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Abstract. One of the most widely used non-invasive clinical metric for
diagnosing patients with symptoms of coronary artery disease is %steno-
sis derived from cCTA. Estimation of %stenosis involves two steps -
the measurement of local diameter and the measurement of a reference
healthy diameter. The estimation of a reference healthy diameter is chal-
lenging, especially in diffuse, ostial and bifurcation lesions. We develop a
machine learning algorithm using random forest regressors for the esti-
mation of healthy diameter using downstream and upstream properties of
coronary tree vasculature as features. We use a population-based estima-
tion, in contrast to single patient estimation that is used in the majority
of the literature. We demonstrate that this method is able to predict the
diameter of healthy sections with a correlation coefficient of 0.95. We then
estimate %stenosis based on the ratio of the local vessel diameter to the
estimated healthy diameter. Compared to a reference anisotropic kernel
regression method, the proposed method, HALE (Healthy Area of Lumen
Estimation), has a superior area under curve (0.90 vs 0.83) and operating
point sensitivity /specificity (90 %/85 % vs 82 %/76 %) for the detection
of stenoses. We also demonstrate superior performance of HALE against
invasive quantitative coronary angiography (QCA), compared to the ref-
erence method (mean absolute error: 14 % vs 31 %, p < 0.001).

Keywords: Healthy lumen diameter - Stenosis detection - Coronary
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1 Introduction

Coronary artery disease (CAD) is one of the leading causes of death and
may result in acute events such as plaque rupture which demands immediate
care or gradual events such as accumulation of plaque which leads to progres-
sive anatomic narrowing resulting in ischemia. Coronary computed tomography
angiography (cCTA) provides information on the degree of anatomical narrowing
(stenosis) in different regions of the coronary artery tree. The degree of stenosis,
called %stenosis, is a widely used clinical measure to decide between perform-
ing invasive angiography and pressure measurements or deferment of invasive
measurements. The estimation of %stenosis is usually performed categorically
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(e.g. 0%, 1-30%, 31-49%, 50-69%, 70-100%) in the clinic, or, less frequently,
sent to a core lab with expert readers for analysis. Quantitative computed tomog-
raphy (QCT) and QCA are methods where %stenosis is estimated as a number
between 0 % (healthy vessel) and 100 % (complete obstruction). QCA is invasive,
while QCT, evaluated on cCTA, is time consuming and generally performed in
a core lab. The method we present enables automatic measurement of %stenosis
given a lumen segmentation. The main novelty is that we estimate the healthy
diameter with respect to a database of healthy sections from other patients, in
contrast to regressing from individual patient data.

Different methods for stenosis detection and quantification were compared on
a set of cCTAs in the 2012 MICCAI stenosis challenge [1]. The goal was to quan-
tify results in a set of patients who were evaluated by expert readers and QCA,
and to report diagnostic performance and differences in stenosis grade. For most
of the algorithms, this process had, built into it, (i) a centerline detection algo-
rithm, (ii) a lumen segmentation algorithm and (iii) a stenosis detection step. We
believe that (iii) by itself has scope for improvement based on the best performing
methods in literature, as shown later. Therefore, we use the same lumen segmen-
tation to analyze the performance of all stenosis detection algorithms. Towards
this, a lumen segmentation is read by expert readers and stenosed sections are
annotated, which are then compared to the proposed method to quantify per-
formance. We use the acronym HALE for the proposed method (Healthy Area
of Lumen Estimation). HALE is designed to predict healthy lumen diameter,
and thereby also enables the prediction of healthy lumen area and evaluation
of %stenosis. We believe that HALE, when used with a state-of-the-art lumen
segmentation algorithm, can be used as an accurate and efficient QCT tool.
Kirisli et al. [1] conclude the MICCALI stenosis challenge by stating that “Given
a similar accurate lumen segmentation, robust kernel regression outperforms the
other approaches and is a good approach to quantify lesions from accurate lumen
segmentation”. The quoted method [2] uses a robust kernel regression approach
with a radial basis function applied on the segmented lumen radius profile. Later,
it was suggested that natural discontinuities in lumen radii at bifurcations can
be accounted for by using an anisotropic kernel [3].

