Parallelizing Heuristics for Generating
Synchronizing Sequences

Sertac Karahoda!, Osman Tufan Erenay!, Kamer Kayal!2,
Uraz Cengiz Tiirker®, and Hiisnii Yenigiin!(®)

! Computer Science and Engineering, Faculty of Science and Engineering,
Sabanci University, Tuzla, Istanbul, Turkey
{skarahoda,osmantufan,kaya,yenigun}@sabanciuniv.edu
2 Department of Biomedical Informatics,

The Ohio State University, Columbus, OH, USA
3 Computer Engineering, Faculty of Engineering,

Gebze Technical University, Gebze, Kocaeli, Turkey
urazc@gtu.edu.tr

Abstract. Synchronizing sequences are used in the context of finite
state machine based testing in order to initialize an implementation to a
particular state. The cubic complexity of even the fastest heuristic algo-
rithms known in the literature to construct a synchronizing sequence can
be a problem in practice. In order to scale the performance of synchroniz-
ing heuristics, some algorithmic improvements together with a parallel
implementation of these heuristics are proposed in this paper. An exper-
imental study is also presented which shows that the improved/parallel
implementation can yield a considerable speedup over the sequential
implementation.

1 Introduction

Model Based Testing (MBT) uses formal models of system requirements to gen-
erate effective test cases. Most MBT techniques use state-based models, where
the behaviour of the model is described in terms of states and state transitions.
There has been much interest in testing from finite state machines (FSMs) (e.g.,
see [1-6]). Common to most FSM based testing methods is the need to bring
the system under test (SUT) to a particular state. When there is a trusted reset
input in the SUT, this is quite easy. However, sometimes such a reset input
is not available, or even if it is available, it may be time consuming to apply
the reset input. Therefore there are cases where the use of a reset input is not
preferred [7-9].

A synchronizing sequence' for an FSM M is a sequence of inputs such that
no matter at which state M currently is, if this sequence of inputs is applied, M

! Synchronizing sequences are also known as reset sequences, or reset words.

© IFIP International Federation for Information Processing 2016

Published by Springer International Publishing AG 2016. All Rights Reserved
F. Wotawa et al. (Eds.): ICTSS 2016, LNCS 9976, pp. 106-122, 2016.

DOI: 10.1007/978-3-319-47443-4_7

Parallelizing Heuristics for Generating Synchronizing Sequences 107

is brought to a particular state. Therefore a synchronizing sequence is in fact a
compound reset input, and can be used as such to simulate a reset input in the
context of FSM based testing [10].

A synchronizing sequence may not exist for an FSM. However, as the size of
the FSM gets larger, there almost always exists a synchronizing sequence [11].
For an FSM M with n states and alphabet size p, checking if M has a synchroniz-
ing sequence can be decided in time O(pn?) [12]. Since a synchronizing sequence
will possibly be used many times in a test sequence, computing a shortest one
for an FSM is of interest, but this problem is known to be NP-hard [12]. There
exist a number of heuristics, called synchronizing heuristics, to compute short
synchronizing sequences, such as GREEDY [12] and CYCLE [13] both with time
complexity O(n®+pn?), SYNCHROP and SYNCHROPL [14] with time complexity
O(n® + pn?), and FASTSYNCHRO [15] with time complexity O(pn*). The upper
bound for the length of the synchronizing sequence that will be produced by
all of these heuristics is O(n?). Although synchronizing sequences are impor-
tant for testing methods, the scalability of the synchronizing heuristics has not
been addressed thoroughly. For practical applications, the use of even the fastest
algorithms (GREEDY and CYCLE) with cubic complexity can be a problem.

In this work we investigate the use of modern multicore CPUs to scale the
performance of synchronizing heuristics. We consider the GREEDY algorithm to
start with, as it is one of the two cheapest synchronizing heuristics (in practice
as well [16]), known to produce shorter sequences than CYCLE [16], and has been
widely used as a baseline to evaluate the quality and speed of more advanced
heuristics. To the best of our knowledge, this is the first work towards paralleliza-
tion of synchronizing heuristics. Although, a parallel approach for constructing
a synchronizing sequence for a partial machines is proposed in [17], the method
proposed in [17] is not exact (in the sense that it may fail to find a synchronizing
sequence even if one exists) and also it is not a polynomial time algorithm.

All synchronizing heuristics consist of a preprocessing phase, followed by
synchronizing sequence generation phase. As presented in this paper, our ini-
tial experiments revealed that the preprocessing phase dominates the runtime
of the overall algorithm for GREEDY. Therefore for both parallelization and for
algorithmic improvements of GREEDY, we mainly focus on the first phase of the
algorithm. With no parallelization, our algorithmic improvements alone yield a
20x speedup on GREEDY for automata with 4000 states and 128 inputs. Further-
more, around 150x speedup has been obtained for the same class of automata,
when the improved algorithm is executed in parallel with 16 threads.

The rest of the paper is organized as follows: In Sect.2, the notation is
given, and synchronizing sequences are formally defined. We give the details
of Eppstein’s GREEDY construction algorithm in Sect. 3. The proposed improve-
ments and the parallelization approach together with implementation details
are described in Sect. 4. Section 5 presents the experimental results and Sect. 6
concludes the paper.

108 S. Karahoda et al.

2 Preliminaries

FSMs are used to describe a reactive behaviour, i.e., when an input is applied
to an FSM, it produces an output as a response. However, the output sequence
produced by the application of a synchronizing sequence does not play a role.
Therefore, in the context of synchronizing sequences, an FSM can simply be
considered as an automaton where the state transitions are only performed by
the application of an input, and no output is produced.

