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Abstract. Three-dimensional reconstructions of coronary arteries can
overcome some of the limitations of 2D X-ray angiography, namely artery
overlap/foreshortening and lack of depth information. Model-based arte-
rial reconstruction algorithms usually rely on 2D coronary artery seg-
mentations and require good robustness to outliers. In this paper, we
propose a novel probabilistic method to reconstruct coronary artery cen-
trelines from retrospectively gated X-ray images based on a probabilistic
mixture model. Specifically, 3D coronary artery centrelines are described
by a mixture of Student’s t-distributions, and the reconstruction is for-
mulated as maximum-likelihood estimation of the mixture model para-
meters, given the 2D segmentations of arteries from 2D X-ray images.
Our method provides robustness against the erroneously segmented parts
in the 2D segmentations by taking advantage of the inherent robustness
of t-distributions. We validate our reconstruction results using synthetic
phantom and clinical X-ray angiography data. The results show that the
proposed method can cope with imperfect and noisy segmentation data.

1 Introduction

X-ray coronary angiography is one of the commonly utilized imaging modalities
in the assessment of coronary artery disease. However, this modality is known
to be limited, since it can only deliver 2D X-ray images to visualise 3D mov-
ing coronary arteries. To overcome this limitation, 3D description of the coro-
nary arteries can be reconstructed from X-ray angiography images [1]. However,
inverse problem of reconstruction remains a challenging task due to intensity
inhomogeneities, artery overlap/foreshortening, and cardiac/respiratory motion.

Numerous methods have been proposed to reconstruct coronary artery trees
from X-ray angiography. Among these methods, model-based reconstruction
methods try to reconstruct a 3D representation of the coronary arteries that
comprises of artery centrelines and, occasionally, the arterial lumen surface.
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Most of the existing model-based reconstruction methods require clean segmen-
tations of arteries from 2D X-ray angiography images [1]. However, segmentation
of coronary arteries from X-ray angiography is still a challenging task because
of inhomogeneous intensities and artery overlap/foreshortening, thus prone to
errors. Therefore, the reconstruction methods should be devised in a way that
they become robust to possible errors in the 2D coronary artery segmentations
(such as over-segmentations due to the other structures that are also visible in
the X-ray angiography images).

In this paper, we propose a novel method to reconstruct coronary artery
centrelines from retrospectively gated X-ray angiography images acquired via a
calibrated X-ray angiography system. Our method employs a novel probabilis-
tic formulation based on a mixture of Student’s t-distributions that describes
the coronary artery centrelines in 3D space. Given the 2D over-segmentations
of arteries from 2D X-ray images, we formulate the reconstruction problem
as maximum-likelihood (ML) estimation of mixture model parameters. The t-
distributions are known to be inherently robust to the outliers in the data. The
utilization of t-distributions as the components of the mixture model allows us
to significantly reduce the burden of manual inspecting the segmented arteries.
This opens the possibility to use the results from semi/automatic 2D vascular
segmentation algorithms, facilitating the reconstruction process. To the best of
our knowledge, this is the first paper proposing that the reconstruction problem
can be alternatively viewed as the task of a Student’s t-mixture model fitting.
Apart from robustness, the proposed method is a versatile framework that can
handle complex arterial geometries, and requires no point-to-point correspon-
dences.

2 Method

Our method assumes that the X-ray images and a simultaneous ECG are col-
lected using a calibrated angiography system. Coronary artery segmentations,
possibly containing erroneously segmented parts, are extracted from retrospec-
tively gated 2D X-ray images. Coronary arteries are represented by a mixture of
Student’s t-distributions in 3D, from which the points in the 2D segmentations
are considered to be generated. Reconstruction is formulated as a ML estimation
of the parameters of the mixture model.

X-ray Image Acquisition and Retrospective ECG Gating: Our method
requires an X-ray acquisition by a calibrated angiography system, i.e. the system
geometry is known for each X-ray projection. This information can be exploited
to define the projection between the patient and X-ray detector coordinate sys-
tems, which can be modelled by weak-perspective or perspective camera models
[3]. Weak-perspective camera model provides a linear approximation of perspec-
tive camera model, when the depth of the object is small compared to distance
from camera and the field of view is small [3], which are valid for X-ray angiog-
raphy. Linearity of weak-perspective approximation yields closed form solutions
for the estimation of mixture model parameters. Our method benefits from both
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camera models, starting with a weak-perspective model and, upon convergence,
switching to perspective model for refinement.

Respiratory motion can be reduced by collecting X-ray images during a
breath hold. Following image acquisition, a subset of X-ray images are selected
via retrospective ECG gating in order to compensate for the cardiac motion. We
select frames that are closest to a cardiac phase with minimal motion.