While focal coronary disease is captured well by many methods in literature,
diffuse and ostial coronary artery disease are difficult to diagnose due to the
absence of a clear reference lumen diameter. Huo et al. [4] suggested that epi-
cardial volume, length and lumen area are related by a power-law and that the
coeflicient of power-law separates subjects with and without diffuse disease, indi-
cating only the presence or absence of diffuse lumen narrowing without specifying
where the disease is present. In this work, we present a general framework that
can identify regions of lumen narrowing in (coronary) arteries, including focal,
diffuse, ostial and bifurcation disease. The (coronary) arteries are split into sec-
tions or stems, and each stem is associated with features corresponding to its
crown (downstream vasculature), root (upstream vasculature) and sibling (the
other child vessel of its parent, if available). We predict the healthy diameter
of the stem using a machine learning method trained on these features on a
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database of 6000 stems (from 200 patients) and tested on 4697 stems (150
patients). We demonstrate that HALE performs better than state-of-the-art
techniques over different lesion characteristics including the challenging cases
of diffuse and ostial disease.

2 Methods

The first step in our process is the extraction of a coronary centerline tree and
lumen segmentation. Following this, trained CT readers evaluate the lumen seg-
mentation and make corrections, as necessary. Since manual annotation of dis-
eased sections is performed on the lumen segmentation rather than the cCTA,
performance does not depend on the algorithm used for centerline detection
and lumen segmentation and many available methods may be used [5,6]. In the
section below, we first describe the process of manual annotation of sections of
disease. Then, we describe the proposed method, HALE, including definition
of features and estimation of healthy lumen diameter. We then discuss how we
evaluate %stenosis and the metrics used for validation.

2.1 Manual Annotation

Trained readers of cCTA assess lumen segmentation on a cohort of patients and
identify locations of lumen narrowing (i.e. %stenosis > 50 %). This process mim-
ics the process of reading %stenosis from CT scans in the clinic, i.e. estimated
visually rather than assessing a reference diameter and evaluating the ratio of
minimum lumen diameter to the reference diameter. To provide confidence in the
readings, each patient is assessed by three readers and only sections that have
a consensus read are used for training and testing. For convenience, the coro-
nary trees are split into sections, where each section is marked either as diseased
or healthy. Sections are split using locations of bifurcations as separators. The
rationale for using bifurcation as separators is that flow rate in a given section
being constant, a healthy vessel maintains its radius within a section to preserve
a homeostatic state of wall shear stress.

2.2 Data-Driven Estimation of Healthy Radius

The approach we outline here aims to estimate healthy vessel diameter. Regions
of disease are evaluated by dividing the difference between the estimated healthy
diameter and local diameter with the estimated healthy diameter, and comparing
it to a diagnostic threshold of 50 %. Our approach maps metrics derived from the
epicardial vasculature to a healthy diameter using a machine learning approach,
which is trained on a database of sections annotated as healthy.

In contrast to previously published methods, we do not solely rely on the
patient’s vasculature to determine the healthy diameter at a given location.
We use a machine-learning approach relying on a population of 6000 healthy
stems from 200 patients. This enables a better identification of non-focal stenosis
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morphologies such as long diffuse lesions, ostial lesions, or lesions which are
present along an entire section. To determine features of the machine learning
algorithm, we first evaluate local diameter using maximum inscribed spheres. An
alternative approach is to derive average diameter from the area of lumen along
the normal to centerlines. This approach was not used as it provides inaccurate
values near bifurcations. To assess the healthy lumen diameter, we first split
the lumen segmentation into stem-crown-root units. A stem is the section for
which we are evaluating healthy diameter. A crown refers to its downstream
vasculature and a root refers to its upstream vasculature. We also identify a
sibling vessel which is the other child of the parent vessel. By definition, all the
features are not available for all stems (e.g. ostial sections do not have a root
unit and terminal sections do not have a crown unit) and are given a default
special value of —1. The crown, root and sibling units for a stem are shown in
Fig. 1.

