
A Novel Grouping Genetic Algorithm
for the One-Dimensional Bin Packing

Problem on GPU

Sukru Ozer Ozcan, Tansel Dokeroglu(B), Ahmet Cosar, and Adnan Yazici

Computer Engineering Department of Middle East Technical University,
Universities Street, 6800 Ankara, Turkey

{ozer.ozcan,tansel,cosar,yazici}@ceng.metu.edu.tr

Abstract. One-dimensional Bin Packing Problem (1D-BPP) is a chal-
lenging NP-Hard combinatorial problem which is used to pack finite num-
ber of items into minimum number of bins. Large problem instances of
the 1D-BPP cannot be solved exactly due to the intractable nature of
the problem. In this study, we propose an efficient Grouping Genetic
Algorithm (GGA) by harnessing the power of the Graphics Processing
Unit (GPU) using CUDA. The time consuming crossover and mutation
processes of the GGA are executed on the GPU by increasing the eval-
uation times significantly. The obtained experimental results on 1,238
benchmark 1D-BPP instances show that our proposed algorithm has a
high performance and is a scalable algorithm with its high speed fit-
ness evaluation ability. Our proposed algorithm can be considered as one
of the best performing algorithms with its 66 times faster computation
speed that enables to explore the search space more effectively than any
of its counterparts.

Keywords: 1D Bin packing · Grouping genetic · CUDA · GPU

1 Introduction

One-dimensional Bin Packing Problem (1D-BPP) is a challenging NP-Hard com-
binatorial problem which is used to pack finite number of items into minimum
number of bins [1]. The general purpose of the 1D-BPP is to pack items of interest
subject to various constraints such that the overall number of bins is minimized.
More formally, 1D-BPP is the process of packing N items into bins which are
unlimited in numbers and same in size and shape. The bins are assumed to have
a capacity of C > 0, and items are assumed to have a size Si for I in {1, 2, ..., N}
where (Si > 0). The goal is to find minimum number of bins in order to pack all
of N items.

Although problems with a small number of items up to 30 can be solved
with brute-force algorithms, large problem instances of the 1D-BPP cannot be
solved exactly. Therefore, metaheuristic approaches such as genetic algorithms
(GA), particle swarm, tabu search, and minimum bin slack (MBS) have been
c© The Author(s) 2016
T. Czachórski et al. (Eds.): ISCIS 2016, CCIS 659, pp. 52–60, 2016.
DOI: 10.1007/978-3-319-47217-1 6

1D-BPP 53

widely used to solve this important problem (near-) optimally [2–5]. Most of
the state-of-the-art algorithms that have been proposed to solve the 1D-BPP
are designed to run on a single processor and do not make use of the high
performance computation opportunities that are offered by the recent parallel
computation technologies. In this study, introduce an efficient Grouping Genetic
Algorithm (GGA) by making use of the Graphics Processing Unit (GPU) using
Compute Unified Device Architecture (CUDA) [6–9]. The population of solutions
is kept on memory of GPU and the time consuming crossover, mutation, and
fitness evaluation processes of the proposed GGA are also executed on the GPU.
Therefore, a high performance heterogeneous computing environment is provided
with a parallel computation support of GPU [10,11]. Our proposed algorithm
is tested on 1,238 benchmark problem instances and has been observed to be
a robust and scalable algorithm that can be considered as one of the best per-
forming algorithms with its up to 66 times faster computation speed than the
CPU-based version of GGAs. This talent of our proposed algorithm enables it
to explore the solution space more effectively than any of its single-processor
versions and obtain (near-)optimal results.

2 Proposed Algorithm (1D-BPP-CUDA)

Falkenaur’s chromosome structure is chosen for our study due to its high per-
formance [6,7].

Exon Shuffling Crossover: We use exon shuffling crossover [12], a recent tech-
nique borrowed from molecular genetics, for our proposed parallel algorithm.
Molecular genetics is the field of biology and genetics that studies genes at a
molecular level and employs methods to elucidate the molecular function and
interactions among genes. An offspring is generated by a two phase crossover.
In the first phase, all mutually exclusive segments are combined. In the second
phase, the remaining items are used to build a new bin. During the execution of
the algorithm, the exon shuffling crossover operations are run on the GPU.

The Mutation operator: enables new solutions using the current optimal solution.
In this study, the mutation operator works based on the predefined mutation
ratio. The number of groups chosen change depending on the population size and
mutation ratio. The mutation operator works on a number of groups computed
as multiplication of population size and the mutation ratio and select a number
of groups randomly. The items of the selected groups are removed from the
current solution list and they are added to remaining item list. At then end of
mutation process, items in the remaining item list are inserted back to groups
in the solution list using BFD algorithm.

