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Abstract. We present an automatic three-dimensional segmentation
approach based on continuous max flow that targets tubular structures
in medical images. Our method uses second-order derivative informa-
tion provided by Frangi et al.’s vesselness feature and exploits it twofold:
First, the vesselness response itself is used for localizing the tubular struc-
ture of interest. Second, the eigenvectors of the Hessian eigendecompo-
sition guide our anisotropic total variation–regularized segmentation. In
a simulation experiment, we demonstrate the superiority of anisotropic
as compared to isotropic total variation–regularized segmentation in the
presence of noise. In an experiment with magnetic resonance images of
the human cervical spinal cord, we compare our automated segmenta-
tions to those of two human observers. Finally, a comparison with a ded-
icated state-of-the-art spinal cord segmentation framework shows that
we achieve comparable to superior segmentation quality.

Keywords: Convex optimization · Anisotropic total variation ·
Vesselness

1 Introduction

Segmenting tubular structures is an important task in medical image analysis; for
example, for assessing vascular diseases or tracking the progress of neurological
disorders that manifest in spinal cord atrophy. Especially when used in large-
scale clinical trials, largely automated segmentation is desirable to reduce the
workload on clinical staff. Such automated segmentation approaches, in turn,
should be robust with respect to specific choices of parameterization.

In this paper, we propose a segmentation method that fulfills both criteria:
it is completely automated, and it creates segmentations of similar quality over
a wide range of parameter choices. Our method adapts Yuan et al.’s continuous
max flow approach [10] and combines it with an anisotropic total variation (ATV)
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Fig. 1. Left to right: T1 image I of the cervical spinal cord; closeups of the vessel
directions v1 before GVF and ṽ1 after GVF (vectors scaled by the segmentation u∗

for visualization); distance map D of the vessel ridge R (normalized for visualization);
source capacities Cs; sink capacities Ct; nonterminal capacities C; segmentation u∗.

regularization term. ATV keeps changes of the segmentation’s boundary small
along the course of the tubular structure. We use Frangi et al.’s well-established
vesselness feature [3] as our measure of tubularity, which we exploit twofold:
both for finding the location and the orientation of the structures of interest.

The directional information of vesselness, which is usually neglected, has pre-
viously been used: Manniesing et al. [6] construct an anisotropic tensor from it
for accentuating vascular structures in angiography images for image enhance-
ment. Gooya et al. [4] use this tensor in an active contour framework for blood
vessel segmentation. ATV-regularized segmentation has been generally described
by Olsson et al. [7] and has been used, for example, by Reinbacher et al. [8] who
segment thin structures of known volume based on first-order derivatives and a
volume constraint. A review of vessel segmentation is given by Lesage et al. [5].
De Leener et al. [2] review the more specific topic of spinal cord segmentation.

Our contributions lie in incorporating Hessian-based vesselness into ATV-
regularized segmentation and in integrating ATV into the continuous max flow
framework [10]. To the best of our knowledge, both has not been tried, so far.

2 Methods

In Sect. 2.1, we motivate our choice of ATV regularization. In Sect. 2.2, we state
the ATV-regularized segmentation problem in the continuous max flow frame-
work and propose an algorithm for solving it. In Sect. 2.3, we describe how we
incorporate the vesselness feature. In Sect. 2.4, we present our choice of flow
capacities. For a good general introduction to continuous max flow, see [10].

2.1 Isotropic and Anisotropic Total Variation

Segmentation on the d-dimensional image domain Ω ⊂ R
d can be formulated as

the problem of finding a binary labeling u : Ω → {0, 1} for the given image I :
Ω → I (e.g. with I = [0, 1] for a normalized single-channel image). In practice,
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the problem is often relaxed such that u : Ω → [0, 1], and the final labeling is
determined by applying a threshold to the result of the relaxed problem [7,10].

A common regularization term in segmentation is the total variation TV,
which minimizes the surface area of the segmented region, penalizing jumps
between segmentation foreground (u = 1) and background (u = 0) and thus allow-
ing for smooth segmentations even if I is noisy (here, |·| denotes the l2 norm):

TV [u] =
∫

Ω

|∇u| dx. (1)

While TV is a good regularizer for many applications, it seems not optimal in the
context of tubular structure segmentation. This is because TV is isotropic; that
is, changes of u are penalized regardless of orientation. If we want to segment
a tube, however, we would like to employ the prior knowledge that its shape
ideally does not change along its course; thus we would like to penalize changes
along the tube’s direction more strongly than changes perpendicular to it. In
other words, we would prefer an anisotropic regularization term.

