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Abstract. Time-dependent queueing delay (virtual waiting time) dis-
tribution conditioned by the initial level of buffer saturation is considered
in a finite model with Poisson arrivals, generally distributed service times
and setup times preceding the first processing in each busy period. Apply-
ing theoretical approach based on the idea of embedded Markov chain,
integral equations and some results from linear algebra, a compact-form
representation for the Laplace transform of queueing delay distribution is
obtained. Analytical results are illustrated via numerical considerations
confirmed by process-based discrete-event simulations.

1 Introduction

Queueing systems with different types of restrictions in access to the service
station (server) are being intensively studied nowadays, in view of their use in
modeling many phenomena occurring in technical sciences and economics. Par-
ticularly important here are models with a limited maximal number of customers
(packets, calls, jobs, etc.), which naturally can describe systems with losses due
to buffer overflows (buffers of input/output interfaces in TCP/IP routers, accu-
mulating buffers in production systems). In many practical systems, which can be
described by queueing models, a mechanism of turning off the server at the time
when the system becomes empty is implemented; the server is being activated
when the first customer arrives after the period of inactivity. The use of such a
mechanism is often being forced to save energy that the server uses to remain
on standby despite the lack of applications in the system (wireless networks,
automated production lines, etc.). It happens quite often that the waking up of
service station (restart) is not simultaneous with the start of processing in “nor-
mal” mode. The server may indeed need some time (usually random) to achieve
full readiness to work. Assuming randomness of setup time, such a mechanism
could be called probabilistic waking up the server. For example, a node of wire-
less network working under the Wi-Fi standard (IEEE 802.11) wakes thereby
regularly just before sending the beacon frame from the access point [7,8].
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In [6] M/G/1-type queuing system with server vacations and setup times is
used to model sleeping mode in cellular network. A similar phenomenon can
also be observed e.g. in production lines: after restarting, a machine needs a cer-
tain, often random, time to achieve its full readiness to work. Furthermore, the
formula relating with waiting time in stationary state of GI/G/1-type queues
with setup times can be found in [2,3].

2 Mathematical Model

In this section we state mathematical description of the considered queueing
model and introduce necessary notation and definitions. So, we deal with the
finite M/G/1/K−type model in which packets (calls, jobs, customers, etc.)
arrive according to a Poisson process with rate λ and are processed individually,
basing on the FIFO service discipline, with a CDF (=cumulative distribution
function) F (·). The system capacity is bounded by a non-random value K, i.e.
we have a finite buffer with K−1 places and one place reserved for service. Every
time when the system becomes empty the server is being switched off (an idle
period begins). Simultaneously with the arrival epoch of the packet incoming
into the empty system, a server setup time begins, which is generally distributed
random variable with a CDF G(·). The setup time is needed for the server to
reach full ability for job processing, hence during setup times the service process
is suspended. Let f(·) and g(·) be LSTs (=Laplace-Stieltjes transforms) of CDFs
F (·) and G(·), respectively, i.e. for Re(s) > 0

f(s)
def
=

∫ ∞

0

e−stdF (t), g(s)
def
=

∫ ∞

0

e−stdG(t). (1)

Let us denote by X(t) the number of packets present in the system at time
t (including the one being processed, if any) and by v(t) the queueing delay
(virtual waiting time) at time t, i.e. the time needed for the server to process
all packets present at time t or, in other words, waiting time of hypothetical
(virtual) packet arriving exactly at time t. Introduce the following notation:

Vn(t, x)
def
= P{v(t) > x |X(0) = n}dt, t, x > 0, 0 ≤ n ≤ K, (2)

for the transient queueing delay (tail) distribution, conditioned by the initial
level of buffer saturation. We are interested in the explicit formula for the LT
(=Laplace transform) of Vn(t, x) in terms of “input” characteristics of the sys-
tem, namely arrival rate λ, system capacity K, and transforms f(·) and g(·) of
service and setup time distributions. We end this section with some additional
notation which will be used throughout the paper. So, let

F 0∗(t) = 1, F k∗(t) =
∫ t

0

F (k−1)∗(t − y)dF (y), k ≥ 1, t > 0, (3)

and introduce the notation H(t)
def
= 1 − H(t), where H(·) is an arbitrary CDF.

