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Abstract. Computer aided diagnosis of degenerative intervertebral disc
disease is a challenging task which has been targeted many times by
computer vision and image processing community. This paper proposes
a deep network approach for the diagnosis of degenerative interverte-
bral disc disease. Different from the classical deep networks, our system
uses non-linear filters between the network layers that introduce domain
dependent information into the network training for a faster training
with lesser amount of data. The proposed system takes advantage of the
unsupervised feature extraction with deep networks while requiring only
a small amount of training data, which is a major problem for medical
image analysis where obtaining large amounts of patient data is very
difficult. The method is validated on a dataset containing 102 lumbar
MR images. State-of-the-art hand-crafted feature extraction algorithms
are compared with the unsupervisedly learned features and the proposed
method outperforms the hand-crafted features.
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1 Introduction

Low Back Pain (LBP) is the most common pain type with 27 % and it is the
leading cause of activity limitation in USA under the age of 45 [7]. LBP is
strongly associated with degenerative disc disease (DDD) [6]. Computer Aided
Diagnosis (CAD) of DDD from MR images (Fig. 1) is crucial for many reasons.
First, the inter-variability and intra-variability between the radiologists are high
[12] and these variabilities affect diagnosis and treatment processes. A CAD
system may reduce these variabilities. Second, the computer-based evaluation
of an MRI sequence would help the radiologists in decreasing the costs and
speeding up the evaluation process. In the literature, many machine learning
based approaches with hand-crafted features have been proposed for CAD of
various intervertebral disc diseases from MR images [1,4,5,9].

In recent years, deep networks have been widely used in many fields and
they produce state-of-the-art results [3,10]. However, deep learning of medical
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Fig. 1. Two MRI images that include the lumber region. The disc labels are shown on
the images. The left image shows the discs L4-L5 and L5-S1. In the right image L3-14
and L4-L5 discs are diagnosed as having DIDD
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Fig. 2. The architecture of the system.

images has some domain-specific challenges. First, scaling the deep network for
high dimensional medical images is mostly computationally intractable because
of the large number of hidden neurons, often resulting in millions of parameters.
Medical images have generally high resolution and the training needs high num-
ber of nodes. In addition, the large-scale data for training (even unlabeled) is
not always available especially for many medical tasks where it is hard to gather
data because of ethical issues. Furthermore, training data should involve many
samples for different cases for CAD applications.

In this paper, we propose a novel deep learning architecture (Fig.2) with
non-linear filters that eliminates the requirement of large numbers of training
data, network layers, and nodes. Instead of learning disc features with a tradi-
tional deep learning architecture, we propose to use non-linear filters together
with auto-encoders [11]. The irrelevant input data is filtered with non-linear
filters via SVM and only relevant data is fed to the succeeding layers. In this
way, we restrict the upper layer to learn only the data that we consider valu-
able, which is very useful in reducing the training data size. Therefore, while the
disc representations are learned with auto-encoders from the MR image patches,
the non-linear filters reduce the domain of interest. Thus, with the first level
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non-linear filters the system focus on the discs from the whole MR image where
the second level non-linear filters consider the disc representations for the diag-
nosis of DDD.

The method is tested and validated on a dataset containing 102 MR images.
We also implemented the state-of-the-art features used in the methods of [1,2,9]
and compared them with the features learned with auto encoders.

2 Unsupervised Feature Learning with Auto-encoders

An auto-encoder is a symmetrical neural network that aims to minimize the
reconstruction error between the input and output data to learn the features.
Let X = {x1,29,...,2,,} be the image input for a single hidden layered auto-
encoder where m is the input size. The output nodes are the same as the input
nodes, thus the auto-encoder learns a nonlinear approximation of the identity
function for estimating the output X = {1, @9, ..., 27, }. Let k be the size of the
nodes in the hidden layer and W) = {wﬁ), wg), e w,(elm
w,(clyzl is the weight between input node m to hidden node k at hidden layer 1.
The value of a hidden layer node is calculated by

} be the weights where

m

j=1

where bgl) is the bias term for the node ¢ at hidden layer 1. Each hidden node
outputs a nonlinear activation function a = f(z;). The output layer X is con-
structed using the activations a as input and decoding bias and weights sim-
ilar to Eq.1. Features are learned by minimizing the reconstruction error of
the likelihood function between X and X and the features are encapsulated in
weights . Backpropagation via gradient descent algorithm is used for adjusting
W. Stacked auto-encoders are formed by stacking auto encoders by wiring the

learned weights to the next auto encoder’s input.

