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Abstract. We show how to model system management tasks such
as load-balancing and delayed download with backoff penalty using
G-networks with restart. We use G-networks with a restart signal, multiple
classes or positive customers, PS discipline and arbitrary PH service distri-
bution. The restart signal models the possibility to abort a task and send it
again after changing its class and its service distribution. These networks
have been proved to have a product form steady-state distribution.
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1 Introduction

Since the seminal papers [2,5,6] published by Gelenbe more than 20 years ago,
G-networks of queues have received considerable attention. G-networks have
been previously presented to model Random Neural Networks [7,8]. They contain
queues, customers (like ordinary networks of queues) and signals which interact
with the queues and disappear instantaneously. Due to these signals G-networks
exhibit much more complex synchronization and allow to model new classes of
systems (artificial or biological). Despite this complexity, most of the G-networks
studied so far have a closed form solution for their steady-state.

For most of the results already known, the effect of the signal is the cance-
lation of customer or potential (for an artificial random neuron) [1]. Recently,
we have studied G-networks with multiple classes where the signal is used to
change the class of a customer in the queue [4]. Such a signal is denoted as a
restart because in some models it is used to represent that a task is aborted and
submitted again (i.e. restarted) when it encounters some problems (see [9,10] for
some systems with restart). These models still have a product form steady-state
solution under some technical conditions on the queue loads.

Here we present some examples to illustrate how this new model and theoret-
ical result can help to evaluate the performance of a complex system. We hope
that this result and the examples presented here open new avenues for research
and applications of G-networks. The technical part of the paper is organized as
follows. The model and the results proved in [4] are introduced in Sect. 2 while
the examples are presented in Sect. 3.
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2 Model Assumptions and Closed Form Solutions

We have considered in [4] generalized networks with an arbitrary number N of
queues. We consider K classes of positive customers and only one class of signals.
The external arrivals to the queues follow independent Poisson processes. The
external arrival rate to queue i is denoted by λ

(k)
i for positive customers of class k

and Λ−
i for signals. The customers are served according to the processor sharing

(PS) policy. The service times are assumed to be Phase-type distributed, with
one input (say 1) and one output state (say 0). At phase p, the intensity of
service for customers of class k in queue i is denoted as μ

(k,p)
i . The transition

probability matrix H
(k)
i describes how, at queue i, the phase of a customer of

class k evolves. Thus the service in queue i is an excursion from state 1 to state
0 following matrix H

(k)
i for a customer of class k. We consider a limited version

of G-networks where the customers do not change into signals at the completion
of a service. Here, customers may change class while they move between queues
but they do not become signals. More precisely, a customer of class k at the
completion of its service in queue i may join queue j as a customer of class l

with probability P
+(k,l)
i,j . It may also leave the network with probability d

(k)
i . We

assume that a customer cannot return to the queue it has just left: P
+(k,l)
i,i = 0

for all i, k and l. As usual, we have for all i,k:
∑N

j=1

∑K
l=1 P

+(k,l)
i,j + d

(k)
i = 1.

Signals arrive from the outside according to a Poisson process of rate Λ−
i

at queue i. Signals do not stay in the network. Upon its arrival into a queue, a
signal first choses a customer, then it interacts with the selected customer, and it
finally vanishes instantaneously. If, upon its arrival, the queue is already empty,
the signal also disappears instantaneously without any effect on the queue. The
selection of the customer is performed according to a random distribution which
mimics the PS scheduling. At state x i, the probability for a customer to be

selected is x
(k,p)
i

|x i| 11{|x i|>0} and the signal has an effect with probability α
(k,p)
i . The

effect is the restarting of the customer: this customer (remember it has class k

and phase p) is routed as a customer of class l at phase 1 with probability R
(k,l)
i .

