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Abstract. The estimation of local parameter values for a 3D cardiac
model is important for revealing abnormal tissues with altered mater-
ial properties and for building patient-specific models. Existing works
in local parameter estimation typically represent the heart with a small
number of pre-defined segments to reduce the dimension of unknowns.
Such low-resolution approaches have limited ability to estimate tissues
with varying sizes, locations, and distributions. We present a novel opti-
mization framework to achieve a higher-resolution parameter estimation
without using a high number of unknowns. It has two central elements:
(1) a multi-scale coarse-to-fine optimization that uses low-resolution solu-
tions to facilitate the higher-resolution optimization; and (2) a spatially-
adaptive scheme that dedicates higher resolution to regions of heteroge-
neous tissue properties whereas retaining low resolution in homogeneous
regions. Synthetic and real-data experiments demonstrate the ability of
the presented framework to improve the accuracy of local parameter esti-
mation in comparison to optimization based on fixed-segment models.
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1 Introduction

Many cardiac diseases stem from abnormal myocardial tissues with altered mate-
rial properties. The quantitative knowledge about these abnormal tissues is para-
mount to the diagnosis, treatment, and prevention of relevant cardiac diseases.
Since it is difficult to directly measure the material property of cardiac tissues,
one effective way to quantify pathological tissue properties is to estimate the
three-dimensionally distributed parameters of a cardiac model using indirect
measurement data. This will in addition provide a patient-specific model useful
for personalized treatment planning and prognosis [4].

Much effort has been reported on parameter estimation for complex physio-
logical models. For example, derivative-free optimization methods [9] are shown
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to be effective in handling the complex objective functions. Alternatively, sur-
rogate models such as spectral representation based on polynomial chaos [4],
multivariate polynomial regression [10], and Gaussian processes [5] have gained
increasing interest in recent years.

Nevertheless, progress has been limited in estimating local parameters that
are three-dimensionally distributed in space. Many previous works focus on
the estimation of global parameters [5] by assuming uniform tissue property
throughout the myocardium. Although it provides a fast calibration of a model,
global parameter estimation does not reveal the local change of tissue proper-
ties. Toward local parameter estimation, a commonly-used approach is to divide
the myocardium into a set of pre-defined segments and assume the parameter
to be uniform within each segment. This substantially reduces the dimension of
unknowns (to a range of 3 to 27) [9,10], yet the resolution is too low to capture
abnormal tissues with different sizes, locations, and distributions. Moreover, as
the number of segments increases, a good initialization becomes critical [9] which
typically requires additional data to delineate diseased regions a priori. A critical
gap remains between the need for a high-resolution local parameter estimation
and the difficulty to accommodate high-dimensional optimization.

To bridge this gap, we propose a novel framework that goes beyond fixed
low-resolution parameter estimation without invoking an infeasible number of
unknowns. This is achieved via two primary elements. First, a multi-scale hier-
archy is used to progressively use low-resolution results to facilitate higher-
resolution optimization, thereby alleviating the issue of identifiability. Second,
instead of uniform resolution, an adaptive scheme is used to selectively allocate
higher resolution in heterogeneous regions whereas retaining lower resolution
in homogeneous regions. It shares an important intuition with [1] where non-
uniform mesh is used, although with fundamental differences in the coarser-to-
finer transition of information and the motivation (heterogeneity) for adaptive
resolution.

The proposed framework is applied to local parameter estimation for a 3D
cardiac electrophysiological (EP) model using non-invasive electrocardiographic
(ECG) data. It is noteworthy that the remote global ECG data increase the diffi-
culty in identifying local tissue properties in comparison to local direct mapping
data. The presented method is tested on a set of synthetic and real-data experi-
ments. In comparison to the derivative-free BOBYQA [6] method carried out on
a predefined 18-segment model, the presented method demonstrates higher accu-
racy using a similar or even fewer unknowns. While this framework is reported
with GP based optimization, it can be used with other optimization methods.
It is also applicable to local parameter estimation beyond cardiac EP models.

