantee” through the
achievement of possible different dependability “metric” by means of possible dif-
ferent “technique”.

A technique is exploited to reduce the occurrence of faults: “fault_prevention”,
“fault_tolerance”, “fault_removal”, “fault_forecast”.

A “measure” represents a property expected from a dependable system expressed
in terms of a quantitative “target_value”: “availability”, “reliability”, “maintain-
ability”, “safety”, “integrity”, “robustness”.

The profile supports the definition of “fault_containment region”, “error_ con-
tainment” and “error_containment_region”. The first contains components operating
correctly regardless of any arbitrary fault outside the region. These components may
have erroneous output actions that are alleviated with the definition of “error_con-
tainment”, which prevents propagation of errors by employing error detection and a
mitigation strategy. This leads to the definition of “error_containment_region” which
contains more “fault_containment region” having “error_containment”. A Fault

AMADEOS SysML Profile for SoS Conceptual Modeling 111



Containment Region (FCR) is a collection of components that operates correctly
regardless of any arbitrary fault outside the region.

6.2 SoS Security Package

This section describes the fundamental elements used by a system designer to represent
security aspects of an SoS.

As shown in Fig. 8, we connect the Stereotype “SOS” and “CS” to “security”
Stereotype to satisfy the security conditions of an SoS. To this end we use “cryp-
tography” based on symmetric (“symmetric_cryptography”) or public key (“pub-
lic_key_cryptography”) infrastructure.

The “encryption” Stereotype represents the process of disguising data in such a
way to hide the information it contains. In this way, data exchanged between Con-
stituent Systems are processed using a cryptography key. Three types of key have been
represented: “symmetric_key”, “private_key” or “public_key”. Symmetric key is
exploited for symmetric cryptography, while private and public keys for the public-key
cryptography.

The information exchanged (also called “data”) can be encrypted (“ciphertext”),
or not encrypted (“plaintext”); the “decryption” Stereotype represents the process of
turning ciphertext to plaintext.

During the cryptography phase the access control (“access_Control”) consists of a
set of actions that are permitted or not allowed by the system. Figure 8 shows a
“subject” that represents an active user, a process or a device that causes information to
flow among objects or changes the system state. A subject may have attributes

Fig. 7. Dependability conceptual model.

112 P. Lollini et al.



(“permission”) that describe how the subject can access to objects. An “object” is a
passive system-related devices, files, records, tables, processes, programs, or domain
containing or receiving information. Access to an object implies access to the infor-
mation it contains. The “access_process” is composed by the “authentication” and the
“authorization”. The former represents the process of verifying the identity or other
attributes claimed by or assumed of a subject or verifying the source and integrity of
data. The latter represents the mechanism of applying access right to a subject.

The “reference_monitor” represents the mechanism that implements the access
control model and the “access_control_model” captures the set of allowed actions
within a system as a policy. The access control follows a “securityPolicy” that rep-
resents a set of rules that are used by the system to determine whether a given subject
can be permitted to gain access to a specific object.

6.3 SoS Multi-criticality Package

We introduced the concepts of “critical_service” as a particular type of “service”
having a certain “critical_level” (see Fig. 9). The latter is associated to “depend-
ability_guarantee” and “security”. The definition of the stereotype “service” belongs
to the SoS Architecture package where it is linked to CS, i.e., the component, being

Fig. 8. SoS Security package

AMADEOS SysML Profile for SoS Conceptual Modeling 113



able to provide the service itself. Thus the concept of “critical_service” is indirectly
linked to definition of “SOS” and “CS” by means the definition of “service”.

7 Time Viewpoint

In an SoS a global notion of time is required in order to:

• Enable the interpretation of timestamps in the different CSs;
• Limit the validity of real-time control data;
• Synchronize input and output actions across nodes;
• Provide conflict-free resource allocation;
• Perform prompt error detection;
• Strengthen security protocols.

Time is fundamental since SoSs are sensitive to the progression of time and it is
necessary to design responsive SoSs able to achieve reliably time-dependent require-
ments [9].

The progression of time enables change, i.e., dynamicity and evolution, in SoSs. In
the AMADEOS project, it has been concluded that a global sparse timebase –

accessible by all CSs – is fundamental for reducing cognitive complexity in under-
standing aspects related to all non-static investigated viewpoints on SoSs. For example,
a sparse global time base allows establishing consistently – across all CSs – a temporal
order among sparse events, regardless which CSs originally produced these sparse
events.