Inversion operator: is applied to increase the transfer probability of fitter gene
pair to the next generation. At the beginning of process, selected groups are
interchanged [6]. The upcoming crossover and mutation operators take place on
these interchanged sets. The inversion operator provides an increased opportu-
nity for promising future generations without changing the item list during the
operation.

54 S.O. Ozcan et al.

Fitness function: gives us a value that is based on an equation defined by
Falkenauer given below:

FF =
nb∑

i=1

(
Fi

c

)k

(1)

There are different approaches to compute a fitness value in order to lead
choice procedure. Some of the approaches to calculate fitness value increase the
solution space by keeping suboptimal solutions. From the other side if we only
prefer to use group size as the fitness value, better solutions can be discarded.
As a result, the choice of fitness function (FF) requires additional caution. nb is
the number of bins, Fi is the sum of weights of the elements packed into the bin
i (i = 1 ,..., nb), c is the bin capacity, and k is a heuristic exponential factor.
The value k expresses a concentration on the almost full bins in comparison to
less filled ones. Falkenauer used k = 2 but Stawowy reported that k = 4 gives
slightly better results therefore, we prefer the second value [15].

For calculating the fitness values of each chromosome, we prefer to have an
enough block size division of size of population by 64 and 64 threads. So every
chromosome’s fitness value is calculated by concurrent blocks and threads. Com-
munication between host and device has a price. Since item weights are constant
values, it doesn’t need to transfer back from device to host. But the population
is needed to transfer from the device to host after the initial generation on the
device for the truncating and adding BFD to the population. After these func-
tions we need to transfer the population back again to the device to find slacks.
For crossover, mutation and calculating fitness values, the population is trans-
ferred to the device again. Finally after the last function in the last generation
on GPU, we transfer it back to host for validating and displaying the results.
At that time we no longer need the Random Numbered Arrays, item values and
population on the device. So, the final operation takes place on the device is to
free the memory they are occupied on GPU.

For the mutation and generation of initial population, we need to generate
integer random numbers. We use CURAND library of GPU side for this process.
A basic generation of CURAND is used in our study. We send the state pointers
to kernels to make the states ready for the generation-kernels. In this study, we
use two different generation states to have completely different two 1000-element
arrays. One of them generated by MTGP32 pseudorandom sequence generator
which is an NVIDIA’s adaption of an algorithm proposed by Saito et al. [13].
The other state we used is CURAND’s default state which generates an array of
pseudorandom numbers greater than 2190. Kernel Concurrency and Host-Device
Memory Copy Concurrency are used to do asynchronous operation for generation
of two distinct random numbered arrays. Three streams are created totally in
this step. First two of three are used for the generation, and the last one is used
for asynchronous memory copy of item weights from host to device. These three
operations are completely independent and run asynchronously.

An initial population is generated with the random numbered arrays for the
proposed algorithm. After allocation enough memory on the device the kernel
which executes the generation procedure, is launched. After the generation of

1D-BPP 55

each chromosome, the population array is filled with the chromosomes resident
on the device memory.

Generating an initial population that is larger than the population that you
will be working on by executing generations and pruning its size by selecting
the fittest individuals is a very effective way for GA. With this method, it is
possible to start with a higher quality population. This is called truncation. In
our proposed algorithm, we applied this method on GPU. A number of random
individuals are generated on the GPU and sent to CPU memory. CPU side
code selected the best individuals by pruning the all initial population with a
truncation ratio. The high-quality population is sent back to the GPU to be
improved through the generations.

BFD is one of the simplest and high performance algorithms for solving the
1D-BPP. In our proposed algorithm, crossover and mutation operators use a
BFD heuristic to reinsert the remaining items [4].

3 Performance Evaluation of Experimental Results

The PC used during the experiments has Intel Core i5-2467M CPU 1.60 GHz
with 4 cores, 4 GB Memory (RAM), 64 bit Windows 7 Operating System, and
EVGA NVIDIA GeForce GTX 750 Ti GPU (a mid-sized GPU designed for both
gaming and computing environment).

Four different sets of problem instances are used during the experiments. The
problem instances are set 1, set 2, set 3 [14] and hard28 [16] (Table 1).

Launching a kernel with N Blocks contains one Thread in each, equals to
launching with one Block contains N Thread in terms of generating N software
depended parallel processes. But execution times of each can be different for
each configuration therefore, we set the best block and thread sizes to have a
reasonable execution time.