In this work, we only consider complete deterministic automata. An automa-
ton is defined by a triple A = (S, X, §) where S is a finite set of n states, X is a
finite set of p input symbols (or simply inputs) called the alphabet. § : Sx X — §
is a transition function. If the automaton A is at a state s and if an input z is
applied, then A moves to the state (s, z). Figure 1 shows an example automaton
A with 4 states and 2 inputs.

a b
pus[oof2]3]4] [of1]2]3]4]

Y. YYVYVY
os[of1]2[s] | [3]o]1[2] i

Data structures for inverse transitions

Fig. 1. A synchronizable automaton A (left), and the data structures we used to store
and process the transition function ' in memory (see Sect. 4.4 for the details). A syn-
chronizing sequence for A is abbbabbba.

An element of the set X* is called an input sequence. We use |w| to denote
the length of w, and € is the empty input sequence. We extend the transition
function ¢ to a set of states and to an input sequence in the usual way. We have
0(s,e) = s, and for an input sequence w € X* and an input symbol x € X
we have (s, zw) = 0(6(s,x), w). For a set of states S" C .S, we have §(5",w) =
{6(s,w)|s € S'}.

We use the notation §~1(s,) to denote the set of those states with a tran-
sition to state s with input x. Formally, §~1(s,z) = {s’ € S|d(s',z) = s}.

Let A = (S,X,) be an automaton, and w € X* be an input sequence. w is
said to be a merging sequence for a set of states S C S if [§(S’,w)| =1, and S is
called mergable. Any set {s} with a single state is mergable, since ¢ is a merging
sequence for {s}. w is called a synchronizing sequence for A if |§(S,w)| =1. A is
called synchronizable if there exists a synchronizing sequence for A. For example,
the automaton given in Fig. 1 is synchronizable, since abbbabbba is a synchroniz-
ing sequence for the automaton. Deciding if an automaton is synchronizable or
not can be performed in polynomial time based on the following result.

Proposition 1 [12,18]. An automaton A = (S, X,) is synchronizable iff for
all s;,s; € S, there exists a merging sequence for {s;,s;}.

Parallelizing Heuristics for Generating Synchronizing Sequences 109

For a set of states C' C S, let C{2 = (si,sj)]8:,8; € C} be the set of all
multisets with cardinality 2 with elements from C, i.e. C{?) is the set of all subsets
of C with cardinality 2, where repetition is allowed. An element (s;,s;) € C 2
is called a singleton if s; = s;, otherwise it is called a pair.

As Proposition1 makes it explicit, checking the existence of merging
sequences for pairs of states is needed to decide if an automaton is synchroniz-
able. In addition, the heuristic algorithms also make use of the merging sequences
for pairs. For both checking the existence of merging sequences and finding a
merging sequence (in fact for finding a shortest merging sequence) for pairs of
states of an automaton, one can use the notion of the pair automaton, which we
define next.

Definition 1. For an automaton A = (S, X,¢), the pair automaton A of A is
defined as A = (S, X, A), where for a state (s;,s;) € S and an input symbol
x € X, A((si,85),x) = (d(si,x), (s, x)).

3 Eppstein’s Algorithm

In this section, we explain Eppstein’s GREEDY algorithm, and we present an
observation on the timing profile of the algorithm. This observation guided our
work on the improvements and parallelization of the algorithm, which will be
explained in Sect.4. GREEDY (and also all other synchronizing heuristics men-
tioned in Sect. 1) has two phases. In the first phase, a shortest merging sequence
for each mergable pair of states is found. If all pairs are mergable, these merging
sequences are used to construct a synchronizing sequence in the second phase.

For a pair of states s;,s; of an automaton A = (S, X,), checking the exis-
tence of a merging sequence for {s;,s;}, and computing a shortest merging
sequence for {s;,s;} can be performed in time O(pn?) by finding a shortest
path from the state (s;,s;) of the pair automaton A to a singleton state in A
using Breadth First Search (BFS). Since we will have to check the existence and
find merging sequences for all pairs of states, one can instead use a backward
BFS, seeded at singleton states of the pair automaton, as explained below.

For an automaton A = (S, X, §), a function 7 : S — £* is called a pairwise
merging function (PMF) for A, if for all (s;,s;) € S®, 7((s;, s;)) is a shortest
merging sequence for {s;,s;} if {s;,s;} is mergable, and 7((s;, s;)) is undefined
if {s;,s;} is not mergable. Note that PMF for an automaton A is not unique,
and it is a total function iff A is synchronizable. Algorithm 1 computes such a
PMF 7 for a given automaton A, where initially 7({s, s)) = ¢ for the singleton
states in S%? (line 1), and 7({s;,s;)) is considered to be “undefined” for pair
states in S¢?) (line 2). The algorithm iteratively computes the values of 7(.) as
it discovers shortest merging sequences for more pairs in S?.

Algorithm 1 keeps track of a frontier set F' which is initialized to all singleton
states at line 3. Throughout the algorithm, R represents the remaining set of
pairs with 7((s;,s;)) still being undefined. In each iteration of the algorithm
(lines 5-6), a BF'S step is performed by using BFS_step_F2R given in Algorithm 2.

