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Abstract. Tissue surface shape and reflectance spectra provide rich intra-
operative information useful in surgical guidance. We propose a hybrid system
which displays an endoscopic image with a fast joint inspection of tissue
surface shape using structured light (SL) and hyperspectral imaging (HSI). For
SL a miniature fibre probe is used to project a coloured spot pattern onto the
tissue surface. In HSI mode standard endoscopic illumination is used, with the
fibre probe collecting reflected light and encoding the spatial information into
a linear format that can be imaged onto the slit of a spectrograph. Correspond‐
ence between the arrangement of fibres at the distal and proximal ends of the
bundle was found using spectral encoding. Then during pattern decoding, a
fully convolutional network (FCN) was used for spot detection, followed by a
matching propagation algorithm for spot identification. This method enabled
fast reconstruction (12 frames per second) using a GPU. The hyperspectral
image was combined with the white light image and the reconstructed surface,
showing the spectral information of different areas. Validation of this system
using phantom and ex vivo experiments has been demonstrated.
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1 Introduction

Tissue surface shape measurement is a tool for both surgical navigation and pathology
detection. For example, morphological appearance could assist in colonic polyp detec‐
tion [1]. In addition intra-operative tissue surface shape can be combined with pre-
operative imaging modalities like CT or MRI, aiding surgical navigation [2]. SL is an
active stereo technique used for surface reconstruction, provides similar reconstruction
accuracy to passive stereo, and outperforms methods like shape-from-shading and time-
of-flight. Due to its non-reliance on object surface texture, SL has shown potential in
textureless tissue surface reconstruction in surgical environments [2]. A typical SL
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system consists of a projector and camera. A pattern decoding step finds the corre‐
spondences between the camera and/or projector image planes, and enables surface
reconstruction by triangulation for a specific camera-projector position.

Spectral imaging techniques including HSI and multispectral (MSI) implementa‐
tions, measure the reflectance spectra at particular locations in an image, and have useful
clinical applications in discriminating tissues which are indistinguishable under white
light [3]. MSI has been used to monitor perfusion and tissue oxygen saturation intra-
operatively in the bowel [4], during transplant surgery, and vascular procedures [5]. The
high resolution of HSI, compared to multispectral imaging (MSI), can also enable more
quantitative analysis allowing extraction of structural information or identification of
disease markers in tissue using machine learning algorithms [6]. Previously combination
of spectral and 3D information using MSI systems has been attempted [7, 8], but acquis‐
ition time has limited the spectral resolution to tens of wavelengths or less. To the best
of our knowledge, this is the first time HSI (hundreds of wavelengths) has been combined
with 3D reconstruction techniques based on SL and we believe that this solution to the
compromise of spectral versus spatial resolu-tion can allow highly accurate rapid
distinction between different pathologies.

Computational image analysis involves the development of a robust near real-time
algorithm to decode the projected pattern for 3D tissue surface reconstruction, based on
deep learning and a pattern-specific feature matching method. Recently, advances in
hardware have made solving large-scale problems using Convolutional Neural
Networks (CNN) possible in a reasonable amount of time. Long et al. proposed to use
Fully Convolutional Networks (FCN) for pixelwise semantic segmentation, exceeding
the state-of-the-art segmentation [9]. FCN has the benefits of non-dependency on the
manually extracted features, combining both global and local information, and fast
execution time. In the field of microscopic imaging, FCN has been used to detect and
segment cells successfully [10]. So in this work FCN is applied for pattern decoding to
detect projected spots. We also show that even with a limited amount of training images
(n = 17) by data augmentation FCN still performs robustly and accurately.

2 Materials and Methods

2.1 Hybrid Structured Light and Hyperspectral Imager (SLHSI)

The system is built around a custom optical fibre assembly (Fibertech Optica, Inc.,
Canada) similar to that in our previous work [11, 12]. It is a 2.5 m long incoherent bundle
of 171 50 μm core fibres arranged in a linear array at one end and a circular bundle at
the other (Fig. 1). A 20 mm working distance GRIN lens (GRINtech GmbH, Germany)
is attached distally. The probe’s outer diameter is 2.8 mm.
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Fig. 1. Left: setup in SL mode, and the physical appearance of the miniaturised probe (lower
left). Right: setup in HSI mode and the captured spectrograph image (lower right)

SL. A 4 W supercontinuum laser, dispersed by a prism, is coupled into the probe’s
linear array (Fig. 1). The GRIN lens projects an image of the bundle’s end face which,
due to the incoherent fibres, is a mixture of multi-coloured spots. The pattern is reflected
by the object, collected by a laparoscope (Karl Storz GmbH, Germany) and imaged onto
a CCD (Prosilica GX1050C; Allied Vision Technologies, Inc., USA).

HSI. With the laser switched off a white light source (Xenon 300; Karl Storz GmbH,
Germany) is activated. Reflected light is collected by the probe and directed, via a 45°
mirror on a motorised flipper mount (MFF101; Thorlabs Ltd., UK), towards a
250/50 mm focal length lens combination to form a demagnified image of the fibre array
on the slit of a HSI camera (Nano-Hyperspec; Headwall Photonics, Inc., USA) (Fig. 1).

