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Abstract. In this paper, we introduce a fast alternating method for
reconstructing highly undersampled dynamic MRI data using 3D convo-
lutional sparse coding. The proposed solution leverages Fourier Convolu-
tion Theorem to accelerate the process of learning a set of 3D filters and
iteratively refine the MRI reconstruction based on the sparse codes found
subsequently. In contrast to conventional CS methods which exploit the
sparsity by applying universal transforms such as wavelet and total varia-
tion, our approach extracts and adapts the temporal information directly
from the MRI data using compact shift-invariant 3D filters. We provide
a highly parallel algorithm with GPU support for efficient computation,
and therefore, the reconstruction outperforms CPU implementation of
the state-of-the art dictionary learning-based approaches by up to two
orders of magnitude.

1 Introduction

Dynamic cardiac MRI is considered as the gold standard among several imag-
ing modalities in heart function diagnosis. However, due to its long acquisition
time, its clinical application has been limited to non-time-critical ones. Recent
research advances in Compressed Sensing (CS) have been successfully applied to
MRI [8] to reduce acquisition time. Nevertheless, CS-MRI poses a new challenge
– the reconstruction time also increases because it needs to solve an in-painting
inverse problem in the frequency domain (i.e., k-space). Therefore, accelerating
the reconstruction process is a top priority to adopt CS framework to fast MRI
diagnosis.

Conventional CS-MRI reconstruction methods have exploited the sparsity of
signal by applying universal sparsifying transforms such as Fourier (e.g., discrete
Fourier transform (DFT) or discrete cosine transform (DCT)), Total Variation
(TV), and Wavelets (e.g., Haar, Daubechies, etc.). This research direction has
focused on accelerating the sparsity-based energy minimization problem, with
[10] or without hardware supports [7]. Some strategies were designed to accel-
erate the minimization process such as using TV plus nuclear norm [14] or pro-
posed the solver in other sparsity domain such as low-rank technique [9,12].
More recently, the other approaches leveraging the state-of-the-art data-driven
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method, i.e., dictionary learning [2] (DL), have been proposed to further enhance
the reconstruction quality [3,5,6,11]. However, the existing learning-based meth-
ods suffer from the drawback of patch-based dictionary (i.e., redundant atoms
and longer running times).

Convolutional sparse coding (CSC) is a new learning-based sparse represen-
tation that approximates the input signal with a superposition of sparse feature
maps convolved with a collection of filters. This advanced technique replaces the
patch-based dictionary learning process with an energy minimization process
using a convolution operator on the image domain, which leads to an element-
wise multiplication in frequency domain, derived within Alternating Direction
Method of Multiplier (ADMM) framework [4], and later its direct inverse prob-
lem is introduced by Wohlberg [13]. CSC can generate much compact dictionar-
ies due to its shift-invatiant nature of filters, and the pixel-wise computation
in Fourier domain maps well to parallel architecture. However, such advanced
machine learning approaches have not been fully exploited in CS-MRI literature
yet. Therefore, in this paper, we propose a novel CS dynamic MRI reconstruction
that exploits the compactness and efficiency of 3D CSC. The proposed 3D CSC
directly encodes both spatial and temporal features from dynamic cardiac 2D
MRI using a compact set of 3D atoms (i.e., filters) without regularizers enforcing
temporal coherence (e.g., total variation along the time axis). We also show that
the proposed method maps well to data-parallel architecture, such as GPUs, for
further accelerating its running time significantly, up to two orders of magnitude
faster compared to the state-of-the-art CPU implementation of CS-MRI using
patch-based dictionary learning. To the best of our knowledge, this is the first
CS-MRI reconstruction method based on GPU-accelerated 3D CSC.

2 Method

Figure 1 is a pictorial description of the proposed method. If the inverse Fourier
transform is directly applied to undersampled MRI k-space data (Fig. 1a ×4
undersampling), the reconstructed images will suffer from artifacts (Fig. 1b). The
zero-filling reconstruction will serve as an initial guess for our iterative recon-
struction process with randomly initialized filters, e.g., a collection of 16 atoms
of size 9×9×9 as shown in Fig. 1d. Then the image and filters are iteratively
updated until they converge as shown in Fig. 1c, e and f.