Moreover, let I{A} be the indicator of random event A.
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3 Integral Equations for Transient Queueing Delay
Distribution

In this section, by using the paradigm of embedded Markov chain and the for-
mula of total probability we build the system of equations for conditional time-
dependent virtual delay distribution defined in (2). Next, we build the system
for Laplace transforms corresponding to the original one.

Assume, firstly, that the system is empty before the opening, so its evolution
begins with idle period and the setup time begins simultaneously with the arrival
epoch of the first batch of packets. We can, in fact, distinguish three mutually
exclusive random events:

(1) the first arrival occurs before t and the setup time also completes before t
(we denote this event by E1(t));

(2) the first packet (call, job, customer, etc.) arrives before t but the setup time
completes after t (E2(t));

(3) the first arrival occurs after time t (E3(t)).

Let us define

V
(i)
0 (t, x)

def
= P{(

v(t) > x
) ∩ Ei(t) |X(0) = 0}, (4)

where t, x > 0, 0 ≤ m ≤ K and i = 1, 2, 3. So, for example, V
(3)
0 (t, x) denotes the

probability that queueing delay at time t exceeds x and the first arrival occurs
after t, on condition that the system is empty at the opening (at time t = 0).
Obviously, we have

V0(t, x) = P{v(t) > x |X(0) = 0} =
3∑

i=1

V
(i)
0 (t, x) (5)

Let us note that the following representation is true:

V
(1)
0 (t, x) =

∫ t

y=0

λe−λydy

∫ t−y

u=0

[
K−2∑
i=0

(λu)i

i!
e−λuVi+1(t − y − u, x)

+ VK(t − y − u, x)
∞∑

i=K−1

(λu)i

i!
e−λu

]
dG(y). (6)

Let us comment on (6) briefly. Indeed, the first summand on the right side
describes the situation in which the buffer does not become saturated during the
setup time, while the second one relates to the case in which a buffer overflow
occurs during the setup time. Similarly, taking into consideration the random
event E2, we find

V
(2)
0 (t, x)=

∫ t

y=0

λe−λy

∫ ∞

u=t−y

K−2∑
i=0

[
λ(t−y)

]i

i!
e−λ(t−y)F

(i+1)∗
(x−y−u+t)dG(u)dy. (7)
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Finally we have, obviously,

V
(3)
0 (t, x) = 0. (8)

Referring to (5), we obtain from (6)–(8)

V0(t, x) =
∫ t

y=0

λe−λydy

∫ t−y

u=0

[
K−2∑
i=0

(λu)i

i!
e−λuVi+1(t−y−u, x)

+VK(t−y−u, x)
∞∑

i=K−1

(λu)i

i!
e−λu

]
dG(y)

+
∫ t

y=0

λe−λy

∫ ∞

u=t−y

K−2∑
i=0

[
λ(t−y)

]i

i!
e−λ(t−y)F

(i+1)∗
(x−y−u+t)dG(u)dy.

(9)
Now, let us take into consideration the situation in which the system is not
empty primarily (at time t = 0), i.e. 1 ≤ n ≤ K. Due to the fact that successive
departure moments are Markov times in the evolution of the M/G/1-type system
(see e.g. [1]), then, applying the continuous version of Total Probability Law with
respect to the first departure moment after t = 0, we get the following system
of integral equations:

Vn(t, x) =

∫ t

0

[
K−n−1∑

i=0

(λy)i

i!
e−λyVn+i−1(t−y, x)+VK−1(t−y, x)

∞∑
i=K−n

(λy)i

i!
e−λy

]
dF (y)