2.1 Intervertebral Disc Detection

In the proposed architecture, first the lumbar MRI features are learned with
stacked auto-encoders. Let d = {dy, da, ..., ds} be the labels of the lumbar inter-
vertebral discs in an MR image. Our goal is to identify the location l; € R? of
each disc d; on the image I. Randomly selected patches from image I are used
for learning the features of the images. Let 3 be a patch of size m x n of image
I where m and n varies between the minimum and maximum disc width and
height in the training set, respectively. The image patch 3 is resized to r x r
pixels and is formed into a 1 x 7?2 vector to be used as an input of an autoencoder.
Figure 3 shows the unsupervised learning of lumbar MR image features with an
auto-encoder.

The stacked auto-encoder with X = r2 input nodes is trained with the vec-
torized image patches 3. The weights W of the final hidden layer are brought to
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Fig. 3. An auto-encoder for learning MR image features. A single hidden layer auto-
encoder trained with the vectorized image patches

square form (having r x r size) for building the feature set f of the MR images
extracted in an unsupervised manner as explained in Sect. 2.

The feature set f includes the features of the whole MR image; however
the objective of the proposed system is diagnosing the diseases related with the
discs. To filter the irrelevant medical structures that exist in the image, we use
nonlinear filtering with SVM. A sliding window approach is employed and each
window ¥(p) enclosing the pixel p is convolved with the filter f; € f. The outputs
of the convolution of each window with the filters in f are concatenated and the
final feature vector is built. Each pixel p in the image I is given a score S, with
SVM that indicates the probability of being a location of disc d; using f.

In order to locate and label the intervertebral lumbar discs, we follow the
graphical model based labeling approach presented in [8] by enhancing the model
with the unsupervised feature learning. We use a chain-like graphical model
G consists of 6 nodes and 5 edges connecting the nodes where each lumbar
intervertebral disc d; is represented with a node. Our goal is to infer the optimal
disc positions d* = {d,d5, ..., d5} where df € R? and 1 < i < 6 in the image |
according to the given scores S, and the spatial information between the discs in
the training set. The optimal locations d* of the discs are determined by using
the maximum a posteriori estimate

d* = argmax P(d|I, Sp, a), (2)
d

where I represents the image, S, is the given score and o represents the parameters
learned from the training set. The Gibbs distribution of P(d|I, S,, @) is

P, Puy0) = eap{~ [ 00l d) A vapaldi i, )] ) )

The function (I, dy) represents the scores S, given via deep learning and
the potential energy function tgpq(dk, di+1,«) captures the geometrical infor-
mation between the neighboring discs dj and dj1. The optimal solution d* is
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gathered with dynamic programming in polynomial time. For the details of the
graphical model G and inference, please refer to [8].

2.2 Diagnosis of DDD

After localizing the discs in the MR images, the disc features should be learned
and they should be classified as healthy or not. The location [; of each disc d;
is found with the Eq. 2. Since the window 1 (p) enclosing the pixel p is known,
these windows are directly used for CAD of degenerative disc disease. The win-
dows ¥ (p) of each located disc are used for training a sparse auto-encoder. The
windows 1 (p) are resized and vectorized to be used as input. The features are
learned with sparse auto-encoders. The weights W of the final hidden layer of
the auto-encoder are the used as the features fy.

After determining the features of the discs, we again convolve the window
¥(p) with the learned filter f;. The output of the convolution operations are
concatenated and the final feature vector is formed. These final feature vectors
are trained and tested with SVM. Binary classification is performed and each
window v is classified as having degenerative disc disease or not.