Segmentation of X-ray Images: The coronary arteries are segmented from
2D X-ray images using an automatic segmentation algorithm such as the ones
proposed in [5,8]. The resulting segmentation may include some parts, which
are erroneously segmented due to noise or other structures such as catheter,
spine and diaphragm. We refer to these erroneous parts of the segmentation as
outliers. Next, the segmented arteries are converted to point sets and further
processed by our algorithm.

Reconstruction Based on Mixture of Student’s t-distributions: To for-
mulate the reconstruction, we represent 3D coronary artery centrelines by a
probabilistic mixture model. Specifically, the 3D centrelines can be described by
a set of points in 3D space. Furthermore, spatial locations of these points can
be defined by the mean values of mixture model components. As a result, the
points describing the 3D coronary artery centrelines form a mixture distribution
in 3D space. We opt for Student’s t-distribution as the component distribution
of the mixture model, which is known to be a robust alternative to Gaussian
distribution in the presence of outlier samples, owing to its heavier tails [6].

Segmented 2D artery points on X-ray images are considered to be the projec-
tions of samples generated from mixture model distribution. Therefore, recon-
struction problem can be formulated as the estimation of the mean values of the
mixture components and other mixture model parameters, given the 2D points
describing the artery segmentations in the X-ray images.

Let Xf = {xf
n ∈ R

2}Nf

n=1 be the set of 2D segmented artery points for the
fth X-ray image of F retrospectively gated images. Similarly, let Y = {ym ∈
R

3}Mm=1 denotes the set of M 3D points corresponding to the mean values of
the t-distributions. A multivariate t-distribution with mean μ, covariance Σ and
degrees of freedom ν can be written as an infinite mixture of scaled Gaussians

S(x|μ,Σ, ν) =
∫ ∞

0

N (x|μ,Σ/u)G(u|ν/2, ν/2)du, (1)

where N (·) and G(·) denote the Gaussian and Gamma distributions, respectively
[6]. To compute the maximum-likelihood (ML) solution, u can be considered as
an implicit latent variable introduced for each observation [6]. In our formulation,
these latent variables are denoted by Uf = {uf

n ∈ R}Nf

n=1 for the 2D points in fth
X-ray image. Similarly, let Zf = {zf

n ∈ R
M}Nf

n=1 be the set of latent variables for
the 2D points in fth X-ray image, where zf

n is an M -dimensional binary vector
that has only one non-zero entry. These vectors specify from which mixture
component that the 2D segmentation point is generated. Finally, we can write
the complete data probability for our mixture model as
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P (X,Z,U|θ) =
F∏

f=1

Nf∏
n=1

M∏
m=1

[
πmN (xf

n|Hf (ym), σ2/uf
n)G(uf

n|νm/2, νm/2)
]zf

nm

(2)
where X = {Xf}Ff=1, Z = {Zf}Ff=1 and U = {Uf}Ff=1. In addition, Hf :
R

3 → R
2 is the projection function for the fth frame, which is modelled by a

weak-perspective or a perspective camera model. Furthermore, mixture model
parameters are given by θ =

{{πm}Mm=1,Y , σ2, {νm}Mm=1

}
, where πm and νm are

the mixing coefficient and degrees of freedom for mth component, respectively,
and σ2 is the isotropic variance for the mixture model components.

Given the 2D points segmented from X-ray images, X, the goal is to find
the mixture model parameters that maximize the complete data log-likelihood
function, i.e. θ̂ = arg maxθ ln P (X,Z,U|θ). The final 3D reconstruction of the
coronary artery centreline points is given by the estimated mean values of the
mixture model components, Ŷ ∈ θ̂.

The ML estimation of the parameters θ̂ can be found using expectation-
conditional-maximization (ECM) algorithm [6]. In the E-step at iteration (t),
we compute expectations Ezf

nm
(zfnm|xf

n,θ(t)) = (γf
nm)(t), Euf

n
(uf

n|xf
n,θ(t), zfnm =

1) = (τf
nm)(t) and Euf

n
(ln uf

n|xf
n,θ(t), zfnm = 1). In the M-step, the parameters

are updated from θ(t) to θ(t+1) using the expectations computed in E-step, such
that the expectation of the log-likelihood function is maximized. After some
algebra, it can be shown that the mean values of the t-distribution components
can be computed by solving

F∑
f=1

Nf∑
n=1

(γf
nm)(t)(τf

nm)(t)
(
xf
n − Hf (ym)

)T ∂Hf (ym)
∂ym

= 0. (3)

For weak-perspective camera model, the Jacobian of the projection function
is given by a linear projection operation which does not depend on ym. On
the other hand, Jacobian is a function of ym for the perspective camera model.
Therefore, we obtain a closed form solution for weak-perspective model, and use
numerical optimization for the perspective model to compute the reconstruction,
which is defined by the mean values of the t-distribution components.