Correspondences between SL and HSI. The incoherent bundling of fibres in the
probe meant that the mapping between an individual fibre’s HSI spectral line and its
position in the object plane had to be determined. This was done by projecting the SL
pattern onto a white screen and imaging it with a separate hyperspectral camera [4] to
determine each spot’s mean wavelength. These could then be linked to the corresponding
HSI sensor locations by sorting their wavelengths from shortest to longest.

Spectral processing. For each fibre in the HSI image its corresponding pixel
columns were averaged to reduce signal noise. The linear wavelength-pixel row rela‐
tionship was calibrated by illuminating the probe with laser light of known wavelengths
and recording the positions of the intensity maxima. Each fibre’s spectrum was divided
by the corresponding signal from a white reference target (Spectralon; Labsphere, Inc.,
USA) to correct for wavelength-dependent transmission characteristics of the system.
Further processing to generate absorbance spectra and determine relative haemoglobin
concentration in tissue was performed as described previously [4].

2.2 3D Tissue Surface Reconstruction

SL system calibration. During calibration the projector can be regarded as an inverse
camera. The calibration method has been described previously [13]. Besides, a virtual
projector image (reference image) is generated from an SL pattern on a white plane using
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the probe intrinsic parameter and the homography [14]. It functions like the image from
the second camera in passive stereo, facilitating pattern decoding.

Pattern decoding – spot detection. In this system projected spots with different
colour are considered as features. In surgical environments spot detection is the key
challenging step for accurate pattern decoding. An algorithm based on FCN has been
employed to detect the spots in endoscopic images robustly in near real-time despite
confounding factors such as blood, smoke or non-uniform illumination.

Our FCN model (Fig. 2 (a)) consists of two parts: the contractive and the expansive
phases. The former halves image size and doubles the feature dimension at each step.
At the end of this phase, each neuron has an effective receptive field of 16 × 16 pixels,
and the feature dimension of its output volume is 512. The expansive phase also contains
four steps, where each step upsamples image, fuses the upsampled output and the
convoluted output from the counterpart in the contractive phase, and then convolutes to
decrease the feature dimension. This expansive phase thus combines the coarse “what”
and fine “where” information, resulting in a pixel-wise prediction of the whole image.
The output of this model is a 2-channel image with the same size as the input image.
Each channel indicates the “probabilities” of being foreground (spots) or background.
The loss function is evaluated using the softmax function.

Fig. 2. (a) The deployed FCN model; (b) Cropped SL image; (c) Density map of the cropped SL
image; (d) Feature matching between the captured (left) and the reference SL image (right)

For training 17 captured images have been used and image argumentation including
resizing, flipping, and rotation, was applied to increase the training set. Input image size
was halved to increase speed. During training the manual segmentations of the SL
images were used as the desired label images. The training included a coarse training
and a fine tuning, each with momentum 0.9 and weight decay 0.0005. The former had
a learning rate of 0.0000005 until 80000 iterations, while the latter had 0.0000001 until
150000 iterations. In prediction the subtraction between the foreground and background
channels was used as the “density map” of spot detection (Fig. 2 (c)). Both training and
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prediction were applied using Caffe [15]. In prediction the spot centres were detected at
the local maxima locations of the density map.

Pattern decoding- spot matching. Like feature matching in passive stereo, detected
spots should be matched to counterparts in the reference image for 3D reconstruction.
On the reference image the spots were manually segmented offline.

The spot matching algorithm is based on colour and neighbourhood information
detected using Delaunay triangulation. Neighbourhood areas of spots were defined
according to distances between neighbours. Then a customised feature descriptor was
defined for each spot. Taking the spot as the area centre, its feature descriptor was a
32 × 3 matrix, each row of which represented the colour in one direction on the area
boundary. Only one feature descriptor was generated per spot in the captured SL image,
while 32 descriptors starting from different directions were generated per spot in the
reference image, taking rotation into consideration.

Epipolar lines were used to constrain the matching search space. The smallest
distance between a spot descriptor on the captured image and all 32 descriptors of a spot
on the reference image was used to describe the distance between them. The match with
closest distance smaller than a threshold was chosen. This was followed by a pruning
procedure based on neighbourhood information. An iterative method was then applied:
matching was propagated to other neighbouring unmatched spots, followed by pruning,
until the number of matches stops changing.

Combination of SL and HSI. With calibration and spot matching the 3D tissue sur-
face could be triangulated. Hyperspectral data from different fibres, corresponding to
individual spots, could be projected onto the reconstructed surfaces, providing a hybrid
view of both the spectral and shape information relating to the target tissue. The compu‐
tation time for reconstruction from single SL image was ~ 80 ms on a PC (OS: Ubuntu
14.04; processor: i7-3770; graphics card: NVIDIA GTX TITAN X).

3 Experiments and Results

Phantom and ex vivo tissue experiments have been carried out to validate the SL recon‐
struction and demonstrate hybrid hyperspectral and surface shape imaging.