We assume for all k, R
(k,k)
i = 0. Of course we have for all k,

∑K
l=1 R

(k,l)
i = 1

(Fig. 1).
The state of the queueing network is represented by the vector x =

(x 1,x 2, . . . ,xN ), where the component x i denotes the state of queue i. As usual
with multiple class PS queues with Markovian distribution of service, the state of
queue i is given by the vector (x(k,p)

i ), for all class indices k and phase indices p.
Clearly x is a Markov chain. Let us denote by |x i| the total number of cus-
tomers in queue i. In [4] we have proved that the steady-state distribution, when
it exists, has a product-form solution under some technical conditions on a fixed
point system on the load.
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restart

Fig. 1. Model of a queue with restart. The colors represent the classes

Theorem 1. Consider an arbitrary open G-network with p classes of positive
customers and a single class of negative customers the effect of which is to restart
one customer in the queue. If the system of linear equations:

ρ
(k,1)
i =

λ
(k)
i +

P∑

o=1

μ
(k,o)
i ρ

(k,o)
i H

(k)
i [o, 1] + ∇k,1

i + Δk,1
i

μ
(k,1)
i + Λ−

i α
(k,1)
i

, (1)

where

Δk,1
i =

P∑

p=1

K∑

l=1

Λ−
i α

(l,p)
i ρ

(l,p)
i R

(l,k)
i , (2)

∇k,1
i =

N∑

j=1

K∑

l=1

P∑

q=1

μ
(l,q)
j ρ

(l,q)
j H

(l)
j [q, 0]P+(l,k)

j,i , (3)

and,

∀p > 1, ρ
(k,p)
i =

P∑

o=1

μ
(k,o)
i ρ

(k,o)
i H

(k)
i [o, p]

μ
(k,p)
i + Λ−

i α
(k,p)
i

(4)

has a positive solution such that for all stations i
∑K

k=1

∑P
p=1 ρ

(k,p)
i < 1, then

the system stationary distribution exists and has product form:

p(x) =
N∏

i=1

(1 −
K∑

k=1

P∑

p=1

ρ
(k,p)
i )|xi|!

K∏

k=1

P∏

p=1

(ρ(k,p)
i )x

(k,p)
i

x
(k,p)
i !

. (5)

Property 1. This result is used to obtain closed form solutions for some per-
formance measures: the probability to have exactly m customers in the queue and
the expected number of customers in the queue.
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Pr(m customers) = (1 −
K∑

k=1

P∑

p=1

ρ
(k,p)
i )

[
K∑

k=1

P∑

p=1

ρ
(k,p)
i

]m

,

E [N ] =

∑K
k=1

∑P
p=1 ρ

(k,p)
i

1 − ∑K
k=1

∑P
p=1 ρ

(k,p)
i

. (6)

3 Examples

We now present some examples to put more emphasis on the modeling capabili-
ties of G-networks with restart signals. We model a load balancing system where
the restarts are used to migrate the customers between queues and a back off
mechanism for delayed downloading.

Example 1. Load Balancing: We consider two queues in parallel as depicted in
Fig. 2. We want to represent a load balancing mechanism between them and we
want to get the optimal rates to operate this mechanism and obtain the best
performance.

The queues receive two types of customers: type 1 customers need to be
served while type 2 customers represent the customers which must be moved to
the other queue to balance the load. Customers of type 1 arrive from the outside
according to two independent Poisson process with rate λ

(1)
1 for queue 1 and

λ
(1)
2 for queue 2. There are no arrivals from the outside for type 2 customers.

Type 2 customers are created by a restart. The service rates do not depend on
the queue. They are equal to μ(1) for type 1 and μ(2) for type 2. For the sake
of simplicity, we assume here that the service distributions are exponential. PH
distributions will be added at the end of this example.