We express the time-related concepts by adopting the MARTE standard [19].
MARTE is an UML profile that provides support for non-functional property

Fig. 9. Multi-criticality package

114 P. Lollini et al.



modelling, defines concepts for software, hardware platform modelling, and concepts
for quantitative analysis (e.g. schedulability, performance).

We measure time through clocks by defining a clock stereotype that extends the one
defined in the MARTE profile. A MARTE Clock Stereotype is considered as a means
to access to time, either physical or logical. The MARTE Clock is an abstract class and
it refers to a discrete time.

7.1 SoS Time Package

Figure 10 shows a set of main time-related aspects. A Constituent System (defined in
SoS Architecture package) can share a clock. The Stereotype “clock” is also defined as
a SysML Block in order to model this concept through a Block Definition Diagram.
A (digital) clock is an autonomous system that consists of an oscillator and a register.
Whenever the oscillator completes a period, an event is generated that increments the
register. A “timeline” represents the progression of the time and it is designed with a
Stereotype that extends the metaclass “Lifeline” of a Sequence Diagram. The “time-
line” is composed by an infinite number of instants (“instant” Stereotype) measured
using a “time_code” and a “time_scale”. A time code is a system of digital or analog
symbols used in a specified format to convey time information i.e., date, time of day or
time interval. A time scale is a family of time codes for a particular timeline that
provide an unambiguous time ordering (temporal order of events).

A “clock” could be based on an “internal_sync”, i.e., on a process of mutual
synchronization of an ensemble of clocks in order to establish a global time with a
bounded precision, or on an “external_sync”, i.e., on the synchronization of a clock
with an external time base such as GPS. It could be a “reference_clock”, i.e., a
hypothetical clock of a granularity smaller than any duration of interest and whose state
is in agreement with TAI, or a “primary_clock”, i.e., a clock whose rate corresponds
to the adopted definition of the second (the primary clock achieves its specified
accuracy independently of calibration).

Finally, the clock could have the following properties:

• “accuracy” - the maximum offset of a given clock from the external time reference
during the time interval of interest, measured by the reference clock;

• “granularity” - the duration between two successive ticks of a clock; “tick” - the
event that increments the register of the clock;

• “offset” - the offset of two events denotes the duration between two events and the
position of the second event with respect to the first event on the timeline;

• “frequency_offset” - the frequency difference between a frequency value and the
reference frequency value;

• “stability” - a measure that denotes the constancy of the oscillator frequency during
the given interval of time of interest;

• “wander” - long-term phase variations of the significant instants of a timing signal
from their ideal position on the time-line;

• “jitter” - short-term phase variations of the significant instants of a timing signal
from their ideal position on the time-line.

AMADEOS SysML Profile for SoS Conceptual Modeling 115



F
ig
.
10

.
So

S
T
im

e
pa
ck
ag
e

116 P. Lollini et al.



If a clock is a “physical clock”, we use the “drift” measure in order to describe the
frequency ratio between the physical and the reference clock. A digital clock consists of
an “oscillator”, represented as a Stereotype, with a “nominal_frequency” and a “fre-
quency_drift”, represented as properties. A “coordinated_clock” is a particular type of
a clock, it is synchronized within stated limits to a reference clock. A “clock_ensamble”
is a collection of clocks operated together in a coordinated way with a certain “preci-
sion”. We define “gpsdo”, a Stereotype that represents a particular type of clock where
its time signals are synchronized with information received from a GPS receiver, and
“holdover”, a property expressing the duration during which the local clock can
maintain the required precision of the time without any input from the GPS.

The “timestamp” is the state of a selected clock at the instant of event occurrence.
It depends on selected clock and if we use the reference clock for time-stamping, we
call the timestamp “absolute_timestamp”. An ensemble of clocks could synchronize
in order to establish a “global_time” with a bounded precision.

An “instant” is a cut of the “timeline” and an “interval” is a section of timeline
composed by two instants. The latter is defined as an “IntervalConstraint” of a
Sequence Diagram.

An “event” can happen at a particular instant, and to represent this type of infor-
mation we have used a “TimeConstraint” of a Sequence Diagram. A “signal” is a
particular event used to convey information typically by arrangement between the
parties concerned. An “epoch” is a particular instant on the timeline chosen as the
origin for the time-measurement. A “cycle” is a temporal sequence of significant events
whereas a “period” is a specific type of cycle marked by a constant duration between
the related states at the start and the end at the end of the cycle, called “phase”. The
offset of two events denotes the duration between two events and it is represented by
the “offset” Stereotype.