In the proposed method, we thus use anisotropic total variation ATV [7,8]:

ATV [u;A] =
∫

Ω

(∇uTA∇u
)1/2

dx =
∫

Ω

∣∣ST∇u
∣∣ dx with A = SST, (2)

where A : Ω → R
d×d is strongly positive definite in the sense of Olsson et al.

[7] and S is a decomposition of A. For our particular choice of A and S, see
Sect. 2.3.

If we assume, as a simple three-dimensional example, that A = diag (1, a, a)
with 0 < a < 1, we see that changes along the x1 axis will be more strongly
penalized than changes along x2 and x3. This would in fact be a meaningful
choice if the tubular structure of interest was oriented along x1. From the exam-
ple we can also see that ATV is a generalization of TV, as ATV becomes TV for
a= 1.

2.2 ATV in Continuous Max Flow

The dual formulation of the max flow problem as stated in [10], with TV replaced
by ATV regularization as we propose, is given by the min cut problem

min
u∈[0,1]

∫
Ω

(1 − u) Cs + u Ct +
∣∣ST∇u

∣∣ C dx, (3)

with the source capacities Cs, sink capacities Ct, and nonterminal capacities C
(C. : Ω → R≥0). Using integration by parts and the geometric definition of the
scalar product, we can show for the nonterminal flow p : Ω → R

d that
∫

Ω

∣∣ST∇u
∣∣ C dx = max

|p|≤C

∫
Ω

u div (Sp) dx. (4)
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Algorithm 1. Augmented Lagrangian–based max flow algorithm with ATV.
– Set bound ε̂, steps γ, c; calculate C, Cs, Ct, S; arbitrarily initialize p0, p0

s, p0
t , u0.

– Starting from n = 0, iterate until 1
|Ω|
∫

Ω

∣
∣εn+1 (x)

∣
∣dx < ε̂:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̃n+1 = pn + γ ST∇
(
div (Spn) − pn

s + pn
t − un

c

)

pn+1 = p̃n+1

|p̃n+1| min
{∣
∣p̃n+1

∣
∣ , C
}

if p̃n+1 �= 0 else 0

pn+1
s = min

{(
1−un

c
+ div

(
Spn+1

)
+ pn

t

)
, Cs

}

pn+1
t = min

{(
un

c
− div

(
Spn+1

)
+ pn+1

s

)
, Ct

}

εn+1 = c
(
div
(
Spn+1

)− pn+1
s + pn+1

t

)

un+1 = un − εn+1.

Together with the respective equalities for Cs, Ct and the source and sink flows
ps, pt : Ω → R (see Eqs. (18) and (19) in [10]), we derive the primal–dual
formulation as maxps,pt,p minu∈[0,1] E [ps, pt, p, u] with

E =
∫

Ω

(1 − u) ps+u pt+u div (Sp) dx =
∫

Ω

ps+u (div (Sp) − ps + pt) dx, (5)

subject to the flow capacity constraints ps ≤ Cs, pt ≤ Ct, and |p| ≤ C.
Making use of the anisotropic coarea formula in [7], it can be shown that any

u� for a threshold � ∈ (0, 1), given by

u�(x) =

{
1, u∗(x) > �

0, u∗(x) ≤ �
with u∗ = arg min

u∈[0,1]

E, (6)

is a globally optimal solution for the binary problem corresponding to Eq. (3).
Following [10], we add an augmented Lagrangian term to Eq. (5), gaining

max
ps,pt,p

min
u∈[0,1]

∫
Ω

ps + u (div (Sp) − ps + pt) − c

2
(div (Sp) − ps + pt)

2 dx (7)

as the final problem, which we propose to solve with Algorithm 1.

2.3 ATV Regularization with Vesselness

Frangi et al. [3] examine the Hessian matrices; that is, the second-order deriv-
atives, in the scale space of the volumetric image I to calculate what they call
vesselness. The idea is to determine from the ratios of the Hessians’ eigenvalues
how closely the local structure in I resembles a tube.

In particular, let S be a predefined set of scales that roughly match the
expected tube radii. For each scale s ∈ S, let Hs (x) denote its Hessian
approximation in x, calculated by convolving I with Gaussian derivatives of
standard deviation s. Let λi,s (x) (i= 1, 2, 3) denote the sorted eigenvalues
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(|λ1,s| ≤ |λ2,s| ≤ |λ3,s|) and vi,s (x) corresponding eigenvectors of Hs, such
that

Hs = VsΛsV
T
s with Vs = [v1,s|v2,s|v3,s] , Λs = diag (λ1,s, λ2,s, λ3,s) . (8)

Note that V T
s = V −1

s , as Hs is symmetric. Assuming bright tubular structures
on dark background, the vesselness response is ν (x) = maxs∈S νs (x), where