Our approach omits one stem at a time
and uses features from the rest of the vas-
cular tree to infer the healthy lumen diam-
eter of the stem under consideration. For
each stem in a given coronary vasculature,
the following features, hypothesized to be

relevant, are extracted for the correspond-
ing crown, root and sibling vessels (when
available) - average, maximum and mini-
mum lumen area (A), volume (V), length
(L), V/A, and V/L. We also use a feature
(dy) derived from Murray’s law [7], which
is a physiologic model of how the diam-
eters of parent (d,) and daughter vessels

I stem under consideration
crown (downstream vasculature)

root (upstream vasculature)

Fig.1. A schematic of the method
used is shown. The coronary tree is
split into many stem-crown-root units.

diameter (d)

sibling (other child of parent)

Stems are defined based on branch
points as separators with the corre-
sponding crown and root being the
downstream and upstream vascula-
tures respectively. Features are derived
from epicardial volume, length and
lumen diameter.

are related. This feature is calculated as
dp = (d — d3)1/3, where d, is the diame-
ter of its sibling vessel.

We use random forest regression [8] to
predict the healthy lumen diameter. Ran-
dom forests are known to be effective and
powerful for high dimensional and hetero-
geneous features. Random forests employ an ensemble of decision trees, each of
which is composed of a random subset of features and training data. The values
from the decision trees are pooled together and averaged to compute the final
predictor of healthy lumen diameter (d,). Percent stenosis is evaluated from the
ratio of the local lumen diameter (d;) to the predicted healthy lumen diameter as

o = max (0 %, (1 — %) x 100 %) . We use 50 trees with an average of 5 features
per tree (chosen based on a 5-fold cross validation).
Results of the random forest regressor on a test set of 4697 stems (from 150

patients) are evaluated by assessing sensitivity, specificity and area under the
receiver-operator characteristic (ROC) curve. Sections annotated by readers as
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Fig. 2. Comparison of the machine learning method (top) with an anisotropic kernel
method [3] (bottom) on patients with (from left) ostial, bifurcation, diffuse and multiple
lesions. Anisotropic kernels can minimize the effect of steep changes in healthy lumen
area across bifurcations [3] but is unable to detect lesions in the examples shown above
in contrast to HALE. Regions with o > 50 % are shown in red. (Color figure online)

diseased are considered positive, which are further classified as “true positive” if
the random forest predicts %stenosis > 0% or “false negative” otherwise, where
the operating point o can be different for each method. Similarly, sections which
are annotated as healthy are classified as “true negative” if the random forest
predicts %stenosis < 50 % and “false positive” otherwise. Sensitivity (Se) and
specificity(Sp) are defined as

TP TN

Se=Tp7FN’ P~ TN FP

An ROC curve is plotted by evaluating the sensitivity and specificity for different
value of cutoffs used to define sections of disease, (i.e.) a < Vz € [0%, 100 %].

3 Results

We implemented the robust kernel regression [2] and anisotropic kernel regression
methods [3] to serve as a baseline. We refer to anisotropic kernel regression as the
“reference” method since it outperformed the robust kernel regression method
in our dataset (shown later). First, we use HALE and evaluate healthy lumen
diameter and subsequently %stenosis on five patients with either ostial lesions,
bifurcation lesions, diffuse lesions or a combination thereof. Figure?2 shows a
map of regions identified as diseased using HALE and the reference anisotropic
kernel regression method, suggesting that the latter fails to capture non-focal
lesions.
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Fig. 3. The figure on the left demonstrates superior performance of HALE (area under
the curve (AUC) : 0.90) compared to anisotropic kernel (AUC: 0.83) and global kernel
methods (AUC:0.61). The figure on the right shows a comparison of the predicted and
measured lumen radius in vessel sections marked healthy by human evaluation.

To quantify the overall performance of the algorithm, we predict healthy
diameter and assess presence of stenosis on 150 patients (4697 sections) distinct
from those used for training. A scatterplot of average radius of sections annotated
as healthy compared to their estimated healthy radius is shown in Fig.3. The
correlation coefficient between the predicted and the measured healthy lumen
diameter is 0.947, with a mean absolute error of 0.150 mm and a root mean
squared error of 0.212mm. The operating point sensitivity and specificity for
detecting %stenosis using HALE is 90 %/85 % (operating point, o is 48 %), com-
pared to 77 %/52 % using a global kernel regression method and 82 % /76 % using
the reference anisotropic kernel regression method (operating point, o is 32 %).
The receiver operator characteristic (ROC) curves for the three methods are com-
pared in Fig. 3 with the area under curve being 0.90 (HALE), 0.83 (anisotropic
kernel regression) and 0.61 (global kernel regression).