110 S. Karahoda et al.

Algorithm 1. Computing a PMF 7: $¢ — $* (F2R based)
input : An automaton A = (S, X, 0)

output: A PMF 7 : §¢ — »*

foreach singleton (s,s) € S do 7((s,s)) = &;

foreach pair (s, s;) € S do 7({ss,s;)) = undefined,

F —— {(s,s)|s € S}; // all singleton states of A

W N =

4 R — {(si,s;)|si,8; € SAsi #s;}; // all pair states of A
5 while I is not empty do
6 | F,R, 7« BFSstep F2R(A, F, R, 7);

Algorithm 2. BFS_step_F2R

input : An automaton A = (S, X, 0), the frontier F, the remaining set R, 7
output: The new frontier F’, the new remaining set R’, and updated function 7
F' — 0
foreach (s;,s;) € F' do
foreach z € ¥ do
foreach (s, s’} such that s; € 5~ "(si,x) and s € §~'(s;,z) do
if 7((s},s})) is undefined then // (si,s;) € R
(51 5])) — a7({s0,5,));
F'=F'U{(si,si)};

N OO W

®

let R' be R\ F;

BFS_step_F2R constructs the next frontier F’ from the current frontier F, by
considering each (s;, s;) € F (line 2). Lines 4-5 of BFS_step_F2R identify a pair
(s},s) € R such that s; = 6(si,x) and s = d(s;,) for some x € X, and lines
67 performs the necessary updates. Since this algorithm considers, in a sense,
the reverse transitions of (s, s;) in the frontier I to reach to pairs (s;, s}) in R,
we call it as “Frontier to Remaining (F2R)” BFS step.

Algorithm 1 eventually assigns a value to 7((s;,s;)) if {s;,s;} is mergable.
Based on Proposition 1, A is synchronizable iff there does not exist a pair state
(si,sj) with 7((s;,s;)) being undefined when Algorithm1 terminates. We can
now present Eppstein’s GREEDY algorithm based on Algorithm 1.

The GREEDY algorithm keeps track of a current set C of states yet to be
merged, initialized to S at line 4. A pair (s;, s;) € C*?) is called an active pair.
In each iteration of the while loop at line 7, an active pair (s;,s;) € Cc? is
found such that it has a shortest merging sequence among all active pairs in C'
(line 8). The synchronizing sequence (initialized to the empty sequence at line 6)
is extended with 7((s;, s;)) at line 9. Finally, 7({(s;, s,)) is applied to C to update
the current set of states. When |C| = 1, this means that I" accumulated at that
point is a synchronizing sequence.

The following results are shown in [12, Theorem 5]. For an automaton A with
n states and p inputs, Phase 1 of GREEDY (lines 1-3) can be implemented to

Parallelizing Heuristics for Generating Synchronizing Sequences 111

Algorithm 3. Eppstein’s GREEDY Algorithm

input : An automaton A = (S, X, 0)
output: A synchronizing sequence I" for A (or fail if A is not synchronizable)

1 compute a PMF 7 using Algorithm 1;

2 if there exists a pair (s:, s;) such that 7({si, s;)) is undefined then

3 L report that A is not synchronizable and exit;

4 foreach s;, s;, s, € S do compute 0(sk, 7({si,5;)));

5 C=1S;// C will keep track of the current set of states

6 I'=¢;// I' is the synchronizing sequence to be constructed

7 while |C| > 1 do // we have two or more states yet to be merged

8 find a pair (s;, s;) € C® with minimum |7((s;, s;))| among all pairs in C?;
9 | I'=I7((si,s5));
10 025(C7T(<Si75j>))§

run in time O(pn?) and Phase 2 of GREEDY (lines 4-10) can be implemented to
run in time O(n3). Hence the overall time for GREEDY is O(n® + pn?).

We performed an experimental analysis to see how much Phase 1 (which
we will call as the PMF construction phase?) and Phase 2 (the synchronizing
sequence construction phase) of the algorithm contribute to the running time
in practice for a sequential implementation. Based on these experiments, we
observed that PMF construction actually dominates the running time of the algo-
rithm (see Table 1). Hence, in order to improve the performance of GREEDY, we
developed approaches for parallel implementation of PMF construction, together
with some algorithmic modifications, which we explain in Sect. 4.

Table 1. Sequential PMF construction time (¢par), and overall time (tarr) for
automata with n € {1000, 2000,4000} states and p € {2,8, 32,128} inputs.

n = 1000 n = 2000 n = 4000

tPMF tPMF tPMF
taLL tALL tALL

0.045]0.042 | 0.928 | 0.188]0.175 | 0.929 | 1.214 | 1.158 |0.954
0.125]0.122 | 0.974 | 0.526 | 0.513 | 0.975 | 2.757 | 2.698 | 0.979
32 10.483/0.480 1 0.993 |2.151|2.138 | 0.994 1 9.980 |9.919 |0.994
128 2.202{2.199 | 0.999 |9.243|9.229 | 0.999 | 39.810 | 39.749 | 0.998

tarr | tPpMmF tarr |[tPpMmF tarr |tpmF

4 Parallelization Approach and Improvements

Algorithm 1 necessarily performs a BFS on the pair automaton A, and a BFS
forest rooted at singleton states of A is implicitly obtained. At the roots of

2 Lines 2-3 of Phase 1 is easily handled as a part of PMF construction by checking if
R is empty or not at the end of PMF construction.

112 S. Karahoda et al.

the forest (i.e. in the first frontier set F') we have singleton states of A, which
corresponds to the nodes at level 0 of the BFS forest. At each iteration of the
algorithm, the current frontier F' has all the nodes at level k in the BF'S forest.
These nodes are processed by Algorithm 2 to compute the next frontier F’ which
are the nodes at level k + 1 in the BFS forest. The processing of the state pairs
in F are the tasks to be performed at the current level. To process a state pair,
Algorithm 2 considers incoming transitions of the pair (i.e., inverse transitions)
based on the §~1 function (line 4). Hence, the cost of each task can be different.
Furthermore, the total number of edges of the tasks in F', i.e., frontier edges,
determines the cost of the corresponding level’s BFS_step_F2R execution and
this also varies for each level. We used OpenMP for parallel implementation and
employed the dynamic scheduling policy (with batches of 512-pairs) since the
task costs are not uniform.