νs =

⎧⎨
⎩

0, λ2,s ≥ 0 or λ3,s ≥ 0(
1 − exp( −1

2w2
1

λ2
2,s

λ2
3,s

)
)

exp( −1
2w2

2

λ2
1,s

λ2,sλ3,s
)
(
1 − exp(−∑i λ2

i,s

2w2
3

)
)

, else,

(9)
with the weighting factors wi ∈ R>0. The eigenvectors for ν are V = [v1|v2|v3],
with vi = vi,s∗ and s∗ = arg maxs∈Sνs. In the original description of [3], no use of
V is made. In our approach, we use the eigenvectors to steer the ATV regularizer.
We observe that in points where ν is high, v1 points along the local vessel
orientation [6]. Recall that we want to regularize strongly along the direction
of the vessel. Unfortunately, we cannot use v1 directly for this purpose, as it
reliably gives the vessel’s direction in the vessel center only, where ν is the
highest. Therefore, we use the concept of gradient vector flow (GVF) [9] to first
propagate the directions from places where ν is high to regions where ν is low,
creating a smoothly varying vector field. The necessary steps are as follows.

Let R be the set of vesselness ridge points; that is, the local maxima of ν,
down to a noise threshold. As both −v1 and v1 are valid eigenvectors, we have
to make sure that the vectors of neighboring points approximately point in the
same rather than the opposite direction, so that they don’t cancel each other
out when diffusing them via GVF. Thus, we fix their signs beforehand, gaining
v̄1: We calculate the minimum spanning tree over the ridge points R, select a
root point, keep its sign, and traverse the tree. For each child point, we choose
v̄1 as either −v1 or v1, depending on which one maximizes the dot product (i.e.
minimizes the angle) with its parent’s v̄1. After traversal, the signs of the v1
for all remaining domain points x ∈ Ω\R are fixed w.r.t. their closest point in
R, following the same rule. We scale all v̄1 with ν, apply GVF, and scale the
resulting vectors back to unit length, gaining ṽ1. A comparison of the vector
field before and after sign adjustment and GVF is shown in Fig. 1.

Finally, we recomplete ṽ1 to an orthonormal basis Ṽ = [ṽ1|ṽ2|ṽ3]. The partic-
ular choice of ṽ2, ṽ3 does not matter, as we will treat all directions perpendicular
to ṽ1 the same when regularizing. From Ṽ , we construct A,S for Eq. (2) as

A = ṼÃṼ T and S = ṼÃ
1/2 with Ã = diag (1, a, a) and 0 < a ≤ 1.

(10)
Notice the similarity to A in the example at the end of Sect. 2.1: The idea of
regularizing one direction stronger than the others remains the same; however,
as we now scale with Ã = diag (1, a, a) in the new basis Ṽ , we target the actual
local vessel direction ṽ1 rather than a fixed axis.
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2.4 Flow Capacities

For the source and sink capacities Cs, Ct of Eqs. (3) and (5), we use a combination
of the normalized image intensities and the distances to the vessel ridge points
R. Intuitively, using the intensities enables the distinction of foreground (i.e.
the vessel) and background (i.e. everything else), while the distances w.r.t. R
isolate the vessel surrounding. This helps avoiding oversegmentations in case
other structures have intensities similar to those of the vessel of interest. More
formally, let D : Ω → D =R≥0 be a Euclidean distance map of R, and let
I : Ω → I = [0, 1] be the normalized image. Let pD

b , pD
f , pI

b, pI
f be predefined

estimates of the background and foreground probability densities for D and I,
with pD

. : D → R≥0 and pI
. : I → R≥0. We calculate Cs, Ct as

Cs (x) =
1
q

max {r (x) , 0} , with r (x) = ln
(

pD
f (D (x)) · pI

f (I (x)) + ε

pD
b (D (x)) · pI

b (I (x)) + ε

)
,

(11)

Ct (x) =
1
q

max {−r (x) , 0} , q = ln
(

max{p̂D
b · p̂I

b, p̂D
f · p̂I

f } + ε

ε

)
,

(12)

where p̂.
. = max p.

.. The small positive constant ε avoids zero logarithms and
zero divisions in r. Normalization with q ensures that Cs, Ct ∈ [0, 1], which eases
their balancing with the nonterminal capacities C of Eqs. (3) and (5).

Using C, we try to move the segmentation boundary to image edges by
making C small where the intensity gradient magnitude is high and vice versa:

C (x) = w exp
(

−1/ς2 |∇I (x)|2
)

with w, ς ∈ R>0, (13)

where ς controls C’s sensitivity regarding the size of |∇I| and w balances C and
Cs, Ct. For an example of the capacities, see Fig. 1.