3 Experiments

In order to evaluate the proposed system, two different datasets, one with labeled
and another with unlabeled discs, are used. First clinical MR image dataset
contains the lumbar MR images of 102 subjects. The MR images are 512 x
512 pixels in size. In the images, there are 612 (102 subjects*6 discs) lumbar
intervertebral discs where 349 of them are normal and 263 of them are diagnosed
with degenerative disc disease. The disc boundaries are delineated and each disc
is diagnosed having DDD or not by an experienced radiologist to be used as
the ground truth. The second dataset includes the lumbar MR images of 43
subjects where the intervertebral discs are neither delineated nor diagnosed by
an expert. This unlabeled dataset is used for providing data to the auto-encoder
for unsupervised training. It is not used for testing the system since it does not
include the ground truth.

For labeling process, randomly selected patches are used from the MR images.
The width and height of the intervertebral discs are between 30-34 mm and
8-13mm, respectively [13]. The patch size is selected in accordance with the
intervertebral disc size. The total number of patches used for training is 10000.
For preprocessing, the mean intensity value of the patch is subtracted from the
image patch for normalization. The patches are resized to 15 x 15 pixels (r = 15)
and the number of the input nodes X is 225. Two layers are used for the stacked
auto encoder. The number of nodes in layer the first inner layer is 70 and the
number of nodes in the second layer is 30.

The number of features f learned from the MR image patches is 30. Six-fold-
cross-validation is used for SVR training. The parameters of the Eq. 3 are learned
from the training set and the weighting parameter X is selected as 0.5 empirically.
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Fig. 4. Labeling results of the lumbar MR images selected from the database. Green
rectangles are the ground truth center points and the red rectangles are the disc centers
determined by our system. The MR images are cropped for better visualization (Color
figure online)
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Fig. 5. Boxplot of the Euclidean distances of the disc centers determined by our system
to the ground truth centers

Some of the visual labeling results of our system is shown in Fig.4. In order to
evaluate the performance of the labeling system with unsupervised feature learn-
ing, the Euclidean distances between the disc center point detected by our system
and the ground truth are calculated. Figure 5 shows the boxplot of the Euclidean
distances in mm.

For automated DDD diagnosis, a similar validation method is followed. Since
the disc labels d determined for an image I and their enclosing windows v are
determined in the labeling step, they are employed as the image patches for train-
ing and testing. Leave-one-out approach is used for training. Instead of using the
whole window 1, we use the half right side of the window v since the DDD includ-
ing disc bulging and herniation occur at the right side. A two-layer stacked auto-
encoder (70 nodes in the first layer, 40 nodes in the second layer) is employed for
learning the features. The half right side of the labeled disc images are resized to
15x 15 pixels in size and they are the input of the auto-encoder after vectorization.
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Table 1. The accuracy, specificity, and sensitivity of the hand-crafted feature extrac-
tion methods and our method

Feature type Number of features | Accuracy | Sensitivity | Specificity
Raw image intensity | 1000 0.86 0.88 0.84

LBP 8 0.70 0.80 0.57
Gabor 1000 0.60 0.80 0.33
GLCM 5 0.71 0.78 0.62
Planar shape 3 0.55 1.0 0

Hu’s moments 7 0.72 0.72 0.71
Intensity difference 12 0.89 0.96 0.82

Our method 40 0.92 0.94 0.90

After determining the features, each disc image is convolved with the features and
the final feature vector for the final classification with binary SVM is created. The
classification accuracy of the proposed system is 92 %.

In order to compare the unsupervised learned features with the hand-crafted
features, popular feature types used in [1,9] are also implemented. The train-
ing is performed with six-fold-cross correlation and classification is performed
via SVM. The number of features extracted and their accuracy, sensitivity, and
specificity are reported in Table 1. The numerical results show that unsupervised
learned features outperform hand-crafted features. The highest accuracy of the
hand-crafted features 89.54 % for the intensity difference feature that calculates
the numerical values (mean, standard deviation, etc.) of the intensities difference
between T1-weighted and T2-weighted images. The accuracy of the unsupervised
feature learning is higher than other hand-crafted features. In addition, the sen-
sitivity and the specificity rates of the proposed system are higher than other
state-of-the-art methods.