4.1 Computing a PMF in Parallel

When Algorithm 1 is implemented sequentially, handling two consecutive iter-
ations is seamless: using a single queue to enque and deque the frontier pairs
suffices to process them in the correct order (i.e. a pair at level k+1 is only found
after all level k pairs are found). However, with multiple threads, a barrier (a
global synchronization technique) is required after each iteration. Otherwise, a
pair from the next frontier can be processed before another pair in the current
frontier and an incorrect PMF function 7 can be computed. Here we present
Algorithm 1 iteratively, and isolate the BFS_step_F2R from the main flow of the
algorithm since it will be our main target for efficiency.

Algorithm 4. BFS_step_F2R (in parallel)

input : An automaton A = (S, X,), the frontier F, the remaining set R, 7
output: The new frontier F’, the new remaining set R, and updated function 7
foreach thread t do F} «— 0 ;
foreach (s;,s;) € F' in parallel do
foreach =z € X' do
foreach (s}, s}) where s; € 6 '(s;,x) and s} € 5~ '(s;,2) do
if 7((s},s})) is undefined then // (si,s;) € R
(5, 8,)) — w7 ({55, 55));
F =F{U{(si,s))};

N oA W

]

F' — 0
9 foreach thread t do F' = F' U F| ;
10 let R’ be R\ F’;

To parallelize BFS_step_F2R, we partition the current frontier F' among mul-
tiple threads where only a single thread processes a frontier pair as shown in
Algorithm4 (line 2). Since there is no task-dependency among the pairs, all
the threads can simultaneously work. However, a race condition occurs since
the next frontier set F’ is a shared object in the sequential implementation.

Parallelizing Heuristics for Generating Synchronizing Sequences 113

To break dependency with a lock-free approach, in our parallel implementation,
each thread t uses a local frontier array F/ and when a new pair from the next
frontier is found by thread ¢, it is immediately added to F;. When two threads
find the same pair (s, s;) at the same time, both threads insert it to their local
frontiers (lines 5-7). Hence, when the local frontiers are combined at the end of
each iteration (lines 8-9), the same pair can occur multiple times if no dupli-
cate pair check is applied. In our preliminary experiments, we observed that at
most one in a thousands extra pairs are inserted to F’ when they are allowed.
Hence, we let the threads process them since the total extra pair cost is negligible
compared to the cost of checking and resolving duplicates.

4.2 Another Approach for BFS Steps

Algorithms 2 and 4 follow a natural and possibly the most common technique
to construct the next frontier set F” from the current frontier set F' by consider-
ing the incoming transitions. Another approach to construct the next frontier F’
function, which we call “Remaining to Frontier (R2F)”, is processing the remain-
ing state pairs’ edges instead of those in the frontier. As mentioned above, a state
pair (s;, s;) stays in R, i.e., in the remaining pair set, as long as 7((s;, s;)) stays
undefined. In the parallel R2F approach described by Algorithm 5, the threads
process the transitions of the remaining state pairs instead of the ones in the
frontier. Hence, instead of 6!, the original transition function § is used and the
pair found is checked to be in the frontier (lines 5-6). If a pair (s;, s;) has a tran-
sition to a pair (s}, s}) € F' (i.e., if (si, s;) is in the next frontier), 7({s;, s;)) is
set and the process ends (lines 7-9). Otherwise, (s;, ;) is kept in the remaining
set (lines 10-11). Similar to parallel F2R, we use a local remaining pair array R
for each thread t in the lock-free parallelization of R2F.

Algorithm 5. BFS_step_R2F (in parallel)

input : An automaton A = (S, Y,), the frontier F, the remaining set R, 7
output: The new frontier F’, the new remaining set R’, and updated function 7
foreach thread t do R} «— 0;
foreach (s;,s;) € R in parallel do
connected «—— false;
foreach z € ¥ do

<827 S;) — <5(Si7 :U)7 6(8]', l’)>,

if 7((s},s})) is defined then // (s;,s}) € F

L 7({si, 55)) «— ar((s, 57));

connected <« true;
break;

© O NOo U WN -

10 if not connected then
11 | Ri=RiU{(si,s)};

12 R «— 0
13 foreach thread t do R’ = R'UR; ;
14 let F' be R\ R';

114 S. Karahoda et al.

Algorithm 6. Computing a function 7 : S — $* (Hybrid)

input : An automaton A = (S, X, 0)
output: A function 7 : $¢? — X*
foreach singleton (s,s) € S do 7((s,s)) = &;
foreach pair (s, s;) € S do 7({ss,s;)) = undefined,
F —— {(s,s)|s € S}; // all singleton states of A
R — {(si,8;)|8i,8; € SAs; #s;}; // all pair states of A
while F' is not empty do
if |F| < |R| then
| F,R,7 «— BFS.step F2R(A, F, R, 7);
else
| F,R,7 «— BFS.step.R2F(A, F, R, 7);

© O N0 Uk N =

4.3 A Hybrid Approach to Construct the Next Frontier

Since the size of R decreases at each iteration, R2F becomes faster at each
step. On the other hand, F2R is expected to be faster than R2F during the
earlier iterations. Therefore it makes sense to use a hybrid approach, where
either an F2R or an R2F BF'S step is used depending on their respective cost
for the current iteration. These observations have been used by Beamer et al.
to implement a direction-optimized BFS [19]. Since the cost of each F2R/R2F
iteration depends on the number of edges processed, it is reasonable to compare
the number of frontier/remaining pairs’ edges to choose the cheaper approach
at each iteration as in [19]. When the BFS is executed on a simple graph, this
strategy is easy to apply. However, by only using 61, it takes O(p) time to
count a new frontier pair’s edges. Overall, the counting process takes O(pn?)
time which is expensive considering that the overall sequential complexity is
also O(pn?). In this work, we compared the size of R and F instead of the edges
to be processed. The total additional complexity due to counting is O(n?) since
each pair will be counted only once.

