
Multi-device UI Development
for Task-Continuous Cross-Channel

Web Applications

Enes Yigitbas1(B), Thomas Kern2, Patrick Urban2, and Stefan Sauer1

1 S-lab - Software Quality Lab, Paderborn University, Zukunftsmeile 1,
33102 Paderborn, Germany

{eyigitbas,sauer}@s-lab.upb.de
2 Wincor Nixdorf International GmbH, Heinz-Nixdorf-Ring 1,

33106 Paderborn, Germany
{thomas.kern,patrick.urban}@wincor-nixdorf.com

Abstract. The growing number of various types of web-enabled smart
devices presents a special challenge for retail banks. In the world of
Omni-Channel-Banking, customers demand a flexible and easy usage
for carrying out their banking activities. Establishing such an Omni-
Channel-Banking experience is a challenging task that requires support
for the development of heterogeneous user interfaces (UIs) allowing flexi-
ble access to different channels (e.g. PC, Smartphone, ATM) and a seam-
less hand-over between these channels to allow task-continuity for the
customer. Therefore, we present a model-based solution architecture for
the development of multi-device UIs. Our solution architecture minimizes
recurrent UI development efforts for different channels and enables data
synchronization between them. To show the feasibility of our approach,
we present an industrial case study, where we implement a cross-channel
banking web-application that enables a modern customer experience.

Keywords: Model-based development · Multi-device UI development ·
Liquid software development · Cross-channel web applications · Self-
service systems

1 Introduction

The growing number of various types of web-enabled smart devices (e.g. smart-
phones, smartwatches, tablets, etc.) presents a special challenge for retail banks.
Customers demand a flexible and easy usage for carrying out their banking
activities. While customers accessed banking services solely via isolated channels

This work is based on “KoMoS”, a project of the “it’s OWL” Leading-Edge Clus-
ter, partially funded by the German Federal Ministry of Education and Research
(BMBF).

c© Springer International Publishing AG 2016
S. Casteleyn et al. (Eds.): ICWE 2016 Workshops, LNCS 9881, pp. 114–127, 2016.
DOI: 10.1007/978-3-319-46963-8 10

Cross-Channel Web Applications Development 115

(through banking personnel or ATM) in the past, using different channels dur-
ing a transaction is nowadays increasingly gaining popularity. Depending on the
situation, customers are able to access their banking services where, when and
how it suits them best. In the world of Omni-Channel-Banking, customers are in
control of the channels they wish to use, experiencing a self-determined “Omni-
Channel-Journey”. For example, if the customers pursue an “Omni-Channel-
Journey” for a payment cashout process, they can begin an interaction using
one channel (prepare cashout at desktop at home), modify the transaction on
their way on a mobile channel, and finalize it at the automatic teller machine
(ATM) (see Fig. 1). Thus, Omni-Channel-Banking brings the industry closer to
the promise of true contextual banking in which financial services become seam-
lessly embedded into the lives of individual and business customers.

!

Fig. 1. Example scenario: omni-channel-journey with task-continuity

Table 1. Multi-channel-banking vs. omni-channel-banking

Multi-channel-banking Omni-channel-banking

Fixed channel usage Flexible channel usage

Separation of channels Integration of channels

Data redundancy in channels Data synchronization between channels

Little or no channel switch Continuous channel switch

116 E. Yigitbas et al.

The advancement from Multi-Channel- to Omni-Channel-Banking (compare
Table 1) is a difficult task for developers of such systems. Developers are facing
the following challenges:

– C1: Support for heterogeneous user interfaces (UIs) allowing access for differ-
ent channels (e.g. PC, Smartphone, ATM).

– C2: Support for a flexible channel usage depending on the context.
– C3: Support for a seamless handover between channels allowing task-

continuity. When the user moves from one device to another, the user is able
to seamlessly continue her task.

