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Abstract. Cataracts are the leading cause of visual impairment and
blindness worldwide. Cataract grading, i.e. assessing the presence and
severity of cataracts, is essential for diagnosis and progression moni-
toring. We present in this work an automatic method for predicting
cataract grades from slit-lamp lens images. Different from existing tech-
niques which normally formulate cataract grading as a regression prob-
lem, we solve it through reconstruction-based classification, which has
been shown to yield higher performance when the available training data
is densely distributed within the feature space. To heighten the effective-
ness of this reconstruction-based approach, we introduce a new semantic
feature representation that facilitates alignment of test and reference
images, and include locality constraints on the linear reconstruction to
reduce the influence of less relevant reference samples. In experiments
on the large ACHIKO-NC database comprised of 5378 images, our sys-
tem outperforms the state-of-the-art regression methods over a range of
evaluation metrics.

1 Introduction

Cataracts are a clouding of the lens that reduces transmission of light to the
retina. They may be caused by a variety of factors, including age, ultraviolet
radiation, and genetics. This obstruction of light can seriously impair vision and
may even progress into blindness [1]. Due to its prevalence particularly among
the elderly, there is a need to screen for them in an efficient and cost-effective
manner.

Most commonly, cataracts develop in the nucleus, which is the central layer
of the lens. The opacification and coloration caused by nuclear cataracts is vis-
ible in cross-sectional views of the lens in slit-lamp images. Currently, nuclear
cataracts are diagnosed by ophthalmologists directly using a slit-lamp micro-
scope, or graded by clinicians who assess the presence and severity of a cataract
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by comparing slit-lamp images against a set of protocol photographs [2–4] such
as that shown in Fig. 1. However, manual assessments can be both subjective
and time-consuming [4].

The need for objectivity and efficiency in nuclear cataract grading has led to
the development of several computer-aided systems [5–10]. These systems gener-
ally operate with three main steps: lens structure detection, feature extraction,
and severity prediction. Most prior art formulate the severity prediction as a
regression problem on certain visual features. In the state-of-the-art method of
[5], bag-of-features (BOF) descriptors are extracted from RGB and HSV color
channels of different lens sections, and group sparsity regression (GSR) is used
to jointly select the features, parameters and models for grading. In [6], 21 pre-
defined features are extracted from different sections of the lens, and then are
fed into a pre-learned RBF kernel-based Support Vector Regressor (SVR) to
estimate the cataract grade.

While regression-based methods have achieved higher accuracy than other
previous techniques, we observe that the dense sampling of cataract grades in
the available training data allows for a more direct grading prediction. When
training samples are densely distributed in the feature space, higher accuracy can
be achieved through reconstruction from the samples, where class membership
of an input is estimated based on reconstruction accuracy from similar instances
within each class. Compared to regression, a reconstruction-based approach is
less reliant on discriminative feature quality and more robust to small inter-class
margins, such as those that exist for the continuous space of cataract grades.
These advantages of reconstruction-based classification have been exploited for
human gait recognition [11], where a large number of training samples are densely
distributed in a feature space that is compact due to the relatively narrow range
of gait differences.

For nuclear cataract grading, however, the reconstruction-based approach
is ineffective when employed in a straightforward manner. In our preliminary
tests, linear reconstruction of lens images after alignment and size normalization
of lens sections led to grading performance much lower than the state-of-the-
art BOF+GSR method [5]. This is mainly due to inadequate lens alignment.
Since lenses vary in both size and shape, a non-rigid structural alignment of
lenses is needed for accurate reconstruction, but is challenging to accomplish.
To address this problem, we propose to model the test and reference images
with a new semantic representation of lens structure that is less sensitive to slight
misalignments, instead of processing in the original raw image space. In addition,
we improve the accuracy of reconstruction-based cataract grade prediction by
accounting for the degree of similarity between the test image and reference
images. By ignoring reference images that are not well-aligned to the test image
as done in the similarity ranking-based CBMIR approach [8], the alignment issue
is further diminished.