The results of (near-)optimal population size for the Set 1 data set are pre-
sented in Table 2 (Bold face numbers are selected as the optimal solution, 80 indi-
viduals). # of Optimal Solutions shows the amount of optimal solution with com-
paring every instance with given optimal solutions for each data set instances.
Total Number of Extra Bins shows the summation of extra bins which is calcu-
lated by subtracting found best solution, which is group/bin number required to
pack all items, with the best solution for each data set instances. It is observed

Table 1. Information about the problem instances

problem # instances item weights bin capacity (c) # items (n)
instance

set 1 720 [1,100] {100, 120, 150} {50, 100, 200, 500}
set 2 480 [3, 9] items at each bin 1,000 {50, 100, 200, 500}
set 3 10 [20,000, 35,000] 100,000 200

hard28 28 [1, 800] 1,000 {160, 180, 200}

56 S.O. Ozcan et al.

Table 2. The effect of changing population size for Set 1 data set (# of generations is
40, truncate ratio is 20, mutation ratio is 0.2, inversion ratio is 0.2)

population size # of optimal solutions # of extra bins execution time (sec.)

20 574 212 1239.00

40 584 174 1374.57

60 612 117 1570.78

80 622 102 1696.64

100 614 108 1701.86

150 613 110 2233.97

300 611 611 3712.35

that increase in population size has a limited effect on number of optimal solu-
tions when number of generations is constant. The optimal number of population
is selected for the remaining problem sets as it is performed on Set 1.

After finding the best population size for the algorithm, we performed tests
on the number of generations to observe how it effects the solution quality and
execution time of the algorithm. When we run the algorithm for this given set up
on Set 1 data set, number of optimal solutions stays as 619 after the number of
generation 40 and so the total number of extra bins required stays unchanged as
expected. Additionally, execution time increases with the number of generations.
The results for the Set 1 data set with each Number of Generations between 20
and 300 are presented in Table 3.

Mutation and inversion ratios correspond to the size of the array that will
be generated in mutation and inversion processes. We tried to select the most
effective ratios to find (near-)optimal solutions. The number of optimal solutions
has an increasing pattern for Set 1 and Set 2 data sets. Additionally, an optimal
number of solution 5 and extra number of bins 23 are found as a result for hard28
data set.

Table 3. The effect of changing the number of generations for Set 1 data set (# of
population is 80, truncate ratio is 20, crossover ratio is 0.5, mutation ratio is 0.2, and
inversion ratio is 0.2)

of generations # of optimal solutions # of extra bins execution time (sec.)

20 611 118 1038.01

40 619 107 1282.00

60 619 107 1457.57

80 619 107 1832.35

100 619 107 2205.55

150 619 107 3150.46

300 619 107 6171.10

1D-BPP 57

Table 4. Comparisons between CPU and GPU implementation for Set 1 data set

population CPU-based GPU-based CPU GPU speed-up
size exec.time exec.time solutions solutions ratio

20 4852 773 547 571 6.28

40 5907 835 547 585 7.07

60 8296 927 547 610 8.95

80 10387 999 547 612 10.40

100 12897 1014 547 613 12.72

Table 5. Comparisons between CPU and GPU implementation for hard28 data set

population size CPU-based exec.time GPU-based exec.time speed-up ratio

20 148 10.92 13.56

40 193 24.38 7.92

60 290 30.67 9.46

80 394 30.85 12.77

100 486 31.40 15.48

150 726 22.75 31.91

300 1434 21.58 66.47

The results of the comparisons made on problem Set 1 are presented in
Table 4 for both CPU and GPU-parallel versions. Increasing the Population Size
causes increase in the execution time for both CPU and GPU versions. The last
column of Table 4 shows the Speed-Up Ratio. There is a constant increase in
the Speed Up Ratio. For the data set 1, we have not only better solutions but
have a speed up nearly 12 times approximately. In addition to that increase in
the Population Size it does not have any effect on CPU implementation. The
most important reason of this is to have a well distributed random generation of
integers which provides us a wider search space of chromosomes and its groups.

Table 5 presents the speed-up performance of the proposed algorithm for
the hard28 problem instances. The speed-up ratio is observed to be 66.47 for
the problem set. The 1D-BPP-CUDA algorithm terminates the execution of the
generations when it finds the optimal solution of the problem instance otherwise,
it continues to search the solution space through larger number of generations.
Therefore, the speed-up value of the algorithm is observed to be the highest on
the problem set hard28 where obtained number of optimal solutions is less than
the other problem sets and the number of generations are performed much more
than the other problem sets.

As shown in the results, our algorithm both improves the solution quality
while reducing the execution time even for a large population size and number of
generations. In this section we compare our proposed algorithm with state-of-the-
art algorithms in literature. Hard28 data set, one of the well known and widely

58 S.O. Ozcan et al.

Table 6. Comparing the solution quality of GPU parallel 1D-BPP-GGA-CUDA algo-
rithm with state-of-the-art algorithms on the hard28 data set

Algorithm # of optimal solutions Time (ms.)