Tackling these issues by combining and integrating heterogeneous channels
on a cross-platform software infrastructure imposes huge efforts for development
and maintenance. Therefore, we present a model-based solution architecture that
minimizes recurrent UI development efforts for different channels and enables
data synchronization between these channels according to the paradigm of Liq-
uid Software Development. To show the feasibility of our approach, we present
an industrial case study, where we implement a cross-platform software stack for
Omni-Channel cash transactions employing the latest HTML5-based technolo-
gies and open source frameworks that enable a modern customer experience. The
implementation of our web-based cross-platform software infrastructure demon-
strates how liquid software development can be applied to the banking domain.

The paper is structured as follows: First, we describe some background
information and related work in the area of multi-device and cross-channel
UI development. Then, we present our model-based solution architecture for
the development of multi-device UIs supporting task-continuity. After that, we
present the implementation of our approach based on a case study from the
banking domain. Finally, we conclude with a summary and an outlook for future
research work.

2 Background and Related Work

In recent years, a number of approaches have addressed the problem of interact-
ing with liquid software applications distributed across various types of smart
devices. Our work is inspired by and based on existing approaches from the
area of distributed user interfaces (DUIs). In this section, we especially review
prior work that explores the development of multi-device and cross-channel user
interfaces (UIs) supporting task-continuity.

2.1 Multi-device UI Development

The development of multi-device UIs has been subject of extensive research [1]
where different approaches were proposed to support efficient development of
UIs for different target platforms. On the one hand, model-based UI develop-
ment approaches were proposed which aim to create multi-device UIs based
on the transformation of abstract user interface models to final user interfaces.

Cross-Channel Web Applications Development 117

Two widely studied approaches are MARIA [2] and IFML1 that support the
abstract modeling of user interfaces and their transformation to multi-device
UIs including web interfaces. In [3] we present a specialized approach for model-
based development of heterogeneous UIs for different target platforms includ-
ing self-service systems. On the other hand there are also existing approaches
like Damask [4] and Gummy [5] following the WYSIWYG paradigm. While
Damask is a prototyping tool for creating sketches of multi-device web interfaces,
Gummy is a design environment for graphical UIs that allows designers to create
interfaces for multiple devices using visual tools to automatically generate and
maintain a platform-independent description of the UI. While above mentioned
approaches support the development of multi-device UIs regarding specification
and generation of UIs for different target platforms, they do not cover mecha-
nisms to support channel switches and data synchronization between different
target platforms at runtime.

2.2 Cross-Channel UI Development

Previous work by the research community has covered concepts and techniques
to dynamically support the distribution of UIs by supporting task-continuity
for the end-users. One of the concepts is called UI migration, which follows the
idea of transferring a UI or parts of it from a source to a target device while
enabling task-continuity through carrying the UI’s state across devices. In [8],
we present a model-based framework for the migration and adaptation of user
interfaces across different devices. In [6], the authors present an agent-based
solution to support migration of interactive applications among various devices,
including digital TVs and mobile devices, allowing users to freely move around
at home and outdoor. The aim is to provide users with a seamless and supportive
environment for ubiquitous access in multi-device contexts of use. In the case
of web applications, most solutions rely on HTML proxy-based techniques to
dynamically push and pull UIs [7]. An extension of this concept is presented
in [9], where the authors propose XDStudio to support interactive development
of cross-device UIs. In addition, there is also existing work on the specification
support for cross-device applications. In [10] for example, the authors present
their framework Panelrama which is a web-based framework for the construction
of applications using DUIs. In a similar work [11], the authors present Conductor,
which is a prototype framework serving as an example for the construction of
cross-device applications.

Leaning on the existing concepts of cross-channel UI development, we present
a model-based solution architecture for multi-device UIs that supports task-
continuity. By extending existing architectural cross-device application frame-
works to the banking domain, we aim to support an omni-channel banking
experience for the customers.

1 http://www.ifml.org.

http://www.ifml.org

118 E. Yigitbas et al.

3 Solution Architecture

In this section, we present a model-based solution architecture for multi-device
UI development in order to tackle the motivated challenges C1, C2 and C3.
Figure 2 shows our solution architecture which is divided into three main steps:
Modeling, Transformation, and Execution.