+ I{1 ≤ n ≤ K − 1}
K−n−1∑

i=0

(λt)i

i!
e−λt

∫ ∞

t

F
(n+i−1)∗

(x − y + t)dF (y),

(10)

where 1 ≤ n ≤ K. The interpretation of the first two summands on the right side
of (10) is similar to (6)-(7). The last summand on the right side relates to the
situation in which the first service completion epoch occurs after time t; in such
a case, if n = K, the queueing delay at time t equals 0, since the “virtual” packet
arriving at this time is lost because of the buffer overflow. Let us introduce the
following notation:

v̂n(s, x)
def
=

∫ ∞

0

e−stVn(t, x)dt, Re(s) > 0, 0 ≤ n ≤ K. (11)

where Re(s) > 0 and 0 ≤ n ≤ K. By the fact that for Re(s) > 0 we have
∫ ∞

t=0

e−stdt

∫ t

y=0

λe−λydy

∫ t−y

u=0

(λu)i

i!
e−λuVj(t − y − u, x)dG(u)

=
∫ ∞

y=0

λe−(λ+s)ydy

∫ ∞

u=0

e−(λ+s)u (λu)i

i!
e−λudG(u)

∫ ∞

t=y+u

e−s(t−y−u)

× Vj(t − y − u, x)dt = ai(s)v̂j(s, x), (12)
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where

ai(s)
def
=

λ

λ + s

∫ ∞

0

(λy)i

i!
e−(λ+s)ydG(y), (13)

we obtain from (9)

v̂0(s, x) =
K−2∑
i=0

ai(s)v̂i+1(s, x) + v̂K(s, x)
∞∑

i=K−1

ai(s) + η(s, x), (14)

where we denote

η(s, x)
def
=

∫ ∞

0

e−stV
(2)
0 (t, x)dt

=
∫ ∞

t=0

e−(s+λ)tdt

∫ t

y=0

K−2∑
i=0

λi+1(t−y)i

i!
dy

∫ ∞

u=t−y

F
(i+1)∗

(x−y−u+t)dG(u).

(15)

Similarly, denoting

αi(s)
def
=

∫ ∞

0

e−(λ+s)x (λx)i

i!
dF (x) (16)

and

κn(s, x)
def
= I{1≤n≤K−1}

∫ ∞

t=0

K−n−1∑
i=0

e−(s+λ)t (λt)i

i!

∫ ∞

t

F
(n+i−1)∗

(x−y+t)dF (y)dt,

(17)

where Re(s) > 0, we transform the equations (10) as follows:

v̂n(s, x) =
K−n−1∑

i=0

αi(s)v̂n+i−1(s, x) + v̂K−1(s, x)
∞∑

i=K−n

αi(s) + κn(s, x), (18)

where 1 ≤ n ≤ K. Let us define

zn(s, x)
def
= v̂K−n(s, x), 0 ≤ n ≤ K. (19)

After introducing (19), we obtain from (18) the following equations:

n∑
i=−1

αi+1(s)zn−i(s, x) − zn(s, x) = ψn(s, x), (20)

where 0 ≤ n ≤ K − 1, and the sequence ψn(s, x) is defined as follows:

ψn(s, x)
def
= αn+1(s)z0(s, x) − z1(s, x)

∞∑
i=n+1

αi(s) − κK−n(s, x). (21)
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Similarly, utilizing (19) in (14), we get

zK(s, x) =
K−2∑
i=0

ai(s)zK−i−1(s, x) + z0(s, x)
∞∑

i=K−1

ai(s) + η(s, x). (22)

In the next section we obtain a compact-form solution of the system (20) and
(22) written in terms of “input” system characteristics and a certain functional
sequence defined recursively by coefficients αi(s), i ≥ 0.