The proposed CS-MRI reconstruction algorithm is a process of finding s (i.e.,
a stack of 2D MR images for a given time duration) in the energy minimization
problem defined as follows:

min
d,x,s
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∥
∥
∥
∥
s −

∑

k

dk ∗ xk

∥
∥
∥
∥
∥

2

2

+ λ
∑

k

‖xk‖1

s.t. : ‖RF2s − m‖22 < ε2, ‖dk‖22 � 1 (1)

where dk is the k-th filter (or atom in the dictionary) and xk, is its corresponding
sparse code for s. In Eq. (1), the first term measures the difference between s
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(a) ×4 subsampled k-space (b) Initial reconstruction (c) Converged solution

(d) Initial filters (e) Converged filters (f) 3D view

Fig. 1. An overview of CS-MRI reconstruction using 3D CSC method.

and its sparse approximation s − ∑

k dk ∗ xk, weighted by α. The second term
is the sparsity regularization of xk using an �1 norm with a weight λ instead
of an �0 norm as used in [2,5,6]. The rest of the equation is the collection of
constraints - the first constraint enforces the consistency between undersampled
measurement m and the undersampled reconstructed image using the mask R
and the Fourier operator F , and the second constraint restricts the Frobenius
norm of each atom dk within a unit length. In the following discussion, we will
use a simplified notation without indices k and replace the result of Fourier
transform of a given variable by using the subscript f (for example, df is the
simplified notation for Fd in 3D domain and sf2 is the simplified notation for
F2s in 2D spatial domain) to derive the solution of Eq. (1). Therefore, problem 1
can be rewritten using auxiliary variables y and g for x and d as follows:

min
d,x,g,y,s

α

2

∥
∥
∥s −

∑

d ∗ x
∥
∥
∥

2

2
+ λ ‖y‖1

s.t. : x − y = 0, ‖RF2s − m‖22 < ε2, g = Proj(d), ‖g‖22 � 1 (2)

where g and d are related by a projection operator as a combination of a trun-
cated matrix followed by a padding-zero matrix in order to make the dimension
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of g same as that of x. Since we will leverage Fourier transform to solve this
problem, g should be zero-padded to make its size same as gf and xf . The above
constrained problem can be rebuilt in an unconstrained form with dual variables
u, h, and further regulates the measurement consistency and the dual differences
with γ, ρ, and σ, respectively:

min
d,x,g,y,s

α

2

∥
∥
∥s −
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d ∗ x
∥
∥
∥

2

2
+ λ ‖y‖1 +

γ

2
‖RF2s − m‖22

+
ρ

2
‖x − y + u‖22 +

σ

2
‖d − g + h‖22 s.t. : g = Proj(d), ‖g‖22 � 1 (3)

Then we can solve problem (3) by iteratively finding the solution of independent
smaller problems, as described below:
Solve for x:

min
x
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If we apply the Fourier transform to the (4), it becomes:

min
xf

α

2

∥
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∥

∑

dfxf − sf

∥
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∥

2

2
+

ρ

2
‖xf − yf + uf‖22 (5)

Then the minimum solution of (5) can be found by taking the derivative of (5)
with respect to xf and setting it to zero as follows:

(

αDH
f Df + ρI

)

xf = DH
f sf + ρ (yf − uf ) (6)

Note that the notation Df stands for the concatenated matrix of all diagonalized
matrices dfk as follows: Df = [diag(df1), ..., diag(dfk)] and DH

f is the complex
conjugated transpose of Df .
Solve for y:

min
y

λ‖y‖1 +
ρ

2
‖x − y + u‖22 (7)

y for �1 minimization problem can be found by using a shrinkage operation:

y = Sλ/ρ (x + u) (8)

Update for u: The update rule for u can be defined as a fixed- point iteration
with the difference between x and y (u converges when x and y converge each
other) as follows:

u = u + x − y (9)

Solve for d:

min
d
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Similar to x, d can be solved in the Fourier domain:

min
df

α
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2
‖df − gf + hf‖22 (11)

(

αXH
f Xf + σI

)

df = XH
f sf + σ (gf − gf ) (12)

where Xf stands for the concatenated matrix of all diagonalized matrices xfk

as follows: Xf = [diag(xf1), ..., diag(xfk)] and XH
f is the complex conjugated

transpose of Xf .
Solve for g:

min
g

σ

2
‖d − g + h‖22 s.t. : g = Proj(d), ‖g‖22 � 1 (13)

g can be found by taking the inverse Fourier transform of df . This projection
should be constrained by suppressing the elements which are outside the filter
size dk, and followed by normalizing its �2-norm to a unit length.
Update for h: Similar to u, the update rule for h can be defined as follows:

h = h + d − g (14)

Solve for s:

min
s

α
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2
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γ

2
‖RF2s − m‖22 (15)

The objective function of (15) can be transformed into 2D Fourier domain:

min
sf2

α

2

∥
∥
∥sf2 − FH

t

∑
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∥
∥
∥

2

2
+

γ

2
‖Rsf2 − m‖22 (16)

Since df and xf obtained previously in 3D Fourier domain, we need to bring it
onto the same space by applying an inverse Fourier transform along time-axis
FH

t . Then sf2 can be found by solving the following linear system:

(

γRHR + αI
)

sf2 = γRHm + αFH
t

∑

dfxf (17)

Note that the efficient solutions of (6), (12) and (17) can be determined via the
Sherman-Morrison formula for independent linear systems as shown in [13]. To
this end, after the iteration process, s will be the results of applying a 2D inverse
Fourier transform FH

2 on sf2 .