Our proposed method essentially follows the manual grading protocol, as it
directly compares with reference images through the alignment and reconstruc-
tion procedure, and it compares intensity/color and contrast patterns via the
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Fig. 1. Standard photographs of the Wisconsin nuclear cataract grading system. From
left to right, the severity of the nuclear cataracts increases, with greater brightness and
lower contrast between anatomical landmarks. In addition, the color of the nucleus and
posterior cortex exhibits more of a yellow tint due to brunescence.

semantic feature representation. With this approach, our system attains higher
overall performance than the state-of-the-art, and has the potential to be applied
to other ocular diseases such as angle closure glaucoma detection and optical cup
localization.

2 Nuclear Cataract Grading Through Semantic
Reconstruction

We formulate nuclear cataract grading as a linear reconstruction problem with
a similarity-weighted constraint. For a given slit-lamp test image, our algorithm
follows the steps of lens structure detection, semantic feature extraction, and
linear reconstruction with reference images.

2.1 Lens Structure Detection

Detection of lens structures in slit-lamp images is a well-studied problem with
effective solutions [5–10]. For this purpose, we employ techniques similar to those
used in [5,6]. As illustrated in Fig. 2, the lens structure detection proceeds with
the following steps:

1. Using the active shape model based lens structure detection proposed in [6],
each lens image is separated into three sections: anterior cortex, nucleus, and
posterior cortex. The visual axis is located as well.

2. A lens cross-section is extracted around the visual axis, using a bounding
box with a height of h pixels (h = 128 in our implementation) to obtain the
central parts of the nucleus, anterior cortex and posterior cortex.

3. Features are extracted from only the nucleus and posterior cortex sections,
since the anterior cortex contains no discriminant information for nuclear
cataract grading [5]. This practice is also supported by clinical protocol [4],
where nuclear cataracts are graded based on the intensity and visibility of
nuclear landmarks and the color of the nucleus and posterior cortex.
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Fig. 2. Left: illustration of lens structure detection, with the initially detected lens
structure (solid yellow boxes) and final detected posterior cortex (dashed yellow box).
Right: examples of detected lens cross-sections. On the left are initially detected cross-
sections with sharp reflections in the posterior cortex. On the right are cross-sections
that were detected without the posterior cortex reflections. Since the anterior cortex
will be discarded, reflections there need not be avoided. (Color figure online)

4. As illustrated on the right side of Fig. 2, bright spots may appear in the
extracted posterior cortex section, due to reflections of the photographic flash.
The presence of these sharp reflections may greatly reduce grading accuracy,
so we avoid them by simply shifting the bounding box of the posterior cortex
vertically with a step size of h/2 until it has a mean scaled value lower than
a threshold value θp, where θp = 192 in our implementation.

2.2 Semantic Feature Representation

After detection, the posterior cortex is divided into s×s (s = 3 in our implemen-
tation) half-overlapping grid cells, and the nucleus is partitioned into s×2s half-
overlapping grid cells. For each of the RGB and HSV color channels1, a grid cell is
represented by its mean intensity t̂ and entropy e, defined as e = −∑255

l=0 pl log pl

where pl is the probability of intensity l in the grid for a given color channel. With
this data, each image is represented by a feature vector with 3×s×s×6×2 = 36s2

dimensions.
With the downsampling and half-overlapping grid cells, this representation

becomes less sensitive to slight misalignments caused by differences in lens shape.
We note that the feature vectors used in previous works such as [6], though
containing features such as intensity ratios and edge strength that are useful
1 HSV values are linearly scaled to the range [0, 255] for consistency with the RGB

channels.
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for discriminative classification, are less suitable for dealing with the alignment
problem, which is critical to the success of reconstruction-based techniques.

2.3 Similarity Weighted Linear Reconstruction (SWLR)

Suppose we have a dictionary that consists of n reference images, denoted by
D = {d1,d2, · · · , dn} ∈ R

f×n where each column di denotes a reference image
expressed by its semantic feature vector. For a given test image expressed as
y ∈ R

f×1, we compute the optimal linear reconstruction coefficients w ∈ R
n×1,∑n

i=1 wi = 1, wi ≥ 0, that minimize the reconstruction error ||y − Dw||2. Our
objective function also includes a cost term that penalizes the use of references
that are less similar to the test image. Let us denote the costs for the reference
images in D as the vector c = {c1, c2, · · · , cn}� ∈ R