4 Compact Solution for Queueing Delay Transforms

In [4] (see also [5]) the following linear system of equations is investigated:

n∑
i=−1

αi+1zn−i − zn = ψn, n ≥ 0, (23)

where zn, n ≥ 0, is a sequence of unknowns and αn and ψn, n ≥ 0, are known
coefficients, where α0 �= 0. It was proved (see [4]) that each solution of (23) can
be written in the following way:

zn = CRn+1 +
n∑

i=0

Rn−iψi, n ≥ 0, (24)

where C is a constant and terms of the sequence (Rn), n ≥ 0, can be computed
in terms of αn, n ≥ 0, recursively in the following way:

R0 = 0, R1 = α−1
0 , Rn+1 = R1

(
Rn −

n∑
i=0

αi+1Rn−i

)
, n ≥ 1. (25)

Observe that the system (20) has the same form as (23) but with coefficients
αi and ψi, i ≥ 0, depending on s and (s, x), respectively. Thus, the solution
of (20) can be derived by using (24). The fact that the number of equations in
(24) (comparing to (20)) is finite, allows for finding C = C(s, x) in the explicit
form, treating the equation (22) as a boundary condition. Hence, we obtain the
following formula (see (23)–(25)):

zn(s, x) = C(s, x)Rn+1(s) +
n∑

i=0

Rn−i(s)ψi(s, x), n ≥ 0, (26)

where the functional sequence
(
Rn(s)

)
, n ≥ 0, is defined by

R0(s)=0, R1(s)=α−1
0 (s), Rn+1(s)=R1(s)

(
Rn(s)−

n∑
i=0

αi+1(s)Rn−i(s)
)
, (27)
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where n ≥ 1 and αi(s) is stated in (16). Taking n = 0 in (26), we obtain the
following representation:

z0(s, x) = C(s, x)R1(s) (28)

and substituting n = 1, we get

z1(s, x) = C(s, x)R2(s) + R1(s)ψ0(s, x)

= C(s, x)R2(s) + R1(s)
(
α1(s)R1(s)C(s, x) − z1(s, x)

∞∑
i=1

αi(s)
)
, (29)

since κK(s, x) = 0. From (29) we obtain

z1(s, x) = θ(s)C(s, x)
(
R2(s) + α1(s)R2

1(s)
)
, (30)

where

θ(s)
def
=

[
1 + R1(s)

∞∑
i=1

αi(s)
]−1

=
f(λ + s)

f(s)
. (31)

Now the formulae (28) and (30)–(31) allows for writing terms of the functional
sequence

(
ψn(s, x)

)
, n ≥ 0 (see (21)), as a function of C(s, x). In order to find the

representation for C(s, x), we must rewrite the formula (22), utilizing identities
(21), (26), (28) and (30). We obtain

zK(s, x) =

K−1∑

i=1

aK−i−1(s)
[
C(s, x)Ri+1(s) +

i∑

j=0

Ri−j(s)ψj(s, x)
]

+ C(s, x)R1(s)

∞∑

i=K−1

ai(s) + η(s, x) =

K−1∑

i=1

aK−i−1(s)
[
C(s, x)Ri+1(s)

+
i∑

j=0

Ri−j(s)
(

αj+1(s)z0(s, x) − z1(s, x)
∞∑

r=j+1

αr(s) − κK−j(s, m)
)]

+ C(s, x)R1(s)
∞∑

i=K−1

ai(s)+η(s, x)=C(s, x)

{
K−1∑

i=1

aK−i−1(s)
[
Ri+1(s)+

i∑

j=0

Ri−j(s)

×
(

R1(s)αj+1(s)−θ(s)
(
R2(s)+α1(s)R

2
1(s)
) ∞∑

r=j+1

αr(s)
)]

+ R1(s)

∞∑

i=K−1

ai(s)

}

−
K−1∑

i=1

aK−i−1

i∑

j=1

Ri−j(s)κK−j(s, x) + η(s, x) = Φ1(s)C(s, x) + χ1(s, x), (32)

where we denote

Ψ1(s)
def
=

K−1∑
i=1

aK−i−1(s)
[
Ri+1(s) +

i∑
j=0

Ri−j(s)
(
R1(s)αj+1(s)

− θ(s)
(
R2(s) + α1(s)R2

1(s)
) ∞∑

r=j+1

αr(s)
]

+ R1(s)
∞∑

i=K−1

ai(s) (33)
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and

χ1(s, x)
def
= −

K−1∑
i=1

aK−i−1

i∑
j=1

Ri−j(s)κK−j(s, x) + η(s, x). (34)