To analyze the validity of our counting heuristic and the potential improve-
ment due to the Hybrid approach described in Algorithm 6, we compared the
size of R and F', and the corresponding execution time of each F2R/R2F exe-
cution in Fig.2. As the figure shows, counting the pairs instead of transitions
can be a good heuristic to guess the cheaper approach in our case. Furthermore,
the performance difference of F2R and R2F at the each iteration shows that the
proposed Hybrid approach can yield a much better performance.

4.4 TImplementation Details

To store and utilize the §~1(s,z) for all x € X and s € S, we employ the data
structures in Fig.1 (right). For each symbol x € X, we used two arrays ptrsy
and jsyx where the former is of size n+1 and the latter is of size n. For each state
s € S, ptrsy[s] and ptrsy[s + 1] are the start (inclusive) and end (exclusive)

Parallelizing Heuristics for Generating Synchronizing Sequences 115

0,400
=9=F2R (frontier) 0,350 =Q==F2R

] =@=R2F (remaining) A =@=R2F

2,00E+06 0,300 / \
1,50€+06 0,250 / \

% 0,200
1,00E+06 / \
5,00E405 0,100 /‘\ \

0,050

0,00E+00 0,000 #%—‘

2,50E+06

Execution time (secs)

Number of vertices to process

1 2 3 4 5 6 7
PMF construction iteration PME construction iteration
(a) p = 8, #vertices (b) p = 8, execution time
2,50E+06 10,000
=®=F2R (frontier) 9,000 —O=F2R A
g - - ~@=R2F
S 2,00E+06 | R2F (remaining) 8,000 / \
s 8 7,000
2 2 /\
@ 1,50E406 2 6000 7 \
3
£ \ £ 5,000
] T 5
£ 1,00E406 A £ 4,000 // \\
5 \/ \ ¢ 3000
£ 5006405 “ 000 1 \
55 ¥
z
{ s ! 1,000 L / \
0,00E+00 - 0,000 ._A._,_L_\
1 2 3 4 5 1 2 3 4
PMF construction iteration PMF construction iteration
(c) p = 128, #vertices (d) p = 128, execution time

Fig. 2. The number of frontier and remaining vertices at each BFS level and the corre-
sponding execution times of F2R and R2F while constructing the PMF 7 for n = 2000
and p = 8 (top) and p = 128 (bottom).

pointers to two js; entries. The array jsy stores the ids of the states 6~1(s, z)
in between jsy[ptrsy[s]] and jsg[ptrsg[s+ 1] - 1]. This representation has a low
memory footprint. Furthermore, we access the entries in the order of their array
placement in our implementation hence, it is also good for spatial locality.

The memory complexity of the algorithms investigated in this study is O(n?).
For each pair of states, we need to employ an array to store the length of the
shortest merging sequence. To do that one can allocate an array of size n?,
Fig.3 (left), and given the array index ¢ = (i — 1) x n + j for a state pair
{si,s;} where 1 < i < j < n, she can obtain the state ids by i = [%1 and
j=4L¢—((t —1) x n). This simple approach effectively uses only the half of the
array since for a state pair {s;, s;}, a redundant entry for {s;, s;} is also stored.
In our implementation, Fig. 3 (right), we do not use redundant locations. For an
index £ = ’X(ZH) + j the state ids can be obtained by ¢ = |1+ 2¢ — 0.5 and
j=4L— % Preliminary experiments show that this approach, which does not
suffer from the redundancy, also have a positive impact on the execution time.
That being said, all the algorithms in the paper uses it and this improvement
will not have change their relative performance.

116 S. Karahoda et al.

|{50v50}|{50‘51}|.... |(so,sn_1}|{sl,so}| |{sn_1,sn_1}| |{so,so}|{sl,so}|{sl,s1}|{sz,so}| |(sn_1,sn_1}|
0 1 -1 n n2_1 o 1 2 3 @ +m/2)-1

Fig. 3. Indexing and placement of the state pair arrays. A simple placement of the
pairs (on the left) uses redundant places for state pairs {s;,s;}, i # j, e.g., {s1,s2}
and {s2,s1} in the figure. On the right, the indexing mechanism we used is shown.

5 Experimental Results

All the experiments in the paper are performed on a single machine running
on 64 bit CentOS 6.5 equipped with 64GB RAM and a dual-socket Intel Xeon
ET7-4870 v2 clocked at 2.30 GHz where each socket has 15 cores (30 in total). For
the multicore implementations, we used OpenMP and all the codes are compiled
with gcc 4.9.2 with the -03 optimization flag enabled.

To measure the efficiency of the proposed algorithms, we used randomly
generated automatons® with n € {1000, 2000, 4000} states and p € {2,8,32,128}
inputs. For each (n, p) pair, we randomly generated 20 different automatons and
executed each algorithm on these automatons. The values in the figures and
the tables are the averages of these 20 executions for each configuration, i.e.,
algorithm, n and p.