We obtain coronary artery centrelines from the set of reconstructed points by
computing minimum spanning arborescence of a directed graph, whose vertices
are the reconstructed points and edges are the possible connections between the
neighbouring points. To this end, we select one of the reconstructed point as root
of the graph based on our prior knowledge about the patient coordinate system.
The graph is generated by connecting the root to all the remaining points, and
each point to its neighbours inside 10 mm neighbourhood. The edge weights
of the graph are determined by the Euclidean distance between the connecting
points. After minimum spanning arborescence is computed using Edmonds algo-
rithm [10], we apply some automatic pruning steps to obtain the final coronary
arterial tree. First, we discard the reconstructed points that are located far from
the remaining reconstructed points. Second, we remove the short branches that
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consist of less than 3 points. Finally, we fit a cubic spline to each branch of the
coronary arterial tree (Fig. 1c and d).

3 Experiments and Results

Results on Synthetic Data: Due to the lack of ground truth information for
validation, the quantitative validations of coronary artery reconstruction meth-
ods are typically based on synthetic data experiments. To this end, we gener-
ated two synthetic X-ray rotational angiography sequences and corresponding
artery centreline segmentations using left coronary artery geometry of 4D XCAT
phantom [9] (Fig. 1a). For both of the X-ray sequences, information related to
acquisition, namely number of images (117), frame rate (30 fps), angular cov-
erage (60◦ RAO to 60◦ LAO with 25◦ CRA angulation), and the parameters
defining the acquisition geometry model, was derived from a clinical dataset. In
the first sequence, we employed the static geometry of the coronary arteries at
end-diastole to generate the synthetic sequence. In the second sequence, we sim-
ulated cardiac motion where we set the heart beat rate to 70 beats per minute.
Finally, we performed ECG gating on this sequence via a gating window of width
10% of the cardiac cycle. Effectively, a total of 11 images were selected that are
close to end-diastolic phase, but still at different cardiac phases. For the exper-
iments involving the static sequence, we selected the corresponding subset of
X-ray images, which were acquired from the same viewpoints as the gated X-ray
images from the dynamic sequence. We refer to the sets of X-ray images selected
from the first and second sequence as StaticSet and CardiacSet, respectively.

In the synthetic data experiments, we assess: (i) the effect of erroneously
segmented structures in the 2D segmentations (outliers), (ii) the effect of residual
cardiac motion between the X-ray images, and (iii) the effect of number of 3D
points describing the mixture model representation of the coronary arteries, on
the coronary artery centreline reconstruction accuracy.

To study the effect of outliers, we generated random 2D points and added
these points to the corresponding 2D coronary artery segmentations. Specifi-
cally, we generated random 2D curves using a trajectory of a particle subject to
Brownian motion, and sampled outlier points from these curves (Fig. 1a). The
number of additional outlier points for each X-ray image was varied from 0% to
40% of the number of points in the 2D coronary artery segmentations for the
same X-ray image with 10% increments. This procedure is carried out for all
X-ray images in StaticSet and CardiacSet, so that we can additionally study the
effect of residual motion. To initialize both the number and the spatial locations
of the mixture model components, we assumed that points are located on a reg-
ular grid in spherical coordinates centred at the origin of the patient coordinate
system. By changing the radial sampling rate of the grid, we adjusted M to 168
and 210 points (Fig. 1b).

In all of the experiments, the reconstruction accuracy measured in terms of
two 3D centreline to centreline scores, namely overlap (OV3D) and accuracy
(AC3D) scores, which were introduced as a part of the standardized evalua-
tion framework described in [7]. Briefly, the overlap score measures how the
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(a) (b) (c) (d)

(e) (f)

Fig. 1. (a)–(d) Qualitative results on synthetic data with 40 % outliers: (a) An exam-
ple synthetic X-ray angiogram and the corresponding 2D segmentations (dark green)
with outliers (light green) are shown. (b) The method is initialized using model points
located on a regular spherical grid. (c) Reconstructed points are shown. (d) The final
reconstruction output after pruning. In (b)–(d), the ground truth centrelines are shown
in green, whereas reconstructed points or centrelines are shown in red. (e)–(f) Quanti-
tative results with cardiac motion, different number of model components, and varying
levels of outliers are presented using overlap and accuracy scores. (Color figure online)

reconstructed centreline agrees with the ground truth, based on the labelling of
correspondences between reconstructed points and the ground truth centreline
points as false positive, negative and true positive. On the other hand, the accu-
racy score measures the mean 3D Euclidean distance between the true positive
correspondences.