8 Emergence Viewpoint

The concept of Emergence (see also Chap. 3 of this book) is one of the most important
challenges of AMADEOS. As already described in previous sections, SoSs are built to
realize new services that CSs separately cannot provide.

Emergence mainly denotes the appearance of novel phenomena at the SoS level
that are not observable at CSs level; managing emergence is essential to avoid
un-desired, possibly unexpected situations generated from CSs interactions and to
realize desired emergent phenomena being usually the higher goal of an SoS [14].

In the AMADEOS conceptual model, emergence is defined as follows: ‘A phe-
nomenon of a whole at the macro-level is emergent if and only if it is new with respect
to the non-relational phenomena of any of its proper parts at the micro level’. Con-
sequently, it is behavior observable at the global level (e.g., a traffic jam) that cannot be
reduced to the behavior of one of the parts (e.g., a single car analyzed in isolation). If an
emergent phenomenon can be explained by a trans-ordinal law, i.e., a law that explains
the emergent phenomenon at the macro level from properties or interactions of parts at
the micro level, it is explained emergence. In case such laws have not been found (yet),

AMADEOS SysML Profile for SoS Conceptual Modeling 117



it is unexplained emergence. While there are cases of unexplained emergence (e.g., the
human consciousness), the type of emergence that is occurring in the cyber part of an
SoS is explained emergence, even if we are surprised and cannot explain the occur-
rence of an unexpected emergent phenomenon at the moment of its first encounter. If
we have made proper provisions to observe and document all interactions (messages)
among the CSs in the domains of time and value, we can replay and analyze the
scenario after the fact. At the end, we will find the mechanisms that explain the
occurrence of the emergent phenomenon. There is no ontological novelty in the
interactions of the CSs in the cyber parts of an SoS.

Hence an explained emergent phenomenon can be classified as expected
(trans-ordinal laws are known), or unexpected (trans-ordinal laws are not known).
Orthogonally, emergent phenomenon can be beneficial, or detrimental.

Hence four cases of emergent behavior must be distinguished in an SoS. Expected
and beneficial emergent behavior is the normal case. Unexpected and beneficial
emergent behavior is a positive surprise. Expected detrimental emergent behavior can
be avoided by adhering to proper design rules. The problematic case is unexpected
detrimental emergent behaviour. For an in-depth discussion about emergence in SoSs
we refer to [12].

8.1 SoS Emergence Package

In this section we show how to use a semi-formal language to represent an emergent
behavior of an SoS. Nevertheless, because of the nature of the emergence concept,
defining a semi-formal language, thus only eliciting an emergent behavior, is not
sufficient. Our aim is also capturing operational aspects related to emergence by
considering an SoS in action.

For these reasons we propose two different types of representation that a system
designer can choose:

• Block Definition Diagram;
• Sequence Diagram.

Figure 11 shows the profile package for the emergence behavior as a block defi-
nition diagram.

This package represents the main concepts of emergence using a Block Definition
Diagram. We represent a “phenomenon” as a block and we distinguish an “emer-
gent_phenomenon” from a “resultant_phenomenon”. An emergent phenomenon can
be explained (“explained_emergence_phenomenon”) or unexplained (“unex-
plained_emergence_phenomenon”) and in the former case there is a trans-ordinal law
(“transOrdinal_law”) that explains the behavior.

An SoS with emergent phenomena has an emergent behavior that could be expected,
unexpected, beneficial or detrimental. For this reason, we consequently defined the four
following blocks: “unexpected_and_detrimental”, “expected_and_detrimental”,
“unexpected_and_beneficial”, “expected_and_beneficial”.

118 P. Lollini et al.



9 The Profile at Work

In this section we introduce a Smart Grid household scenario to exemplify the appli-
cation of the profile and to instantiate the basic SoS concepts to a concrete case-study
from the Smart Grid domain, focusing on the Architecture (Sect. 9.1) and Emergence
(Sect. 9.2) viewpoints. Further examples of application of the profile to the selected
use-case can be found in [15] and public deliverable D2.3 “AMADEOS conceptual
model - Revised” [1].