n×1, where ci is the cost
of using di for reconstruction. The overall cost term can then be expressed as
||c � w||2 where � denotes the Hadamard product. Combining this cost term
with the reconstruction error gives the following objective function:

min
w

||y − Dw||2 + λ||c � w||2, s.t.
n∑

i=1

wi = 1, wi ≥ 0, (1)

where λ > 0 is a regularization parameter. This objective can be minimized in
closed form using the Lagrange multiplier method:

w =
1

1�(D̂�D̂ + λC�C)1
(D̂�D̂ + λC�C)−11,

D̂ =(1 ⊗ y − D),
(2)

where C = diag(c) and ⊗ denotes the Kronecker product. The cost ci is defined
as the χ2-distance between the test image y and the i-th reference image di, i.e.,

ci =
f∑

j=1

(yj − di,j)2

2(yj + di,j)
, (3)

where di,j denotes the j-th entry of reference image di. We note that the inclusion
of entropy in the semantic feature helps to exclude misaligned references in
the SWLR algorithm, since high entropy indicates the presence of structural
variations, and differences in entropy caused by misalignment are penalized by
this cost function.

Finally, the test image is graded as w�g, where g denotes the corresponding
cataract grades of reference images in dictionary D.

3 Experiments

To evaluate our method, we first compare it to the state-of-the-art nuclear
cataract grading methods [5,6]. We then validate its major components by com-
paring to versions of our technique with certain components replaced.
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3.1 Experimental Setting

Dataset. All the experiments are performed on the large ACHIKO-NC dataset
used in [5,6], which is comprised of 5378 images with decimal grading scores that
range from 0.3 to 5.0. The scores are determined by professional graders based on
the Wisconsin protocol [4]. The protocol takes the ceiling of each decimal grading
score as the integral grading score, i.e., a cataract with a decimal grading score
of 2.4 has an integral grading score of 3. ACHIKO-NC consists of 94 images of
integral grade 1, 1874 images of integral grade 2, 2476 images of integral grade
3, 897 images of integral grade 4, and 37 images of integral grade 5. All left eye
images are flipped horizontally so that they can be processed in the same way
as right eye images.

Evaluation Criteria. For a fair comparison to prior art, we measure grading
accuracy using the same four evaluation criteria as in [5,6], namely the exact
integral agreement ratio (R0), the percentage of decimal grading errors ≤ 0.5
(Re0.5), the percentage of decimal grading errors ≤ 1.0 (Re1.0), and the mean
absolute error (ε), which are defined as

R0 =
|�Ggt� = �Gpr�|0

N
, Re0.5 =

∣
∣|Ggt − Gpr| ≤ 0.5

∣
∣
0

N
,

Re1.0 =

∣
∣|Ggt − Gpr| ≤ 1.0

∣
∣
0

N
, ε =

∑ |Ggt − Gpr|
N

,

(4)

where Ggt denotes the ground-truth clinical grade, Gpr denotes the predicted
grade, �·� is the ceiling function, | · | denotes the absolute value, | · |0 is a function
that counts the number of non-zero values, and N is the number of testing
images (N = |Ggt|0 = |Gpr|0). Re0.5 has the most narrow tolerance among
the four evaluation criteria, which makes it more significant in evaluating the
accuracy of grading.

Testing Method. To examine generalization ability, we follow the repeated test
settings in [5], i.e., in each round, 100 training samples are randomly selected
from all the 5378 images, with 20 images for each grade, and the remaining 5278
images are used for testing. In training, optimal parameters are selected for each
method by cross-validation, where half of the images (50 images with 10 per
grade) are used as the dictionary, the other half used for testing, and the set of
parameters with the smallest average ε is chosen. The result of each round is
obtained by testing the remaining 5278 images using all the 100 images as the
dictionary together with the determined optimal parameters.