Restarting signals arrive to queues 1 and 2 according to two independent
Poisson processes with rate Λ−

1 and Λ−
2 . When it arrives to a queue, a signal

choses a customer at random as mentioned in the previous section and tries to
change it to type 2. We assume the following probabilities of success: α

(1)
1 = 1

and α
(2)
1 = 0. Similarly, α

(1)
2 = 1 and α

(2)
2 = 0. Note that we have simplified the

notation as we only have one phase of service (we consider exponential rather
than PH distributions). This value of the acceptance probability means that the
restarting signals is always accepted when the signal selects a type 1 customer
and it fails when it tries to restart a type 2 customer (as by definition in this
model, a type 2 customer is already restarted).

After its service, a type 1 customer leaves the system while a type 2 customer
moves to the other queue and changes its type during the movement to become
a type 1 customer. Thus the load balancing mechanism proceeds as follows:
the signal is received by the queue and it selects a customer at random. If the
customer has type 2, nothing happens. If the selected customer has type 1, it
is restarted as a type 2 customer with another service time distribution and
another routing matrix. The service time for a type 2 customer represents the
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1

2

restart

restart

Fig. 2. Two queues in parallel with load balancing performed by restart signals

time needed to organize the job migration. It is assumed that it is much shorter
than the the service type of a type 1 customer which represents the effective
service. Let us now write the flow equations:

ρ
(1)
1 =

λ
(1)
1 + ρ

(2)
2 μ(2)

μ(1) + Λ−
1

, ρ
(2)
1 =

Λ−
1 ρ

(1)
1

μ(2)
, ρ

(1)
2 =

λ
(1)
2 + ρ

(2)
1 μ(2)

μ(1) + Λ−
2

, ρ
(2)
2 =

Λ−
2 ρ

(1)
2

μ(2)
.

(7)
Let us now consider the performance of such a system. We control the system
with the rate of arrival of signals Λ−

1 and Λ−
2 and the objective is to balance

the load with the smallest overhead. More formally, we say that the system is
balanced if the loads for customers in service (i.e. not preparing their migration)
are equal for both queues (i.e. ρ

(1)
1 = ρ

(1)
2 = ρ) and we assume that the overhead

is the load of the queues due to the migration (i.e. ρ
(2)
1 + ρ

(2)
2 ). Assuming that

the system is balanced, we have:

ρ =
λ
(1)
1 + ρ

(2)
2 μ(2)

μ(1) + Λ−
1

=
λ
(1)
2 + ρ

(2)
1 μ(2)

μ(1) + Λ−
2

After substitution, we get: ρ = λ
(1)
1 +ρΛ−

2

μ(1)+Λ−
1

= λ
(1)
2 +ρΛ−

1

μ(1)+Λ−
2

. Without loss of generality

we assume that λ
(1)
1 > λ

(1)
2 . Taking into account the first part of the equation,

we obtain: ρ(Λ−
1 − Λ−

2 ) = λ
(1)
1 − ρμ(1). Similarly using the second equation we

get:

ρ(Λ−
1 − Λ−

2 ) = ρμ(1) + λ
(1)
2 .

Thus, ρ = λ
(1)
1 −λ

(1)
2

2μ(1) , and Λ−
1 − Λ−

2 = λ
(1)
1 +λ

(1)
2

2 . Taking now the other part of the
objective into account we want to minimize the overhead of the load balancing
mechanism. Remember that the global overhead is:

ρ
(2)
1 + ρ

(2)
2 = ρ

(Λ−
1 + Λ−

2 )
μ(2)

.
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Thus the optimal solution is achieved for Λ−
2 = 0 and Λ−

1 = λ
(1)
1 +λ

(1)
2

2 . Let us
now consider a more complex problem where the services for type 1 customer
follow the same PH distribution. We still assume that type 2 customers receive
services with an exponential distribution. Let us now write the flow equations:

ρ
(1,1)
1 =

λ
(1)
1 +

∑
p>0 ρ

(2,p)
2 μ(2,p)

μ(1,1)+Λ−
1

, ρ
(1,p)
1 = H(1,p)ρ

(1,1)
1 μ(1,1)

μ(1,p)+Λ−
1

,∀p > 1,

ρ
(1,1)
2 =

λ
(1)
2 +

∑
p>0 ρ

(2,p)
1 μ(2,p)

μ(2,1)+Λ−
2

, ρ
(1,p)
2 = H(1,p)ρ

(2,1)
2 μ(2,1)

μ(2,p)+Λ−
2

,∀p > 1,

ρ
(2)
1 =

Λ−
1
∑

p>0 ρ
(1,p)
1

μ(2) , ρ
(2)
2 =

Λ−
2
∑

p>0 ρ
(1,p)
2

μ(2) .