5.1 Multicore Parallelization of PMF Construction

Figure 4 shows the speedups of our parallel F2R implementation over the sequen-
tial baseline (that has no parallelism). Since F2R uses the same frontier extension
mechanism with the sequential baseline, and R2F employs a completely differ-
ent one, here we only present the speedup values of F2R. As the figure shows,
when p is large, the parallel F2R presents good speedups, e.g., for p = 128, the
average speedup is 14.1 with 16 threads. Furthermore, when compared to the
single-thread F2R, the average speedup is 15.2 with 16 threads. A performance
difference between sequential baseline and single-threaded F2R exists because
of the parallelization overhead during the local queue management. Overall, we
observed 10 % parallelization penalty for F2R on the average over the sequential
baseline for all (n,p) pairs.

For p values smaller than 128, i.e., 2, 8, and 32, the average speedups are 5.4,
9.1, and 12.8, respectively, with 16 threads. The impact of the parallelization
overhead is more for such cases since the amount of the local-queue overhead
is proportional to the number of states but not to the number of edges. Con-
sequently, when p decreases the amount of total work decreases and hence, the
impact of the overhead increases. Furthermore, since the number of iterations
for PMF construction increases with decreasing p, the local queues are merged
more for smaller p values. Therefore, one can expect more overhead, and hence,
less efficiency for smaller p values as the experiments confirm.

3 For each state s and input z, (s, z) is randomly assigned to a state s’ € S.

Parallelizing Heuristics for Generating Synchronizing Sequences 117

16 . 16 . 16

——p=2 ’ —6—p=2
14 —=—p=8 14 —8—p=38 14
—r—p=32 —fr—p=32

27 —e=p=128 12

= == o|deal

27 —e—p-128

o @ |deal

10

Speedup

8 8 8
6 6 6
4 4 4
2 2 2
0] 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads
(a) n = 1000 (b) m = 2000 (c) n = 4000

Fig. 4. The speedup of our parallel F2R PMF construction over the sequential PMF
construction baseline.

Figure 5 compares the execution times of F2R, R2F and Hybrid algorithm for
n = 1000 (top) and n = 4000 (bottom) states, p € {2,8,32} and {1,2,4,8,16}
threads (the results for n = 2000 are similar but omitted due to space limita-
tions). For better figure scaling, the results for p = 128 is given in Fig.6. An
interesting observation is that F2R is consistently faster than R2F for p = 2,
however, it is slower otherwise. This can be explained by the difference in the
number of required iterations to construct PMF: when p is large, the frontier
expands very quickly and the PMF is constructed in less iterations, e.g., for
n = 2000, the PMF is generated in 16 iterations for p = 2, whereas only 7 itera-
tions are required for p = 8. Since each edge will be processed once, the runtime
of F2R always increases with p, i.e., with the number of edges. However, since the
frontier expands much faster, the total number of remaining (R-)pairs processed
by the R2F throughout the process will probably decrease. Furthermore, since
when the frontier is large, while traversing the edge list of an R-pair, it is more
probable to early terminate the traversal and add the R-pair to the next frontier
earlier. Surprisingly, when p increases, these may yield a decrease in the R2F
runtime (observe the change from p = 2 to p = 8 in Fig.5). However, once the
performance benefits of early termination are fully exploited, an increase on the
R2F runtime with increasing p is more probable since the overall BFS work, i.e.,
the total number of edges, also increases with p (observe the change from p = 8
to p = 32 in Fig. 5).

Observing such performance differences for R2F and F2R on automatons
with different characteristics, the potential benefit of a Hybrid algorithm in
practice is more clear. As Figs.5 and 6 show, the hybrid approach, which is
just a combination of F2R and R2F, is almost always faster than employing
a pure F2R or a pure R2F BFS-level expansion. Furthermore, we do not need
parallelism to observe these performance benefits: the Hybrid approach works
better even when a single thread is used at runtime. For example, when n = 4000
and p = 128, the Hybrid algorithm is 23 and 6 times faster than F2R and R2F,
respectively. For the same automaton set, the speedups due to hybridization of
the process become 14 and 4 with 16 threads on average.

118 S. Karahoda et al.
0,30
0,53 OF2R
—E 0,25
9 BR2F
Z 02
£ BHybrid
B
£ o015
£
2 0,10
X .
@ 0,05
oo * B | B e e &_ Ne
! 2 4 8 16 4 8 16 4 8 16
2 letters 8 letters 32 letters
F2R 0,05 | 0,03 | 0,02 | 0,01 | 0,01 | 0,14 | 0,08 | 0,04 | 002 | 001 | 053 | 028 | 0,14 | 0,07 | 0,04
R2F 0,14 | 0,08 | 0,04 | 0,02 | 001 | 0,11 | 0,06 | 0,03 | 002 | 001 | 0,19 | 0,10 | 0,05 | 0,03 | 0,02
Hybrid | 0,03 | 0,03 | 0,02 | 001 | 001 | 007 | 005 | 0,02 | 0,01 | 0,01 | 0,03 | 0,03 | 001 | 0,01 | 0,01
(a) n = 1000
6,00
11,07 QF2R
- 500
o
1 B|R2F
= 400
£ B Hybrid
B
£ 300
2
2 2,00
-~ N N M- % 5
! 2 4 8 16 2 4 8 16 4 8 16
2 letters 8 letters 32 letters
F2R 1,32 | 0,72 | 0,38 | 0,24 | 0,19 | 3,15 | 1,66 | 0,85 | 0,47 | 031 | 11,07 | 566 | 2,86 | 1,46 | 0,78
R2F 324 | 2,01 | 1,10 | 066 | 044 | 2,64 | 1,56 | 0,83 | 0,46 | 028 | 478 | 2,68 | 1,37 | 0,72 | 0,40
Hybrid | 1,03 | 0,57 | 0,31 | 0,20 | 0,16 | 0,88 | 0,49 | 0,26 | 0,16 | 0,13 | 2,94 | 1,55 | 0,79 | 0,42 | 0,25
(b) n = 4000

Fig.5. Comparison of the parallel execution times of the three PMF construction
algorithms: (1) F2R, (2) R2F, and (3) hybrid. The figures show the times for n =
1000 (top) and n = 4000 (bottom), p € {2, 8,32}, with {1,2,4,8,16} threads (z-axis).
For a better readability and figure scaling, the single-thread F2R bars with 32 inputs
are allowed to exceed the max value on the y-axis.