Implementation Details: Since the above derivation consists only Fourier
transform and element-wise operations, it maps well to data-parallel architec-
ture, such as GPUs. We used MATLAB to implement the proposed method
using the GPU. We set α = 1, γ = 1, λ = 0.1, ρ = 10, σ = 10 and keep refining
the filter banks as well as the reconstruction iteratively until they converge.
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3 Result

In order to assess the performance of the proposed method, we compared our
algorithm with the stage-of-the-art dictionary learning-based CS reconstruction
from Caballero et. al. [5], and the conventional CS reconstruction using wavelet
and total variation energy from Quan et. al. [10]. We used three cardiac MRI
datasets from The Data Science Bowl [1] – 2 chamber view (2ch), 4 chamber
view (4ch), and short axis view (sax). Each dataset consists of 30 frames of a
256 × 256 image across the cardiac cycle of a heart. In the experiment, we used
3D atoms of size 9 × 9 × 9 and CS-undersampling factor was set to ×4.

Running Time Evaluation: In order to make this direct performance com-
parison of learning-based methods between the proposed one and Caballero et
al. [5], we measured wall clock running time of both methods on a PC equipped
with an Intel i7 CPU with 16 GB main memory and an NVIDIA GTX Geforce
Titan X GPU. Our prototype code is written in MATLAB 2015b including GPU
implementation, and we used the author-provided MATLAB code for Caballero
et al. [5]. As shown in Table 1, we observed that our CPU-based method is about
54× to 73×, or about two orders of magnitude, faster than the stage-of-the-art
DL-based CS-MRI reconstruction method for 100 epochs (i.e., the number of
learning iterations). In addition, our GPU-based accelerated implementation also
outperforms the CPU version about 1.25× to 3.82×, which is greatly reduced to
a level closer to be ready for clinical application. We expect that the performance
of our method can improve further by using CUDA C/C++ without MATLAB.

Table 1. Reconstruction times of learning-based methods (100 epochs)

2ch 4ch sax

Caballero et al. [5] 558 Min 475 Min 427 Min

Our method (CPU) 7.67 Min 7.73 Min 7.94 Min

Our method (GPU) 6.14 Min 2.70 Min 2.08 Min

Quality Evaluation: Figure 2 visualizes the reconstruction errors compared
to the full reconstruction of each method, respectively. As can be seen, our
approach generated less error compared to the stage-of-the-art method of [5]
and conventional CS-reconstruction using wavelet and TV energy [10]. Their
glitches on the temporal profile are clearly observed since total variation along
time axis may smooth out the temporal features that move quickly, especially
near the heart boundary. In our case, the learned atoms are in 3D with larger
supports, which helps to capture the time trait better even under fast motion and
reduces errors in the reconstructed images. In addition, shift-invariance of CSC
helps to generate more compact filters compared to the patch-based method.

Figure 3 shows the achieved Peak Signal-To-Noise-Ratios (PSNRs) measured
between the CS-reconstruction results and the full reconstruction. As shown in
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(a) (b) (c)

Fig. 2. Error plots (red: high, blue: low) between full reconstruction and the result
from (a) the proposed method, (b) the DL-based method [5], and (c) wavelet and total
variation energy method [10]. (Color figure online)
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Fig. 3. Convergence rate evaluation based on PSNRs.

this figure, our method requires more iterations (epochs) to converge to the
steady state, but the actual running time is much faster than the others due to
GPU acceleration. In the mean time, our method can reach much higher PSNRs.

4 Conclusion

In this paper, we introduced an efficient CS-MRI reconstruction method based
on pure 3D convolutional sparse coding where shift-invariant 3D filters can rep-
resent the temporal features of the MRI data. The proposed numerical solver is
derived under the ADMM framework by leveraging the Fourier convolution the-
orem, which can be effectively accelerated using GPUs. As a result, we achieved
faster running time and higher PSNRs compared to the state-of-the-art CS-MRI
reconstruction methods, such as using a patch-based dictionary learning and
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conventional wavelet and total variation energy. In the future, we plan to con-
duct a proper controlled-study of tuning-parameters and assess its feasibility in
clinical applications.
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