(8)

These equations can be used to optimize the system as we have done previously
for exponential service distributions.

Example 2. Delayed Downloading: We now study a small wifi network with a
delayed downloading mechanism (see for instance [11]). Queue A is the down-
loading queue (see Fig. 3). Customers and signals arrive from the outside to
queue A. The class of customers represents the delays that requests will expe-
rience. Type 1 requests (in white) are not delayed while delayed requests are
depicted in grey. The restart signals change the state of a request to “delayed”
according to the selection mechanism described in Sect. 2. The probability of
acceptance for the selection depends on the class of the customer and the phase
of service. Thus, we can model delay based on the steps of the downloading pro-
tocol, for instance. Once a request class has been changed due to selection by the
signal, it is routed after its service to queue B or C where it is changed again to
a class 1 request and experiences a random delay depending on the queue. The
flow equations are:

A

B

C

Restart

Fig. 3. The queuing network associated to the delayed downloading with back-off
penalties



132 J.M. Fourneau and K. Wolter

ρ
1,1
A =

P∑

o=1

μ
1,o
A ρ

1,o
A H

(k)
A [o, 1] +

P∑

p=1

μ
1,p
B ρ

1,p
B H

(1)
B [p, 0] +

P∑

p=1

μ
1,p
C ρ

1,p
C H

(1)
C [p, 0]

μ1,1
A + Λ−

Aα1,1
A

, (9)

∀p > 1, ρ
1,p
A =

P∑

o=1

μ
1,o
A ρ

1,o
A H

(1)
A [o, p]

μ1,p
A + Λ−

Aα1,p
A

, and ∀k > 1, ρ
k,p
A =

P∑

o=1

μ
k,o
A ρ

k,o
A H

(k)
A [o, p]

μk,p
A

, (10)

ρ
k,1
A =

P∑

o=1

μ
k,o
A ρ

k,o
A H

(k)
A [o, 1] +

P∑

p=1

Λ
−
Aα

(1,p)
A ρ

(1,p)
A R

(1,k)
A

μ1,1
A + Λ−

Aα1,1
A

, (11)

ρ
1,1
B =

P∑

o=1

μ
1,o
B ρ

1,o
B H

(k)
B [o, p] +

P∑

p=1

μ
2,p
A ρ

2,p
A H

(2)
A [p, 0]

μ1,1
B

, (12)

∀p > 1, ρ
1,p
B =

P∑

o=1

μ
1,o
B ρ

1,o
B H

(k)
B [o, 1]

μ1,p
B

, and ρ
1,p
C =

P∑

o=1

μ
1,o
C ρ

1,o
C H

(k)
C [o, 1]

μ1,p
C

, (13)

ρ
1,1
C =

P∑

o=1

μ
1,o
C ρ

1,o
C H

(k)
C [o, p] +

P∑

p=1

μ
3,p
A ρ

3,p
A H

(3)
A [p, 0]

μ1,1
C

. (14)

Assuming that these equations have a fixed point solution such that the queues
are stable, Theorem 1 proves that the steady-state distribution has product
form. This closed form solution allows us to study the performance of the down-
loading mechanism and to optimize the throughput when one changes the delay
distributions.

4 Concluding Remarks

Note that it is possible to add triggers in the model to increase the flexibility
while conserving the closed form solution [3]. We advocate that G-networks with
restart signals are a promising and flexible modeling technique.
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