"

Fig. 2. Model-based solution architecture for multi-device UIs supporting task-
continuity

For supporting the development of various UIs allowing access to the dif-
ferent channels and minimizing recurrent development efforts in establishing
the needed Front-Ends (C1), we have a modeling step in our solution architec-
ture. In the modeling step, a Domain Model described as UML class diagram
and an Abstract UI Model based on the Interaction Flow Modeling language
(IFML), serve as specification of the data entities as well as structure, content
and navigation needed to characterize the UI in an abstract manner. Based on
the IFML Abstract UI model, which is referencing the Domain Model, a trans-
formation is defined to generate heterogeneous UIs for the different UI-Channels
(1..n). Therefore, in the transformation step, several model-to-text transforma-
tion (M2T) templates are defined that transfer the Abstract UI models into the
final UIs, running on different target platforms in order to support access to
the different channels (Front-End). By generating different UI views and sup-
porting different UI-Channels, the users are able to flexibly select the channel
of their choice depending on the context (C2). In order to support a seamless
handover between channels and allowing task-continuity for the user (C3), our
solution architecture includes an Application and Synchronization Server in the
Back-End, which is responsible for storing and sharing of data (e.g. UI state or
user preferences). The UI state, including entered input data by the users, is
stored and restored, allowing the user to move across channels while seamlessly
continuing her task.

Cross-Channel Web Applications Development 119

4 Instantiation of Development Process

In this section, the instantiation of the development process according to the pre-
viously described solution architecture is presented in more detail. To show the
feasibility of our approach, we first present the setting of an industrial case-study
dealing with the implementation of a cross-platform software infrastructure for
Omni-Channel cash transactions employing web-based technologies. After that,
we present the realization of the solution architecture by describing the imple-
mentation of the different steps.

4.1 Setting of the Case Study

Our “Omni-Channel-Banking” case-study supports a variety of different chan-
nels to access banking services. Figure 3 shows its overall architecture.

Fig. 3. Case-study application architecture

On each device - PC, Mobile, ATM - the client application is running as
a single-page web application inside a browser. The application communicates
with a Back-End Server, which is responsible for

– serving an application to the browser, adapted to a particular target device,
– serving application specific data to the client via HTTP/REST,
– managing application state and user preferences,
– requesting information from a Transaction Processing Back-End and serving

it to the client,
– sending financial transactions to the Transaction Processing Back-End for

execution.

120 E. Yigitbas et al.

The data format for all data exchanged through HTTP/REST requests is
JavaScript Object Notation (JSON).

The Transaction Processing Back-End is not part of our application, but
represents an existing infrastructure for processing financial transactions. The
Back-End Server communicates with this transaction processing system. The
communication protocol between the Transaction Processing Back-End and our
sample application’s Back-End Server depends on an existing infrastructure.
Thus, the Back-End Server needs to provide a custom adapter for interfacing
with this system.

In our case study, PC and mobile applications are identical concerning their
functionality. The main difference comes from adaptation to different screen sizes
and operation through a touch screen. This also includes spreading of function-
ality on the mobile device over multiple dialogs, compared to the PC applica-
tion. In contrast to PC and mobile clients, the application architecture of the
ATM client is significantly different. This is due to the need for supporting a
whole variety of ATM specific hardware devices, like NFC Reader, Card Reader,
Encrypting Pin Pad (EPP), Cash Dispenser, etc. For interoperability reasons,
ATM vendors are using a common software stack called XFS, which is layered on
top of device specific drivers. XFS stands for Extensions for Financial Services
and is standardized by CEN, the European Commitee for Standardization. Since
a browser itself can not directly access the XFS-API, we delegate device control
to a Device-Proxy Server running directly on the ATM.