2,50 50,00
SF2R 12,00 45,00 SF2R
7 OF2R 7 40,00
g 200 R2F 10,00 g9 R2F
2 g BR2F £ 35,00
g 150 B Hybrid 2 800) £ 30,00 B Hybrid
b5 2 BHybrid £ 25,00
§ 100 £ 600 S 20,00
2 1 5 g 20,
g 5 400 g 15,00
S 0,50 H-] & 10,00
4 500 &_ 5,00
000 NI . N 00 NS
1 2 4 8 16) 1 5 4 s o 1 2 4 8 16
1000 states 2000 states 4000 states
F2R | 2,37 | 1,20 | 0,60 | 0,30 | 0,16 F2R | 9,87 | 496 | 249 | 125 | 064 F2R | 43,53 | 22,07 | 11,06 | 558 | 2,88
R2F | 045 | 023 | 0,12 | 0,06 | 0,03 R2F | 1,90 | 098 | 049 | 0,25 | 0,13 R2F 11,31 611 | 3,08 | 1,57 | 0,82
Hybrid | 0,20 | 0,16 | 0,08 | 0,04 | 0,02 Hybrid| 0,65 | 037 | 019 | 0,10 | 0,06 Hybrid| 1,86 | 1,00 | 0,52 | 0,29 | 0,20
(a) n = 1000 (b) m = 2000 (c) n = 4000

Fig. 6. Comparison of the parallel execution times of the three PMF construction
algorithms: (1) F2R, (2) R2F, and (3) hybrid. The figures show the times for n =
1000 (left), n = 2000 (middle), and n = 4000 (bottom), p = 128, with {1,2,4,8,16}
threads (x-axis).

Parallelizing Heuristics for Generating Synchronizing Sequences 119

When the Hybrid algorithm is used, the speedups on the PMF generation
phase are given in Fig.7. As the figure shows, thanks to parallelism and good
scaling of Hybrid (for large p values), the speedups increase when the number
of threads increases. The PMF generation process becomes 95, 165, and 199
times faster when 16 threads used for 1000, 2000, and 4000 state automatons,
respectively. Even with single thread, i.e., no parallelization, the Hybrid heuristic
is 8, 14, and 21 times faster than the sequential algorithm.

Since we generate the PMF to find a synchronizing sequence, a more practi-
cal evaluation metric would be the performance improvement over the sequential
reset sequence construction process. As Table 1 shows, for Eppstein’s GREEDY

_ 100 66 92 52 3%
£ 37 27
c
qg’_ 15 15 19 14 e
] 6 ° R 8 N
g 10 5 AN 3NN
= N
s 3N, 3 N N N N
TR TR
3, =8NNNR NANN N N D
Q
v 1/2(4|8/16/1|2|4/8/16/1|2|4|816/1|2|4/|8]16
2 letters 8 letters 32 letters 128 letters
(a) n = 1000
165
= 95
£ 100 29
[28 25
3
g 13 Y . 16 14
o 7 7
0 o N 2~ R N
2 N N < N 29N
g 23 NNRANR N A
t , ~ONNNNNNNNNRNNNNNNRNRNN
o
» 1,24 ,8|16/1|2|4/8|16/1|2|4|8|16/1|2 48|16
2 letters 8 letters 32 letters 128 letters
(b) n = 2000
137199
© 76
g 100 0 0
g 24 21
g oY 13
a
< 10 6 7 N\ 6
AN NERRRNRER
Q
;o BENaNANN
3, NN NFN N N
Q.
i 1/2/4|8|16/1,2,4,8|16/1|2 48 16/1|2 48|16
2 letters 8 letters 32 letters 128 letters

(¢) n = 4000

Fig. 7. The speedups of the Hybrid PMF construction algorithm with n = 1000 (top),
2000 (middle), 4000 (bottom) and p € {2, 8,32,128}. The z-axis shows the number of
threads used for the Hybrid execution. The values are computed based on the average
sequential PMF construction time over 20 different automatons for each (n,p) pair.

120 S. Karahoda et al.

heuristic (also for some other heuristics such as CYCLE [13]), the PMF genera-
tion phase dominates the overall runtime. For this reason, we simply conducted
an experiment where the Hybrid approach is used to construct the PMF and no
further parallelization is applied during the synchronizing sequence construction
phase. Table 2 shows the speedups for this experiment for single thread and 16
thread Hybrid executions. As the results show, even when the sequence construc-
tion phase is not parallelized, more than 50x and more than 100x improvement
is possible for p = 32 and p = 128, respectively.

Table 2. The speedups obtained on Eppstein’s GREEDY algorithm when the Hybrid
PMF construction algorithm is used.

p (Single thread) | p (16 threads)

n 2 |8 132 128 |2 |8 32 | 128
1000 1.2]1.8{13.4|7.5 |4.6|10.8|58.2|83.7
2000 1.2]2.7/2.2 |14.0|4.8/13.1|24.3|133.9
4000 (1.1/2.9/3.3 [20.7|5.5|14.831.7|154.0

As noted before, F2R based PMF construction has O(pn?) time complexity.
R2F based PMF construction, on the other hand, has O(dpn?) time complex-
ity (where d is the diameter of the pair automaton .4), since states of A in
the remaining set R will be processed at most d times. In practice, however,
R2F based construction (and Hybrid computation which also has O(dpn?) time
complexity since it performs R2F steps) can beat F2R based construction.