In a Smart Grid household scenario different operationally independent subsystems
aim at delivering the desired emergent phenomenon of improving the efficiency and the
reliability of the production and distribution of electricity through communication
facilities. Requests for energy coming from electronic appliances are forwarded
towards the subsystems in charge of granting or denying each request while achieving
the Smart Grid goal, i.e., keeping the production and consumption rates for connected
households balanced.

Figure 12 shows the topology of the main subsystems involved within a single
household of the Smart Grid scenario. Washing machines and microwaves are
examples of electronic appliances. They represent a flexible load which may initiate an
energy request. The smart meter measures energy consumption and production rates;
the Distributed Energy Resource (DER) manages the energy produced through energy
generating and storage systems, like wind-powered electrical generators or batteries.

Fig. 11. SoS Emergence package

AMADEOS SysML Profile for SoS Conceptual Modeling 119



A command display shows consumption rates and enables residents to interact with
their own energy control system. The Energy Management Gateway (EMG) controls
the flexible loads and the DER based on measurements received from the smart meter
and in agreement with the coordinator to establish optimal energy distribution. The
coordinator is connected to the Neighborhood Network Access Point (NNAP) with the
aim of keeping the production and the consumption of energy for a set of connected
households balanced. A Distribution System Operator (DSO) regulates consumption
and production rates at the country level. By means of its Load Management Optimizer
(LMO), a DSO receives information from a meter aggregator and enacts control
decisions in cooperation with the coordinator. The access to the household is provided
by one or more Local Network Access Points (LNAPs) connected to a NNAP. All the
above mentioned components require proper interfaces in order to exchange control
messages and physical energy entities within and outside the household Smart Grid.

9.1 Modeling the Architecture Viewpoint

Using the SoS Architecture package it is possible to represent the topology of any
System of Systems. Now we show how to use SoS through the Smart Grid household
case study.

First of all, it is necessary to decide what are the main constituent systems involved,
and how to represent them. For each system component we use a Block element of a
Block Definition Diagram and through the connections we show the relations between

Fig. 12. Smart Grid case study

120 P. Lollini et al.



them. Using the stereotypes defined in the “SoS Architecture” package it is possible
define the Smart Grid household as a system of systems (SoS) and all the other
elements as constituent systems (CSs).

Figure 13 shows a model example of a Smart Grid with the application of our
profile (“SoS Architecture” package). The “SG_Households” is a Block and it is
stereotyped as an SoS; it is composed by 5 CSs, which exchange information. Among
others, the block “Flexible Load” is stereotyped as a CS and it is composed by a set of
household electrical appliances: Microwave, Washing Machine, Clothes Dryer, etc.
These latter are switched on and off dynamically based on the current needs.

An application example of the main SoS communication concepts is shown in
Fig. 14. Through the Smart Grid household case study, we describe a set of commu-
nication messages exchanged between the involved CSs.

First of all, it is necessary to decide which are the involved elements in the com-
munication and how many message are exchanged. We identify a “Lifeline” as a
constituent system and a “message” as exchange data between two constituent systems.
A message could contain all the properties defined in Fig. 2 and they can be displayed
using a constraint or a comment box. Figure 14 shows the message properties using a

Fig. 13. Smart Grid household Block Definition Diagram

AMADEOS SysML Profile for SoS Conceptual Modeling 121



comment box (e.g., “data_field” = 2 kW, “header” = wm to EMG, “trailer” = t1,
“trans_type” = PAR_message).

9.2 Modeling the Emergence Viewpoint

While a Block definition diagram defines stereotypes and related elements to capture
statically the emergence behavior, a sequence diagram is able to define dynamic
interactions leading to emergence. We adopt a sequence diagram where each lifeline
represents a constituent system and each message specifies the kind of communication
between the lifelines, the sender and the receiver. An SoS is prone to changes:
sometimes constituent systems are incremented, modified or removed. To this end, this
kind of diagram helps the system designer to easily update and analyze new system
behaviors. The diagram not only describes the communication but it also helps to
represent the SoS behavior during the progression of time.

To show the difference between a “static” and “dynamic” representation of emer-
gence, we consider a particular scenario of the Smart Grid previously described. The
dynamicity of the household electrical appliances may lead to an emergent behavior of
the system in case of a peak of request of energy coming from the neighborhood. Let us
assume that because of a public event, an exceptional lighting of specific public spaces
has to be supported by the Smart Grid. In this case, while in the household it was
commonly possible to turn on microwave and washing machine together, we end up in
a very limited provision of energy, which is not sufficient for both the electrical
appliances. This phenomenon represents an emergent behavior of the Smart Grid since
it is not possible to devise it if we only look at the interactions of the internal household
CSs without considering the neighborhood CSs.