SL Reconstruction. In SL mode the angle between the probe and the camera is ~10–
15°, baseline ~3 cm, working distance 5–9 cm, with the endoscope optical axis roughly
perpendicular to the tissue surface. Previous work has shown that the projected spot
patterns are robust to changes in background albedo, due to their narrow bandwidth [11].
It was also found that, given an accurate calibration and perfect feature matching, recon‐
struction error can reach 0.7 mm at a working distance of ~10 cm [13]. Thus, the recon‐
struction accuracy mainly depends on the pattern decoding results. Here we provide the
validation of feature matching from a silicone heart phantom, and ex vivo experiments
on ovine heart and liver. Each group of validation data contains 10 images chosen
randomly from recorded videos. Automatic feature matching results were compared
with those from manual annotation. The true positive, annotated matches, together with
the matching sensitivity and precision are listed in Table 1.
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Table 1. Validation of feature matching. Manual annotation is used as the ground truth.

Object Annotated
matches

True positive Sensitivity Precision

Silicone heart phantom 170 ± 1 154 ± 17 0.907 ± 0.101 0.997 ± 0.004
Ovine heart 134 ± 8 113 ± 10 0.844 ± 0.038 0.997 ± 0.006
Ovine liver 128 ± 11 110 ± 13 0.861 ± 0.052 0.994 ± 0.005

Table 1 shows that the pattern decoding algorithm functions robustly with both the
phantom and even some challenging ex vivo data, with feature matching sensitivity
higher than 0.8, and precision 0.99. Compared with previous work [13], this shows a
much higher sensitivity for feature matching due to the high spot detection accuracy
achievable with FCN. Meanwhile, the near real-time performance of FCN guarantees
its real-world practicality. The specified feature descriptor which accounts for pattern
rotation, not only functions robustly but also simplifies the matching procedure.

HSI validation. Reflectance spectra from spot regions on a Macbeth colour chart,
indicated by the SL pattern in Fig. 3(a), are plotted in Fig. 3(b) alongside those measured
by a spectrometer (USB4000HR; Ocean Optics, Inc., USA). In each panel the SLHSI
system’s mapping procedure returns the correct reflectance spectrum for each location,
with a mean spectral error of 10 % between the SLHSI and the gold standard.

Fig. 3. (a) Macbeth colour chart illuminated with SL. (b) Reflectance spectra from selected colour
panels of the chart, with R and C indicating the row and column, respectively. Data from the hybrid
system (SLHSI) are plotted alongside the high resolution spectrometer results (GS).

To demonstrate combined shape and spectral information acquisition a cylindrical
three-coloured target was imaged (Fig. 4). Mean reflectance curves for each region show
peaks in the red, green and blue, and convolution with a colour CCD’s spectral sensitivity
allows RGB data recovery, shown in the surface mesh overlay (Fig. 4 (c)).
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Fig. 4. (a) Three-coloured cylindrical target with SL. (b) Mean reflectance spectra for each of
the target’s regions. (c) 3D reconstruction coloured by RGB values generated from spectra in (b).
(d) Murine abdomen with StO2 overlay. (e) Tissue absorbance spectrum and model fit.

Reflectance spectra from a murine abdomen, imaged post mortem, were used to
calculate the absorbance spectrum for each spot location and extract tissue oxygen satu‐
ration (StO2) using a method described previously [4]. StO2 at various spot locations
is shown in Fig. 4 (d), along with an absorbance spectrum from one region (Fig. 4 (e)).
Spectra that did not match the model well (r2 < 0.8) were rejected. Mean StO2 in the
abdomen is low (14 ± 10 %), as expected for an ex vivo experiment.

According to the colour chart validation, this system can measure sample reflectance
spectra accurately. This conclusion should apply to other objects including in vivo tissue.
The main differences to be expected in vivo are higher StO2 values and breathing/peri‐
stalsis-related movement. The difference in StO2 will only affect the measured spectral
shape. Tissue motion will not introduce much spectral artefact as each fibre’s signal is
acquired in a single snapshot (100 ms).

4 Discussion and Conclusion

We have developed a flexible rapid hybrid system capable of 3D sensing and HSI, using
a motorised flipper mirror to switch between modes. The probe’s size and flexibility
means that it is compatible with standard clinical endoscopic tools for assessing the
gastrointestinal tract and abdomen, while its imaging capabilities can enable clinical
studies based on previous work in measurement of oxygenation dynamics [4], tissue
classification [3] and augmentation of the clinician’s view with pre-operative data [2].

SL mode enabled surface reconstruction of up to 171 data points, using a random-
coloured spot pattern; while HSI measured the reflectance spectra of the same regions
in one exposure. In addition, an accurate and fast 3D reconstruction algorithm was
proposed, using FCN with specific feature descriptors, resulting in near real-time meas‐
urement of tissue surface even with low quality images. Future work will focus on system
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reliability and practicality enhancements, including compatibility with existing clinical
instruments and sterilisability. Pilot studies on freshly excised tissue from human
surgical procedures are planned and will allow testing of the system against histology,
while further preclinical work will enable evaluation and optimisation of performance
in vivo.
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