3 Experiments and Results

Implementation: Most of the method’s steps can be described as embarrassingly
parallel, which means they can be calculated independently for different voxels.
This is true, for example, for the vesselness ν, GVF, the capacities Cs, Ct, C,
and large parts of Algorithm 1. For this reason, we ported code to the GPU
wherever possible. To reduce memory consumption, which is still a limiting factor
for GPU programming, we represent the pointwise basis matrices Ṽ in Eq. (10)
as equivalent unit quaternions. Derivatives are approximated using forward (∇,
Algorithm 1), backward (div, Algorithm 1), and central (∇, Eq. 13) differences.
Parameterization: For all experiments, the following parameters were chosen.
Algorithm 1: ε̂ = 10−6, γ = 0.11Δx2, c= 0.2Δx2 (Δx: minimum voxel edge length
in mm); GVF: 316 iterations with a regularization parameter of μ= 3.16 and
step size determined as defined and described in [9]; Eq. (6): �= 0.5; Eq. (9):
w1 = w2 = 0.5 as suggested in [3], w3 determined following [3]; Eq. (12): ε = 10−9.
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Fig. 2. Phantom experiment. Left to right: Mean intensity projection at σ = 1.5; seg-
mentation with ATV; segmentation with TV; Dice coefficients w.r.t. ground truth (GT)
for all noise levels σ.

Fig. 3. Spinal cord experiment. Left to right: Mean surface distances for ATV/TV/
PropSeg [1] vs. E1 and E2; corresponding Hausdorff distances; corresponding Dice coef-
ficients; T1 Dice coefficients for ATV vs. E1 and E2 with varying parameter values
(central bar: median, circle: mean, box limits: 25/75th percentile, whiskers: extrema).

Helical Phantom. In this simulation experiment, we rendered images of a syn-
thetic helical phantom with values in [0, 1] to which we added Gaussian noise of
standard deviation σ (Fig. 2). The phantom’s tube radius varied between 3 mm
and 6 mm, so we set S = [2.5 mm, 7.2 mm] (16 scales) in Eq. (9). We seg-
mented the images with TV and ATV regularization, setting a= 1 and a= 0.03
in Eq. (10), respectively. We modeled pI

. as normal distributions, using the true
background, foreground, and noise level values. For the sake of simplicity, we set
pD

. = 1 always. For w and ς in Eq. (13), we made grid searches for each noise
level, using the Dice coefficients w.r.t. the ground truth as optimization criterion.

Figure 2 shows the Dice coefficients for the best w, ς combinations. The
advantage of ATV becomes apparent as soon as the noise level increases.

Spinal Cord. In this experiment with real data, two clinical experts (E1, E2)
manually segmented 10 MR scans (5 T1, 5 T2) of the healthy human cervical
spinal cord over the C1–C3 region. For each image, we then used the remaining
four images of the same sequence (T1/T2) to estimate p.

. and to find an optimal
parameter combination for a,w, ς. The distributions p.

. were estimated from the
manual labelings of the remaining four images, modeling p.

b as mixtures of four
Gaussians and p.

f as normal distributions. We set S = [2 mm, 4 mm] (16 scales)
in Eq. (9). The parameters a,w, ς were optimized via grid search, using the mean
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Dice coefficients of the remaining four images w.r.t. their manual segmentations
as optimization criterion. These distributions and the determined optimum para-
meterization were then used to segment the left-out image for evaluation of the
method. For comparison with the state of the art, we also segmented all images
with PropSeg [1].

Figure 3 shows the averaged mean surface distances, Hausdorff distances, and
Dice coefficients w.r.t. their manual segmentations. Especially the T1 images
profit from ATV, as they have both a lower resolution (T1: 1×1×1mm3, T2:
0.75×0.38×0.38mm3) and a lower contrast-to-noise ratio (about one eighth)
than the T2 images. On the right, Fig. 3 shows the Dice coefficients for applying
a wide range of parameter values to the T1 images, demonstrating the robustness
of our method w.r.t. parameterization. For each varied parameter, the others
were kept constant (a= 0.03, w = 0.32, ς = 1.00).

4 Discussion and Conclusion

We presented a fully automated method for the segmentation of tubular struc-
tures. For a single image of 2563 voxels, the complete process of calculating the
vesselness, GVF, capacities, and segmentation takes about 1 to 1.5 min (GPU:
Nvidia GeForce GTX 770). Although image segmentation in general and tubular
structure segmentation in particular have often been addressed, the results of
comparison with a state-of-the-art approach lead us to believe that our method
may be of value to the scientific community. Future experiments will have to
show in more detail how strong is the dependence of the segmentation quality
on the outcome of the Frangi vesselness response and what is the influence of a
particular GVF parameterization in this context. Furthermore, the use of alter-
native vesselness indicators will have to be considered. We provide our reference
implementation at https://github.com/spezold/miccai2016.
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