We repeated the reconstruction experiments 15 times with different random
outlier points in each outlier level. The qualitative and quantitative results of
the synthetic data experiments are shown in Fig. 1. Results indicate that the
performance of our method does not decrease drastically, even in the presence
of high level of outlier points. As expected, the scores for CardiacSet, generated
under cardiac motion, are lower, but comparable to the results from StaticSet.

As shown in Fig. 1c, the reconstructed points may contain some scattered
points as we increase the outlier level. This can be explained as follows: when
there is a significant number of outliers, the possibility of consistent point cor-
respondences between various projection frames increases. As a result, some
mixture model components are displaced towards those outliers. However,
with lower outlier level, the heavy tails of t-distribution mixture components
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(a)

AC3D RPE2D

(synthetic) (clinical)

Jandt et al. [4] 0.19 NA
Liao et al. [5] 0.38 1.02

Yang et al. [11] 0.48 0.34
Cong et al. [2] 0.57 0.35

Proposed 0.13 0.39

(b)

Fig. 2. Results on clinical data: (a) Projection of the reconstructed coronary arteries
(red) is overlaid on top of the segmented coronary arteries (green) on the left, and the
corresponding 3D reconstruction result is shown on the right. (b) The results of the
proposed algorithm for both synthetic and clinical experiments are compared with the
relevant literature. These results were obtained using different synthetic and clinical
datasets, but nonetheless show the accuracies of the various techniques. (Color figure
online)

sufficiently explain those points. Therefore, no significant displacement of the
mixture components is observed. Additionally, the situation is also aggravated
when we increase the number of mixture model components as reflected by the
increased dispersion of the overlap scores.

Results on Clinical Data: We reconstructed centrelines from 2 RCA and 1
LCA rotational angiography studies. The angular coverage of the acquisitions
was 120◦ (60◦ RAO to 60◦ LAO with 25◦ CRA/CAU angulation). From each
study, 4 images (one from each cardiac cycle) were selected via ECG gating.

Coronary artery segmentations from X-ray angiograms are carried out by
the automatic algorithm given in [8]. Because the ground truth is not available
for the clinical data, we present qualitative 3D reconstruction result and its
back-projection onto the X-ray images (Fig. 2a). These results underscore the
robustness of the algorithm in the presence of outliers. Although using TMM
makes our reconstruction robust to outliers, reconstructed centrelines can be
further improved if better segmentations (free from obvious errors or missing
parts) are provided. To this end, we segmented centrelines using a workflow
similar to the one proposed in [5], and cleaned the resulting segmentations. To
facilitate quantitative evaluation, we computed 2D reprojection error (RPE2D),
which is defined as the average 2D Euclidean distance between 2D ground truth
points and 2D projections of the reconstructed centrelines. The results are shown
in Fig. 2b in comparison with the results from the relevant literature.

There is a trade-off between target accuracy (associated with M), and the
computation time. Mean computation time for the clinical dataset was 21.8 min
with M = 168 points describing the arteries.
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4 Conclusion

In this paper, we propose a novel probabilistic framework to reconstruct coronary
artery centrelines from retrospectively gated X-ray angiography images using a
mixture of Student’s t distributions. Given 2D segmentations of coronary arteries
from X-ray images, we formulate the reconstruction problem as ML estimation
of mixture model parameters. The framework is highly versatile and does not
require point correspondences across various projections. The heavy tail of Stu-
dent’s t-distribution allows robust reconstruction and good handling of outliers.
The quantitative validation on synthetic data indicates that our method can
cope with reasonable level of erroneously segmented parts in the 2D coronary
artery segmentations. As demonstrated in the experiments using clinical X-ray
angiography images, this aspect enables using coronary segmentation algorithms
which may produce some level of outliers. Proposed method provides a conve-
nient framework to incorporate prior information (e.g. Bayesian priors enforcing
linearity of local structures, and sparsity of mixture components), owing to its
probabilistic formulation. This topic will be the focus of our future research.
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4. Jandt, U., Schäfer, D., Grass, M., Rasche, V.: Automatic generation of 3D coronary
artery centerlines using rotational X-ray angiography. Med. Image Anal. 13(6),
846–858 (2009)

5. Liao, R., Luc, D., Sun, Y., Kirchberg, K.: 3-D reconstruction of the coronary artery
tree from multiple views of a rotational X-ray angiography. Int. J. Cardiovasc.
Imaging 26(7), 733–749 (2010)

6. Peel, D., McLachlan, G.J.: Robust mixture modelling using the t distribution. Stat.
Comput. 10(4), 339–348 (2000)

7. Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C.,
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