We did not perform an extensive study on automata with larger state num-
bers, since it takes too long with the sequential baseline implementation. For
example, sequential PMF generation takes around 75 min for an automaton with
32000 states and 128 letters, whereas our Hybrid implementation completes in
3 min.

6 Conclusion and Future Work

We investigated the efficient implementation and use of modern multicore CPUs
to scale the performance of synchronizing sequence generation heuristics. We
parallelized one of the well-known heuristics GREEDY. We mainly focused on
the PMF generation phase (which is employed by almost all the heuristics in the
literature), since it is the most time consuming part of GREEDY. Even with no
parallelization, our algorithmic improvements yielded a 20x speedup on GREEDY
for automatons with 4000 states and 128 inputs. Furthermore, around 150x
speedup has been obtained with 16 threads for the same automata class.

To eliminate threats to validity, we checked and confirmed that the sequence
constructed by each algorithm is indeed a synchronizing sequence. We also com-
pared the length of the sequences constructed by the original implementation of

Parallelizing Heuristics for Generating Synchronizing Sequences 121

GREEDY and different versions of GREEDY algorithms suggested in this paper.
We observed that regardless of the PMF construction approach used, for each
pair (s;,s;), we obtain the same length |7((s;,s;))| for the shortest merging
sequences, but the actual shortest merging sequence 7((s;, s;)) can differ, which
causes around +1 % difference in the length of the synchronizing sequences.

As a future work, we will apply our techniques to other heuristics in the
literature that are relatively slower than GREEDY but can produce shorter syn-
chronizing sequences. For these heuristics, parallelizing only the PMF generation
phase may not be sufficient since the synchronizing sequence construction part
of these heuristics are much more expensive compared to GREEDY. Hence, we
aim to parallelize the whole sequence generation process. Another problem we
want to study is the use of cutting-edge manycore architectures such as GPUs
and FPGAs to make such heuristics faster and more practical for large scale
automatons.

Acknowledgements. This work is supported by TUBITAK Grants #114E569 and
#115C018.

References

1. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178-187 (1978)

2. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of
Fifth Annual Symposium on Switching Circuit Theory and Logical Design, Prince-
ton, New Jersey, pp. 95-110 (1964)

3. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Trans. Comput. 46(1), 93-99 (1997)

4. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Trans. Comput.
51(9), 1111-1117 (2002)

5. Petrenko, A., Yevtushenko, N.: Testing from partial deterministic FSM specifica-
tions. IEEE Trans. Comput. 54(9), 1154-1165 (2005)

6. Sim&o, A.S., Petrenko, A., Yevtushenko, N.: On reducing test length for FSMs
with extra states. Softw. Test. Verif. Reliab. 22(6), 435-454 (2012)

7. Hierons, R.M., Ural, H.: Generating a checking sequence with a minimum number
of reset transitions. Autom. Softw. Eng. 17(3), 217-250 (2010)

8. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: Yenigiin, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol.
8254, pp. 133-148. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41707-8_9

9. Groz, R., Simao, A., Petrenko, A., Oriat, C.: Inferring finite state machines
without reset using state identification sequences. In: El-Fakih, K., Barlas, G.,
Yevtushenko, N. (eds.) ICTSS 2015. LNCS, vol. 9447, pp. 161-177. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25945-1_10

10. Jourdan, G.V., Ural, H., Yenigun, H.: Reduced checking sequences using unreliable
reset. Inf. Process. Lett. 115(5), 532-535 (2015)

11. Berlinkov, M.V.: On the probability of being synchronizable. In: Govindarajan, S.,
Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 73-84. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-29221-2_7

http://dx.doi.org/10.1007/978-3-642-41707-8_9
http://dx.doi.org/10.1007/978-3-319-25945-1_10
http://dx.doi.org/10.1007/978-3-319-29221-2_7

122

12.

13.

14.

15.

16.

17.

18.

19.

S. Karahoda et al.

Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500-510 (1990)

Trahtman, A.N.: Some results of implemented algorithms of synchronization. In:
10th Journees Montoises d’Inform (2004)

Roman, A.: Synchronizing finite automata with short reset words. Appl. Math.
Comput. 209(1), 125-136 (2009)

Kudlacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert
Syst. Appl. 39(14), 11746-11757 (2012)

Roman, A., Szykula, M.: Forward and backward synchronizing algorithms. Expert
Syst. Appl. 42(24), 95129527 (2015)

Tiirker, U.C.: Parallel algorithm for deriving reset sequences from deterministic
incomplete finite automata. IJFCS Int. J. Found. Comput. Sci. (submitted)
Natarajan, B.K.: An algorithmic approach to the automated design of parts ori-
enters. In: FOCS, pp. 132-142 (1986)

Beamer, S., Asanovié, K., Patterson, D.: Direction-optimizing breadth-first search.
In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2012, pp. 12:1-12:10. IEEE Computer
Society Press, Los Alamitos (2012)

	Parallelizing Heuristics for Generating Synchronizing Sequences
	1 Introduction
	2 Preliminaries
	3 Eppstein's Algorithm
	4 Parallelization Approach and Improvements
	4.1 Computing a PMF in Parallel
	4.2 Another Approach for BFS Steps
	4.3 A Hybrid Approach to Construct the Next Frontier
	4.4 Implementation Details

	5 Experimental Results
	5.1 Multicore Parallelization of PMF Construction

	6 Conclusion and Future Work
	References