4.2 Modeling and Transformation

For realizing the modeling and transformation step of the solution architecture,
we have implemented a model-based UI development (MBUID) process which is
depicted in Fig. 4. This MBUID process supports the modeling and transforma-
tion of the UIs, which are the view parts of the single-page application rendered
as HTML5 by the browser. Using the open source IFML Editor Eclipse plugin2,
developers are able to specify the domain and abstract UI model. For transform-
ing these models into final web UI views, we implemented an Xtend3 plugin that
maps the IFML model elements to specific HTML5 elements. The Xtend plugin
includes different Xtend templates to transfer the IFML source model into web
UIs supporting manifold devices.

During the transformation process, the application’s view is built upon basic
components with a custom look &feel, like buttons, text input fields, dropdown
lists, tables, etc. As a basis for these components, we did not use AngularJS
directives, but implemented components based on the HTML5 Web Compo-
nents4 specification promoted by Google as W3C standard.

2 http://ifml.github.io.
3 http://www.eclipse.org/xtend.
4 https://www.w3.org/TR/components-intro.

http://ifml.github.io
http://www.eclipse.org/xtend
https://www.w3.org/TR/components-intro

Cross-Channel Web Applications Development 121

Fig. 4. Implemented model-based UI development process

Our custom components are sensitive to the application environment they
are being used in (desktop, mobile, ATM) and adapt themselves accordingly.
On mobile devices, for example, buttons are larger and more suitable for touch
operation than on desktop devices.

Fig. 5. Buttons and text fields for desktop and mobile

Figure 5 shows buttons and text input fields. Their desktop representation is
depicted on the left side, their mobile appearance on the right side of the picture.

During the transformation process for all device classes, a button is created
the same way:
<komos−button colorscheme=” cs1 ” ng−c l i c k=” conf i rm () ”>

Confirm
<komos−button>

The following example shows how to create a text input field with a label by
mapping an IFML simple field element to the following code snippet:
<komos−t e x t f i e l d label=”Current PIN” ng−model=”model . currentPin ”>

</komos−t e x t f i e l d >

In order to provide a unified layout management for our application, our
model-to-text (M2T) transformation process implements a custom layout man-
ager. It provides an easy to use grid layout system, based on row and column

122 E. Yigitbas et al.

elements realized as AngularJS directives. Under the hood, it uses HTML5
Flexbox. The following listing shows the generated code snippet to create the
dialog shown in Fig. 6.
<komos−conta iner>

<komos−row>
<komos−column span−3>

<komos−label>Username</komos−label>
</komos−column>
<komos−column span−8>

<komos−t e x t f i e l d name=”username” ng−model=”model . username”>
</komos−t e x t f i e l d >

</komos−column>
</komos−row>

<komos−row>
<komos−column span−3>

<komos−label>Password</komos−label>
</komos−column>
<komos−column span−8>

<komos−t e x t f i e l d name=”password” ng−model=”model . password”>
</komos−t e x t f i e l d >

</komos−column>
</komos−row>

<komos−row>
<komos−column o f f s e t −3 span−8>

<komos−button colorscheme=” cs1 ” ng−c l i c k=” l o g i n (form) ”>
Login

</komos−button>
<komos−button colorscheme=” cs5 ” ui−s r e f=” pub l i c . s ignup ”>

Reg i s t e r
</komos−button>
<komos−button colorscheme=” cs3 ” ng−c l i c k=” r e s e t (form) ”>

Cancel
</komos−button>

</komos−column>
</komos−row>

</komos−conta iner>

Fig. 6. Login dialog

4.3 Execution (Front-End)

While the previous subsection presented our MBUID process to support the
modeling and generation of view aspects of the Front-End, this section deals
with the execution step. In this context, we especially present the controller part
of the Front-End, which is responsible for application logic and communication
with the Back-End Server. In conjunction with this topic, we also present the
aspect of channel handover and task-continuity.

Cross-Channel Web Applications Development 123

As shown in Fig. 7, the Front-End consists of a HTML5/JavaScript single-
page application running in a web browser. It exchanges JSON messages with
the Back-End Server through HTTP/REST.