Finally, let us substitute n = K in (26) and apply the formulae (21), (28) and
(30). We get

zK(s, x) = C(s, x)RK+1(s) +
K∑

i=0

RK−i(s)

{
αi+1(s)R1(s)C(s, x)

− θ(s)C(s, x)
(
R2(s) + α1(s)R

2
1(s)
) ∞∑

j=i+1

αj(s) − κK−i(s, x)

}

= C(s, x)

{
RK+1(s) +

K∑

i=0

RK−i(s)
[
αi+1(s)R1(s) − θ(s)

(
R2(s) + α1(s)R

2
1(s)
)

×
∞∑

j=i+1

αj(s)
]}

−
K∑

i=1

RK−i(s)κK−i(s, x)
)

= Ψ2(s)C(s, x) + χ2(s, x), (35)

where

Ψ2(s)
def
=RK+1(s)+

K∑
i=0

RK−i(s)
[
αi+1(s)R1(s)−θ(s)

(
R2(s)+α1(s)R2

1(s)
) ∞∑
j=i+1

αj(s)
]

(36)

and

χ2(s, x)
def
= −

K∑
i=1

RK−i(s)κK−i(s, x). (37)

Comparing the right sides of (32) and (35), we eliminate C(s, x) as follows:

C(s, x) =
[
Ψ1(s) − Ψ2(s)

]−1[
χ2(s, x) − χ1(s, x)

]
. (38)

Now, from the formulae (19), (26) and (38), we obtain the following main result:

Theorem 1. The representation for the LT of the conditional transient queue-
ing delay distribution in the M/G/1/K-type model with generally distributed
setup times is the following:

v̂n(s, x) =

∫ ∞

0
e

−st
P{v(t) > x | X(0) = n}dt =

χ2(s, x) − χ1(s, x)

Ψ1(s) − Ψ2(s)

{
RK−n+1(s)

+

K−n∑

i=0

RK−n−i(s)
[
αi+1(s)R1(s) − θ(s)

(
R2(s) + α1(s)R

2
1(s)
) ∞∑

j=i+1

αj(s)
]}

−
K−n∑

i=0

RK−n−i(s)κK−i(s, m),

(39)

where the formulae for αi(s), κi(s, x), Ri(s), θ(s), Ψ1(s), χ1(s, x), Ψ2(s)
and χ2(s, x) are given in (16), (17), (27), (31), (33), (34), (36) and (37),
respectively.
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5 Numerical Example

Let us take into consideration a node of the wireless sensor network with buffer
of size 6 packets, with the stream of packets of average size 100 B arriving to
the node according to a Poisson process with intensity 300 Kb/s. Hence, the
λ = 375 packets per second arrive to the node and interarrival time between
successive packets is equal to 2, 7 ms. Subsequently, assume, that packets are
being transmitted with speed 400 Kb/s according to a 2-Erlang distribution with
parameter μ = 1000, that gives the mean processing time 2 ms. Moreover, let
us consider that the radio transmitter of the node is switched off during an
idle period and needs an exponentially distributed setup time to become ready
for processing. Consider cases in which the mean times are equal to 1, 10, and
100 ms, respectively. The probabilities of P{v(t) > x|X(0) = 0} for x = 0.001
and x = 0.01 are presented in Fig. 1. The figures show that the analytical results
are compatible with process-based discrete-event simulations (DES).

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
{v

(t
)
>

0.
00

1|X
(0

)
=

0 }

setup time with mean 1 ms
setup time with mean 10 ms
setup time with mean 100 ms

(a) x = 0.001
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(b) x = 0.01

Fig. 1. Probabilities P{v(t) > x|X(0) = 0} for x = 0.001 (a) and x = 0.01 (b), where
mean setup time is equal to 1 (solid line), 10 (dashed line) and 100 (dot dashed line)
ms. Bold black lines and thin green lines correspond with analytical and DES results,
respectively (Color figure online)
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