Fig. 14. Message exchange between CSs of a Smart Grid

122 P. Lollini et al.



Figure 15 shows, through a BDD, how the public event lighting is represented as
an explained and detrimental emergent phenomenon, explained by the balancing
behavior of the Coordinator and causing reduced energy for the electrical appliances.
This phenomenon causes an unexpected and detrimental behavior of the SoS, which
allows it to only satisfy a subset of energy requests.

However, using this type of diagram we are not able to represent the progression of
time and the semantic of message that may contribute to reveal emergence phenomena.
Especially, the above representation does not attach greater importance to capture the
time aspects of the SoS emergent phenomena.

We now introduce the representation of the exceeding peak energy request by using
a sequence diagram. We adopt a sequence diagram to show the emergent behavior of
the electrical appliances request by means of the interaction among related CSs of the
Smart Grid.

As shown in Fig. 16, “electronic appliances” CSs are represented as “Lifeline” and
their interactions are represented through directed labeled arrows. Washing Machine is
switched on at t2 after the agreement allowed from the Coordinator. As next, the
Coordinator receives (at time t3) and grants (at time t4) the energy for switching on the
public lighting for the exceptional event. This request is forwarded to the Coordinator
by the Public Event Lighting (PEL) EMG, which is external to the household. At time
t5, microwave issues its request to be connected to the Smart Grid but it receives a
negative acknowledgment at time t7. Usually, the household would be able to switch
on the washing machine and the microwave at the same time. On the contrary, because
of the public event lighting resulting in a peak of energy from the house neighborhood
it results that only a reduced amount of energy is available for the electrical appliance
(emergent behavior). Indeed, right before the requests issued from the microwave (time
t5) and the clothes dryer (time t8), the Coordinator allocates the energy for the public

Fig. 15. Smart Grid household – Emergent behavior

AMADEOS SysML Profile for SoS Conceptual Modeling 123



lighting event and consequently no further requests of energy from the house can be
granted.

This illustrative example shows that networked individual systems together to
realize a higher goal, which none of individual system can achieve in isolation, could
lead to an emergent behavior: impossibility of satisfying commonly granted energy
requests. The Emergent behavior is shown through the message exchange and it
consists of unexpected and detrimental emergent behavior caused by a system
dynamicity property.

10 Related Works

In this section we present an overview of related ADL design approaches presented in
the literature of SoSs. This analysis is not meant to be exhaustive but it is based on
some of the most representative related works on designing SoSs. Its objective is to
determine to what extent viewpoints-based SoS concepts have been already captured in
the literature.

In [7] the authors propose the use of SysML in representing an SoS by adopting and
in some cases extending canonical SysML diagrams in order to model different
viewpoints of an SoS. Beyond structure, a specific support to the multi-criticality
viewpoint is also provided by adopting the specific stereotypes aiming at grouping
requirements according to qualitative and quantities metrics to support trade-off anal-
ysis. Nevertheless, there is no specific support for other viewpoints, including time,
dependability/security, dynamicity, evolution and emergence.

A partial answer to the above issues is given by the approach presented in [13]
providing support to structure and evolution viewpoints of an SoS by exploiting several
SysML models. The authors propose the adoption of diagrams to determine an
evolving SoS and its environment and the interactions occurring between an SoS and
the environment and among CSs themselves. Noteworthy the approach is still missing
specific support to dynamicity, emergence, multi-criticality, dependability/security and

Fig. 16. Smart Grid household SysML model – Emergent behavior description

124 P. Lollini et al.



time. In [20], the presented SysML modeling approach allows the definition of the SoS
structure and how to support dynamicity and evolution viewpoints by means of
understanding the dis-alignment of a simulated SoS with respect to its requirements.
Noteworthy, it is still missing a specific support to emergence, multi-criticality, de-
pendability, security and time.

The approaches presented in [3, 8] provide support to model the structure of an SoS
and emergence by means of the extension to SysML diagrams. Analyses of the former
models are conducted to provide evidence that requirements are fulfilled. The approach
supports fault-handling (dependability viewpoint) and responsiveness (time viewpoint)
of an SoS, but it does not provide any specific support to dynamicity, evolution and
multi-criticality.