3.2 Comparison to State-of-the-art Regression Methods

We first compare our method to the state-of-the-art techniques, namely
BOF+GSR [5] and RBF ε-SV R [6], using the same dataset, experimental
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Table 1. Cataract grading performance vs. state-of-the-art regression based methods

Method R0 Re0.5 Re1.0 ε

Proposed SF+SWLR 0.696±0.008 0.871±0.007 0.991±0.001 0.332±0.006

BOF+GSR [5] 0.682±0.004 0.834±0.005 0.985±0.001 0.351±0.004

RBF ε-SVR [6] 0.658±0.014 0.824±0.016 0.981±0.004 0.354±0.014

SF+RBF ε-SVR 0.645±0.018 0.826±0.020 0.875±0.010 0.449±0.018

Our improvement over [5] 2.05% 4.44% 0.61% 5.41%

setting and reporting methods. The results are listed in Table 1, where SF refers
to the proposed semantic feature and SWLR refers to the proposed similarity
weighted linear reconstruction method. According to the results, our method is
shown to surpass [5,6] in all four evaluation criteria.

In Table 1, our method is also compared to the application of RBF ε-SV R
on the proposed semantic feature. The results show that the proposed feature has
less discriminative power than the features used in [5,6]. This is not unexpected,
since our semantic feature is designed for more robust alignment rather than
discriminative power. In addition, our method has an extra advantage over [6]
in that a more detailed segmentation of the lens is not needed for extracting
discriminative features.

In summary, reconstruction and regression are two significantly different
approaches to solve the cataract grading problem. The proposed SWLR selects
more relevant sample images for each individual testing image to perform grad-
ing, while GSR selects more discriminative feature vector entries over all train-
ing images and assumes that good prediction can be obtained with these features
on all the test images.

3.3 Comparison to Alternative Versions of Our Method

To validate the components of our technique, we compare it to alternative ver-
sions without the similarity based regularizer (referred to as LR), and by apply-
ing SWLR on different feature sets. The results are given in Table 2, and the
following observations can be made:

– Comparing SWLR to LR shows that the similarity constraint is helpful for
selecting more relevant/representative reference images for each individual
test image. With better reconstruction, the performance is improved. We note
that applying LR on only the k-nearest neighbours (k-NN) also does not
yield performance as high as SWLR, since k cannot be fixed to a value that
is suitable for all test images. By contrast, SWLR can adaptively determine
a set of proper reference images to reconstruct each individual test image.

– Comparing SWLR using different feature sets shows that though some fea-
tures may have greater discriminative power, they are less suitable in the
context of reconstruction-based classification.
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Table 2. Cataract grading performance using different reconstruction techniques and
features

Method Feature R0 Re0.5 Re1.0 ε

Proposed SWLR Proposed SF 0.696±0.008 0.871±0.007 0.991±0.001 0.332±0.006

LR Proposed SF 0.685±0.009 0.846±0.010 0.986±0.002 0.348±0.009

Proposed SWLR BOF [5] 0.586±0.035 0.758±0.031 0.815±0.018 0.484±0.019

Proposed SWLR [6] 0.655±0.021 0.773±0.027 0.801±0.014 0.406±0.017

3.4 Discussion

Similarity Metric. We compared our SWLR method using different
similarity metrics, namely χ2 distance and Gaussian distance, defined as
exp(||y − di||2/σ2) where σ is a parameter that accounts for imaging noise. It was
observed that χ2 distance is more effective than Gaussian distance for the pro-
posed feature representation, with metrics of (R0, Re0.5, Re1.0, ε) for χ2 distance
being (0.696±0.008, 0.871±0.007, 0.991±0.001, 0.332±0.006) and for Gaussian
distance being (0.688±0.009, 0.868±0.007, 0.990±0.001, 0.337±0.007).

Processing Speed. On a four-core 2.4GHz PC with 16GB RAM, our method
takes 17.73 s on average to process an image, with 1.36 s for feature extraction
and only 0.001 s for prediction because of the small dictionary size. This process-
ing speed slightly exceeds the 20.45 s per image of [5], which takes 4.23 s for fea-
ture extraction and 0.00001 s for prediction. It is also faster than the 25.00 s per
image of [6], which spends 8.76 s for feature extraction and 0.02 s for prediction.

4 Conclusion

For grading the severity of nuclear cataracts from slit-lamp lens images, we
proposed a reconstruction-based approach with a new semantic feature repre-
sentation and a similarity weighted regularizer. In tests on the ACHIKO-NC
dataset comprised of 5378 images, our approach achieves significant improve-
ments over the state-of-the-art regression based methods [5,6]. In future work,
we plan to elevate performance by introducing a feature selection mechanism
and investigating other similarity metrics.
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