Fig. 7. Front-end architecture

The browser application’s main building blocks are:

– AngularJS5: Google’s open-source web application framework for developing
single-page applications in JavaScript

– UI Router6: flexible client-side routing with nested views in AngularJS
– Web Components: UI components with custom look & feel
– Layout Manager: custom layout manager

AngularJS supports the model-view-controller (MVC) design pattern by
decoupling the application’s presentation layer, which is defined through HTML5
(see previous subsection), from the model and application logic by two-way data-
binding through a $scope object. In addition, AngularJS provides a variety of
other services, including modularization and definition of custom directives.

UI Router is the client-side routing component of AngularJS and the cen-
tral key component to implement task continuity. The developer assigns a par-
ticular application state, identified by a name (protected.main), with a view
(main.html) and a controller (MainCtrl):

5 https://angularjs.org.
6 https://github.com/angular-ui/ui-router/wiki.

https://angularjs.org
https://github.com/angular-ui/ui-router/wiki

124 E. Yigitbas et al.

angular . module (’komosApp ’) . c on f i g (func t i on ($ s ta t eProv ide r) {
$s ta t eProv ide r

. s t a t e (’ p ro tec ted . main ’ , {
u r l : ’ / ’ ,
templateUrl : ’ p ro tec ted /main/main . html ’ ,
c o n t r o l l e r : ’ MainCtrl ’ ,
au thent i ca t e : true

}) ;
}) ;

In order to support task continuity and transfer application state between
devices, the current state name and its associated context are saved to the Back-
End Server.

Inside a view controller and prior to saving a state, all context information
necessary for recovery is added to a state-context object. This includes the UI’s
view-model, as well as any other necessary information associated with the cur-
rent state.
var context = {

// the view model:
viewModel: $scope.model ,
// state specific arbitrary properties :
param1: someValue ,
data: someData

};

PersistStateService.save(’protected.main’, context , function (err , data) {
if (err) model.errors.message = err.data.message;

});

We implemented an AngularJS service named PersistStateService, which
converts the object context to JSON and sends it to the Back-End Server,
where it is stored under the name of the state, e.g. protected.main. To invoke
a previously saved state, the application just needs to retrieve the current state
name and invoke it:
$rootScope . $ s t a t e . go (’ p rotec ted . main ’) ;

On instantiation of the AngularJS controller associated with this state, the
controller calls the service’s restore method to retrieve the previously stored
information:
Pe r s i s t S t a t e S e r v i c e . r e s t o r e (’ p rotec ted . main ’ , f unc t i on (err , context) {

i f (e r r) {
model . e r r o r s . message = e r r . data . message ;

} else {
// context now contains the prev ious l y saved information
$scope . model = context . viewModel ; // t h i s updates the UI ! !
someValue = context . param1 ;
someData = context . data ;

}
}) ;

Both, saving and retrieving context data for a state happens within the same
controller. Each controller knows exactly which data needs to be saved in order
to be able to restore itself. This information is hidden from other parts of the
application. The only knowledge necessary from the outside is the name of the
state, protected.main in our example.

Because of AngularJS’ two-way data-binding, assigning the view-model to
$scope.model immediately updates the view.

Cross-Channel Web Applications Development 125

4.4 Execution (Back-End)

The application’s Back-End is implemented in JavaScript (see Fig. 8) and uses
Node.js7 as its runtime environment. It is built upon Google’s V8 JavaScript
engine also used by Google Chrome and provides a high-performance runtime
environment for non-blocking and event-driven programming.

Fig. 8. Back-end architecture

ExpressJS8, which is a middleware for Node.js, provides components for
processing of requests and routing. An application sets up request handlers,
which are automatically invoked when a client request arrives. Within a request
handler, the request is processed, a response is prepared and returned. Request
handlers communicate with the database or Transaction Processing Back-End.

The document database MongoDB9 belongs into the category of NoSQL
(“Not Only SQL”) databases. In this context, a “document” consists of a user-
defined data structure of key-value pairs, which is associated with a key. Docu-
ments can also contain other documents. The schema of a database is dynamic
and can be modified at runtime. To access the database in an object-oriented
fashion, we use an Object Document Mapper called Mongoose on top of Mon-
goDB’s Node.js driver.