BFD 2 2.3

MBS
′

2 3.6

MBS 3 4.2

B2F 4 3.6

FFD 5 2.2

SAWMBS
′

5 129.9

Pert-SAWMBS 5 6,946.4

Parallel Exon-MBS-BFD 5 5,341.0

1D-BPP-CUDA 5 7,023.6

preferred data set in BPP, is used for the comparisons [4]. See Table 6 for the
results. This comparison may seem unfair however, we have parallel, sequential,
GA and single solution versions of solutions in the same table. Yet, it may give
a hint about execution times. A fair comparison can be made between Parallel
Exon-MBS-BFD algorithm and our proposed 1D-BPP-CUDA algorithm.

With the (near-)optimal parameter settings of the 1D-BPP-GGA-CUDA
algorithm, 84.57 % of the problem instances are solved optimally and the solu-
tions found for each of the remaining problem instances produced only a single
extra bin, which can be considered as high performance when compared with
the sate-of-the-art algorithms.

4 Conclusions and Future Work

In this study, we propose a scalable heterogeneous computation based algorithm
(1D-BPP-CUDA) that take advantage of CUDA, evolutionary grouping genetic
metaheuristics, and bin-oriented heuristics to obtain high quality solutions for
large scale 1D-BPP instances. A total number of 1,238 benchmark problems are
examined with the proposed algorithm and it is shown that optimal solutions for
84.57 % of the problem instances can be obtained within practical optimization
times while solving the rest of the problems with no more than one extra bin
(250 additional bins in total). In addition to the higher solution quality, we have
a speed-up of 66.47 times depending on the examined data set. When the results
are compared with the existing state-of-the-art heuristics, the developed parallel
hybrid grouping genetic algorithms can be considered among the best 1D-BPP
algorithms in terms of computation time and solution quality.

1D-BPP 59

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Fleszar, K., Hindi, K.S.: New heuristics for one-dimensional bin-packing. Comput.
Oper. Res. 29(7), 821–839 (2002)

2. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Acad-
emic Publishers, Dordrecht (2000)

3. Holland, J.H.: Adaptation in Natural and Artifical Systems. University of Michigan
Press, Ann Arbor (1975)

4. Dokeroglu, T., Cosar, A.: Optimization of one-dimensional Bin Packing Problem
with island parallel grouping genetic algorithms. Comput. Ind. Eng. 75, 176–186
(2014)

5. Fernandez, A., Gil, C., Banos, R., Montoya, M.G.: A parallel multi-objective algo-
rithm for two-dimensional bin packing with rotations and load balancing. Expert
Syst. Appl. 40(13), 5169–5180 (2013)

6. Falkenauer, E.: A new representation and operators for GAs applied to grouping
problems. Evol. Comput. 2(2), 123–144 (1994)

7. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heurist.
2(1), 5–30 (1996)

8. Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gmez, C., Huacuja,
H.J.F., Alvim, A.C.: A grouping genetic algorithm with controlled gene transmis-
sion for the bin packing problem. Comput. Oper. Res. 55, 52–64 (2015)

9. Sivaraj, R., Ravichandran, T.: An efficient grouping genetic algorithm. Int. J. Com-
put. Appl. 21(7), 38–42 (2011)

10. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

11. Dokeroglu, T.: Hybrid teaching-learning-based optimization algorithms for the
Quadratic Assignment Problem. Comput. Ind. Eng. 85, 86–101 (2015)

12. Rohlfshagen, P., Bullinaria, J.: A genetic algorithm with exon shuffling crossover
for hard bin packing problems. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, pp. 1365–1371 (2007)

13. Saito, M., Matsumoto, M.: Variants of mersenne twister suitable for graphic proces-
sors. ACM Trans. Math. Softw. (TOMS) 39(2), 12 (2013)

14. Scholl, A., Klein, R., Jurgens, C.: BISON: A fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Comput. Oper. Res. 24(7), 627–
645 (1997)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

60 S.O. Ozcan et al.

15. Stawowy, A.: Evolutionary based heuristic for bin packing problem. Comput. Ind.
Eng. 55, 465–474 (2008)

16. Belov, G., Scheithauer, G., Mukhacheva, E.A.: One-dimensional heuristics adapted
for two-dimensional rectangular strip packing. J. Oper. Res. Soc. 59(6), 823–832
(2007)

	A Novel Grouping Genetic Algorithm for the One-Dimensional Bin Packing Problem on GPU
	1 Introduction
	2 Proposed Algorithm (1D-BPP-CUDA)
	3 Performance Evaluation of Experimental Results
	4 Conclusions and Future Work
	References