Next, we apply the method on patients who underwent a coronary angiogra-
phy and the corresponding diseased locations were identified and quantified using
QCA by an independent expert at a core laboratory. Coronary QCA data from
a subset of the DeFACTO clinical trial [9] (Clinicaltrials.gov # NCT01233518)
is used as the reference ground truth data. Performance of HALE and the
reference method against QCA data on 69 measured vessel segments is tab-
ulated in Table1. There is a significant improvement in mean absolute error
(MAE) and an insignificant difference in correlation coefficient, evaluated on
the same lumen segmentation. Figure4 compares locations of disease identified
by HALE, the reference method, CTA and QCA evaluated by a core-lab for
a severely diseased patient with multiple locations of lumen narrowing. The
results show that HALE is able to identify four lesions out of five identified by
CTA (only four of these are identified by QCA due to distal loss of contrast).
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Table 1. The mean absolute error (MAE) of HALE is significantly better (p < 0.001,
for both healthy diameter and %stenosis) and correlation coefficient (R) is slightly
better but not significant (p = 0.47 for healthy diameter and p = 0.36 for %stenosis)
compared to the reference method, both using QCA data as the ground truth.

Method Metric Bias MAE | R Slope | Intercept
Reference (anisotropic kernel) | healthy dia. (mm) | —0.52 | 0.58 |0.76 | 0.51 0.90
HALE (machine learning) healthy dia. (mm) | 0.29 | 0.50 |0.77]0.61 1.42
Reference (anisotropic kernel) | %stenosis —31%|31% |0.540.98 | —0.30
HALE (machine learning) Jostenosis —13%|14% |0.58  0.85 | —0.04

Fig. 4. Comparison of (a) HALE and (b) anisotropic kernel method on a severely
diseased coronary artery with (c) five identified regions of lumen narrowing in CTA
and (d) four stenosed regions identified by QCA, showing that HALE is able to identify
four of the lesions while only one was identified by the anisotropic kernel regression
method. Regions with ac > 50 % are shown in red in panels (a) and (b). (Color figure
online)

In comparison, the reference method is able to identify only a single lesion. This
example demonstrates that with an accurate lumen segmentation algorithm, we
are able to evaluate lesions with complex morphologies.

4 Discussion

We proposed a method that quantifies stenoses by first training a machine learn-
ing method on healthy vessel sections. We hypothesized that a set of features
derived from the geometry of the downstream vasculature, upstream vascula-
ture, and sibling vessel can be used to estimate the healthy vessel dimensions
of a given section. To test this, we partitioned the geometry into various “stem-
crown-root” units and used metrics such as epicardial vascular volume, lumen
area, centerline lengths and other metrics derived from these. We also used a
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feature motivated from Murray’s law that relates lumen diameter of parent sec-
tions to its daughter sections, though the impact of the feature itself was modest.
We extracted patient-specific metrics, omitting one section at a time, and using
a database of these metrics, mapped them to a healthy lumen diameter. We
obtained a correlation coefficient of 0.947 with a mean absolute error of 0.15
mm for predicting lumen diameter of healthy sections. HALE had an operat-
ing point sensitivity /specificity of 90 %/85 % for detecting stenoses. The mean
absolute error in quantifying the degree of stenosis reduced from 31 % using the
reference method to 14 % using HALE, with QCA being the ground truth.

The kernel-regression based methods are able to capture regions of focal
narrowing but not the other disease morphologies, likely because they rely heav-
ily on local patient-specific data without accounting for population data. The
method for detection of diffuse lesions by Huo et al. [4], on the other hand, uses
a population-based cutoff tailored to, solely, the presence or absence of diffuse
lesions. We posit that the higher mean absolute error and lower bias in quanti-
fying degree of stenosis by the reference method is because regressing on a single
patient lumen area results in underestimation of healthy lumen radius.

The proposed method, HALE, can be used with any lumen segmentation
algorithm, and is fully reproducible and takes only a few seconds. Depending
on the application, HALE can be used with an automated lumen segmentation
algorithm for on site evaluation of %stenosis, or be used with a semi-automated
method offline or in a core-lab setting. It is our belief that an accurate QCT
assessment tool would involve the coupling of an accurate lumen segmentation
algorithm with an accurate algorithm for evaluation of %stenosis.
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