The instantiation of our solution architecture and interaction of all described
technologies resulted in the demonstrator which is shown in Fig. 9. Our demon-
strator shows the implemented cross-channel web-application that supports
different channels (Desktop, Tablet, and ATM) for a cash payout process
enabling task-continuity for the customers.
7 https://nodejs.org.
8 https://expressjs.com.
9 https://www.mongodb.org.

https://nodejs.org
https://expressjs.com
https://www.mongodb.org

126 E. Yigitbas et al.

Fig. 9. Cross-channel banking web application supporting task-continuity

5 Conclusion and Outlook

This paper presents a model-based solution architecture that supports the effi-
cient development of UIs for different channels (e.g. PC, Smartphone, ATM)
and enables data synchronization between them. This solution offers end-users
a flexible and easy usage for accessing their services through variable chan-
nels and a seamless hand-over between channels allowing task-continuity. We
showed the feasibility of our approach based on a cross-channel banking web-
application that was implemented according to our solution architecture. The
implementation of our case study includes a cross-platform software infrastruc-
ture for Omni-Channel cash transactions employing the latest web technologies
and open source frameworks. In ongoing work we are developing and extending
the model-to-text transformation process in order to support the generation of
dynamic UI aspects (e.g. input validation, controller artifacts, etc.). Our future
work will focus on studies with web designers and developers to further evaluate
the efficiency and effectiveness of our approach.

References

1. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2012), pp. 45–50. ACM, New York (2012)

2. Paternò, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact (2009)

3. Yigitbas, E., Fischer, H., Kern, T., Paelke, V.: Model-based development of adap-
tive UIs for multi-channel self-service systems. In: Sauer, S., Bogdan, C., Forbrig,
P., Bernhaupt, R., Winckler, M. (eds.) HCSE 2014. LNCS, vol. 8742, pp. 267–274.
Springer, Heidelberg (2014)

Cross-Channel Web Applications Development 127

4. Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI 2008), pp. 1313–1322. ACM,
New York (2008)

5. Meskens, J., Vermeulen, J., Luyten, K., Coninx, K.: Gummy for multi-platform
user interface designs: shape me, multiply me, fix me, use me. In: Proceedings of
the Working Conference on Advanced Visual Interfaces (AVI 2008), pp. 233–240.
ACM, New York (2008)

6. Paternò, F., Santoro, C., Scorcia, A.: Ambient intelligence for supporting task con-
tinuity across multiple devices and implementation languages. Comput. J. 53(8),
1210–1228 (2010)

7. Ghiani, G., Paternò, F., Santoro, C.: Push and pull of web user interfaces in multi-
device environments. In: Proceedings of the International Working Conference on
Advanced Visual Interfaces (AVI 2012), pp. 10–17. ACM, New York (2012)

8. Yigitbas, E., Sauer, S., Engels, G.: A model-based framework for multi-adaptive
migratory user interfaces. In: Kurosu, M. (ed.) Human-Computer Interaction.
LNCS, vol. 9170, pp. 563–572. Springer, Heidelberg (2015)

9. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M.: Interactive development of
cross-device user interfaces. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 2014) (2014)

10. Yang, J., Wigdor, D.: Panelrama: enabling easy specification of cross-device web
applications. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI 2014), pp. 2783–2792. ACM, New York (2014)

11. Hamilton, P., Wigdor, D.J.: Conductor: enabling and understanding cross-device
interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI 2014), pp. 2773–2782. ACM, New York (2014)

	Multi-device UI Development for Task-Continuous Cross-Channel Web Applications
	1 Introduction
	2 Background and Related Work
	2.1 Multi-device UI Development
	2.2 Cross-Channel UI Development

	3 Solution Architecture
	4 Instantiation of Development Process
	4.1 Setting of the Case Study
	4.2 Modeling and Transformation
	4.3 Execution (Front-End)
	4.4 Execution (Back-End)

	5 Conclusion and Outlook
	References