The approach in [6], within the context of the DANSE EU project [4], supports the
definition of an SoS structure, dynamicity and evolution (by means of Graph Gram-
mars), emergence, etc., with the only exception of multi-criticality. DANSE presented a
set of methodologies and tools to model and to analyze SoSs based on the Unified
Profile for DoDAF and MoDAF (UPDM). In particular, DANSE focuses on the six
models that can be represented as executable forms of SysML as partially reported in
[6], according to a well-defined formalism to relate basics SoS concepts and their
relationships. In the context of DANSE, the Goal Specification Contract Language
(GSCL) assures the achievement of dependability and security requirements and it
guarantees the timely response of an SoS.

All these approaches have shown the utility of adopting SysML formalisms to
model architectural aspects of SoSs, thus supporting different types of analysis and a
first step towards executable artifacts which can be automatically derived. Although
these approaches provide detailed insights for different viewpoints aspects, it is still
missing (i) an homogeneous synthesis at a more abstract level of key design-related
SoS concepts, and (ii) a viewpoint-based vision. Bringing this perspective in one single
consistent reference model, it is possible to provide solutions to specific design
problems while still keeping the required interconnections among viewpoints.

11 Conclusions

This chapter presented a viewpoint-driven approach to design SoSs by adopting a
SysML profile. We pointed out the gaps in the literature of ADLs for SoSs with respect
to a set of viewpoints that we deemed essential for understanding SoSs. We outlined
the conceptual model at the basis of the profile and we presented how to solve specific
viewpoint needs in an integrated fashion by exploiting the high-level SoS represen-
tation in a small scale scenario. We implemented the profile in the Eclipse integrated
development environment jointly with Papyrus [5], i.e., an Eclipse plug-in supporting
advanced facilities for manipulating UML artifacts and SysML profiling.

The AMADEOS SoS profile can be adopted along with a Model-Driven Engi-
neering (MDE) approach. MDE is an approach to system development and it provides
a means for using models to direct the course of understanding, design, construction,
deployment, operation, maintenance and modification. For a model-driven architecture

AMADEOS SysML Profile for SoS Conceptual Modeling 125



perspective [18], our SoS profile is a Platform Independent Model (PIM) or, in other
words, a view of the system from the platform independent viewpoint. It provides a set
of technical concepts involving SoS architecture and behavior without losing the
platform independent characteristics.

This kind of independent architecture makes possible to analyze step by step all the
PIM viewpoints and to obtain one or more Platform Specific Models (PSM), where the
SoS profile is specialized and improved according to the domain/enterprise specific
technologies that belong to the enterprise implementing the SoS instance. A PSM is a
view of a system from the platform-specific viewpoint. It combines the specifications in
the PIM with details that specify how that system uses a particular type of platform and
on the platform itself.

Furthermore, the SoS PSM can represent the base step for other activities such as
the following:

• Source code generation: through an automatic transformation the SoS model can be
translated in source code;

• System analysis: the SoS model can be the starting point for a lot of system analysis
like: hazard analysis (HA), Failure Mode and Effect Analysis (FMEA), Fault Tree
Analysis (FTA);

• System testing: the SoS model can be the basic layer to identify test procedures or
resolve problems of testing coverage.

References

1. AMADEOS project - Public Deliverables. AMADEOS project. http://amadeos-project.eu/
documents/public-deliverables/. Accessed 28 Sep 2016

2. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy of
dependable and secure computing. IEEE TDSC 1(1), 11–33 (2003)

3. Bryans, J., Fitzgerald, J.S., Payne, R., Kristensen, K.: Maintaining emergence in systems of
systems integration: a contractual approach using SysML. In: INCOSE (2014)

4. DANSE: DANSE Methodology V2 - D_4.3 (s.d.). https://www.danse-ip.eu
5. ECLIPSE - MDT/Papyrus: Eclipse Model Development Tools (MDT) (n.d.). http://wiki.

eclipse.org/MDT/Papyrus-Proposal. Retrieved 14–29 Sep 2016
6. Gezgin, T., Etzien, C., Henkler, S., Rettberg, A.: Towards a rigorous modeling for-malism

for systems of systems. In: ISORCW, pp. 204–211. IEEE (2012)
7. Huynh, T.V., Osmundson, J.S.: An integrated systems engineering methodology for

analyzing systems of systems architectures. In: Asia-Pacific Systems Engineering Confer-
ence, Singapore (2007)