The experiments performed show that the DDD can be automatically diag-
nosed with a high accuracy with a few filters learned by auto-encoders. The
unsupervised filters outperform other popular hand-crafted features even their
number is lower than the hand-crafted features. In addition, the proposed sys-
tem does not require a deep network structure including many hidden layers.
The disc filters are efficiently learned with a two-layer auto-encoder with small
training data.

4 Conclusions

In this paper, we present a novel method for CAD of the DDD with auto-
encoders. The proposed architecture involves stacked auto-encoders and non-
linear filters together for locating the intervertebral discs and diagnosis. The
auto-encoders learns the image features effectively while the non-linear filters
eliminates the irrelevant information. The system is validated on a real dataset
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of 102 subjects. The results showed that unsupervised learning of features yields
a better representation and the features could be extracted with minimal user
intervention. The comparison with popular hand-crafted features show that the
results are comparable with the state of the art.

Open Access. This chapter is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, a link is provided to the Creative Commons license and any changes made
are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such mate-
rial is not included in the work’s Creative Commons license and the respective action
is not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Ghosh, S., Alomari, R.S., Chaudhary, V., Dhillon, G.: Composite features for auto-
matic diagnosis of intervertebral disc herniation from lumbar MRI. In: Conference
of the IEEE Engineering in Medicine and Biology Society, pp. 5068-5071 (2011)

2. Ghosh, S., Alomari, R.S., Chaudhary, V., Dhillon, G.: Computer-aided diagnosis
for lumbar MRI using heterogeneous classifiers. In: IEEE International Symposium
on Biomedical Imaging, pp. 1179-1182 (2011)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

4. Koh, J., Chaudhary, V., Dhillon, G.: Diagnosis of disc herniation based on classifiers
and features generated from spine MR images (2010)

5. Lootus, M., Kadir, T., Zisserman, A.: Radiological grading of spinal MRI. In:
MICCAI Workshop: Computational Methods and Clinical Applications for Spine
Imaging (2014)

6. Luoma, K., Rithimaumlki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E.,
Lamminen, A.: Low back pain in relation to lumbar disc degeneration. Spine 25(4),
487-492 (2000)

7. National Centers for Health Statistics: Chartbook on trends in the health of Ameri-
cans, special feature: pain (2011). http://www.cdc.gov/nchs/data/hus/hus06.pdf/

8. Oktay, A.B., Akgul, Y.S.: Simultaneous localization of lumbar vertebrae and inter-
vertebral discs with SVM-based MRF. IEEE Trans. Biomed. Eng. 60(9), 2375-2383
(2013)

9. Oktay, A.B., Albayrak, N.B., Akgul, Y.S.: Computer aided diagnosis of degenera-
tive intervertebral disc diseases from lumbar MR images. Comput. Med. Imaging
Graph. 38(7), 613-619 (2014)

10. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015

11. Tang, Y.: Deep learning using support vector machines (2013)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.cdc.gov/nchs/data/hus/hus06.pdf/

12.

13.

Diagnosis of Degenerative Disc Disease 261

Van Rijn, J.C., Klemetsouml, N., Reitsma, J.B., Majoie, C.B.L.M., Hulsmans,
F.J., Peul, W.C., Stam, J., Bossuyt, P.M., den Heeten, G.J.: Observer variation
in MRI evaluation of patients suspected of lumbar disk herniation. AJR Am. J.
Roentgenol. 184(1), 299-303 (2005)

Zhou, S., McCarthy, I., McGregor, A., Coombs, R., Hughes, S.: Geometrical dimen-
sions of the lower lumbar vertebrae - analysis of data from digitised CT images.
Eur. Spine J. 9(3), 242-248 (2000)



	Diagnosis of Degenerative Intervertebral Disc Disease with Deep Networks and SVM
	1 Introduction
	2 Unsupervised Feature Learning with Auto-encoders
	2.1 Intervertebral Disc Detection
	2.2 Diagnosis of DDD

	3 Experiments
	4 Conclusions
	References