8. Ingram, C., Fitzgerald, J., Holt, J., Plat, N.: Integrating an upgraded constituent system in a
system of systems: a SysML case study. In: INCOSE International Symposium (2015)

9. Kopetz, H.: Real-time Systems: Design Principles for Distributed Embedded Applications.
Springer, New York (2011)

10. Kopetz, H.: Conceptual model for the information transfer in systems of systems. In: ISORC,
pp. 17–24. IEEE Press (2014)

11. Kopetz, H., Fromel, B.: Direct versus stigmergic information flow in systems-of-systems. In:
System of Systems Engineering Conference (SoSE). IEEE (2015)

126 P. Lollini et al.

http://amadeos-project.eu/documents/public-deliverables/
http://amadeos-project.eu/documents/public-deliverables/
https://www.danse-ip.eu
http://wiki.eclipse.org/MDT/Papyrus-Proposal
http://wiki.eclipse.org/MDT/Papyrus-Proposal


12. Kopetz, H., Höftberger, O., Frömel, B., Brancati, F., Bondavalli, A.: Towards an
understanding of emergence in systems-of-systems, pp. 214–219. IEEE

13. Lane, J.A., Bohn, T.: Using SysML modeling to understand and evolve systems of systems.
Syst. Eng. 16(1), 87–98 (2013)

14. Mogul, J.: Emergent (Mis)behavior vs. complex software systems. In: EuroSys, pp. 293–
304. ACM (2006)

15. Mori, M., Ceccarelli, A., Lollini, P., Bondavalli, A., Frömel, B.: A holistic viewpoint-based
SysML profile to design systems-of-systems. In: International Symposium on High
Assurance Systems Engineering (HASE 2016), pp. 276–283. IEEE, Orlando (2016)

16. Murer, S., Bonati, B., Furrer, F.J.: Managed Evolution: A Strategy for Very Large
Information Systems. Springer, New York (2010)

17. Nakagawa, E.Y., Gonçalves, M., Guessi, M., Oliveira, L., Oquendo, F.: The state of the art
and future perspectives in Systems-of-Systems software architectures. In: SESoS, pp. 13–20
(2013)

18. OMG: MDA Guide Revision 2.0, 18 June 2014. http://www.omg.org/cgi-bin/doc?ormsc/14-
06-01.pdf. Accessed 14 Sep 2016

19. OMG: A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
systems, Beta 2. Document Number: ptc/2008-06-0 (s.d.)

20. Rao, M., Ramakrishnan, S., Dagli, C.: Modeling and simulation of net centric system of
systems using systems modeling language and colored petri-nets: a demonstration using the
global earth observation system of systems. Syst. Eng. 11(3) (s.d.)

21. Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., Yan, H.: Discovering architectures from
running systems. IEEE TSE 32(7), 454–466 (2006)

22. Selberg, S.A., Austin, M.A.: Toward an evolutionary system-of-systems architecture. In:
INCOSE, pp. 1065–1078 (2008)

23. Verissimo, P.: Travelling through wormholes: a new look at distributed systems models.
SIGACT News 37(1), 66–81 (2006)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
duplication, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

AMADEOS SysML Profile for SoS Conceptual Modeling 127

http://www.omg.org/cgi-bin/doc%3formsc/14-06-01.pdf
http://www.omg.org/cgi-bin/doc%3formsc/14-06-01.pdf
http://creativecommons.org/licenses/by/4.0/

	AMADEOS SysML Profile for SoS Conceptual Modeling
	1 Introduction
	2 Conceptual Modeling Support: The AMADEOS SysML Profile
	3 Structure Viewpoint
	3.1 SoS Architecture Package
	3.2 SoS Communication Package
	3.3 SoS Interface Package

	4 Evolution Viewpoint
	4.1 SoS Evolution Package

	5 Dynamicity Viewpoint
	5.1 SoS Dynamicity Package
	5.2 SoS Scenario-Based Reasoning Package

	6 Dependability, Security, and Multi-criticality Viewpoints
	6.1 SoS Dependability Package
	6.2 SoS Security Package
	6.3 SoS Multi-criticality Package

	7 Time Viewpoint
	7.1 SoS Time Package

	8 Emergence Viewpoint
	8.1 SoS Emergence Package

	9 The Profile at Work
	9.1 Modeling the Architecture Viewpoint
	9.2 Modeling the Emergence Viewpoint

	10 Related Works
	11 Conclusions
	References