2 Cardiac Electrophysiology and ECG

2.1 Cardiac Electrophysiological Model

The spatiotemporal evolution of cardiac action potential can be described by
a set of differential equations, ranging from complex ionic models with tens of



284 J. Dhamala et al.

hundreds of parameters to simpler models with a few parameters [2]. As an initial
demonstration of feasibility for the proposed framework, we consider parameter
estimation for the Aliev-Panfilov (AP) [2] model because of its ability to simulate
electrical dynamics with fewer parameters and reasonable computation.

∂u/∂t = ∂/∂xidij∂u/∂xj − ku(u − a)(u − 1) − uv

∂v/∂t = ε(u, v)(−v − ku(u − a − 1)). (1)

where, u is the transmembrane action potential and v is the recovery current.
Parameter dij is the spatial conductivity, ε controls the coupling between the
recovery current and action potential, k controls the repolarization, and a con-
trols the excitability of a cell. In this study, we focus on a as it is one of the most
sensitive model parameter and its value is associated to the ischemic severity of
the myocardial tissue [2]. The meshfree method is used to discretize and solve
(1) on the 3D myocardium [8], with a resolution of ∼6-mm (∼103 nodes).

2.2 ECG Measurement Model

Cardiac action potential produces potential on the body surface that is measured
as time-varying ECG signals. This measurement process can be described by
the quasi-static approximation of the electromagnetic theory [8]. Solving this
governing equation on the discrete mesh of heart and torso models specific to an
individual, a linear model between ECG data Φ and transmural action potential
u can be obtained as: Φ = Hu [8].

3 Spatially-Adaptive, Multi-scale Optimization

Estimation of the three-dimensionally distributed tissue excitability θθθ from ECG
data y can be formulated as a bounded global maximization problem:

max
l≤θθθ≤u

G(θθθ) = max
l≤θθθ≤u

L∑

i=1

( ∑M
t=1(yit − ȳi)(Φit − Φ̄i)

L
√∑M

t=1(yit − ȳi)2
∑M

t=1(Φit − Φ̄i)2
− λ

M∑

t=1

(Φit − yit)
2
)
.

(2)

where Φ = f(θθθ) is a composite of the measurement an AP models (see Sect. 2).
The objective function (2) includes both a correlation coefficient and a squared
error to balance the morphology and magnitude similarity between the ECG
data and the model output. L is the number of ECG leads.

The direct estimation of θθθ requires a high-dimensional optimization (order
of 103) that is not feasible due to both un-identifiability and high computation.
To achieve higher-resolution local parameter estimation, the optimization frame-
work described below includes two key components: (1) a hierarchical coarse-to-
fine estimation, and (2) a spatially-adaptive resolution that is refined at regions
of heterogeneity. This framework is developed with GP-based optimization.
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3.1 Multi-scale Hierarchy

A coarse-to-fine optimization has the advantage to use lower-resolution solution
to reduce the search during higher-resolution optimizations. To facilitate this, we
construct a multi-scale representation of the cardiac mesh using Agglomerative
Hierarchical Clustering [3], exploiting the spatial smoothness of tissue properties.
A partial tree structure of this multi-scale model can be seen in Fig. 1. The
clustering starts with each node in the cardiac mesh as a separate cluster. Every
two closest clusters, based on the Euclidean distance and average linkage metric,
are then merged until the entire ventricular mesh belongs to a single cluster. On
this hierarchy model, the optimization starts at the root as a global estimation,
and progressively moves to a higher level of resolution. Each level of optimization
consists of two primary tasks: (1) optimization exploiting the lower-level solution
(Sect. 3.3); and (2) determination of the spatial resolution for the next level of
optimization (Sect. 3.2).

3.2 Adaptive Spatial Refinement

Instead of uniform resolution, we aim for a spatially-adaptive resolution so that
higher resolution is used at regions of heterogeneity. In other words, after each
level of optimization, instead of splitting all leaf nodes selective splitting and
retraction is done to generate a skewed tree.

The key task is to identify the heterogeneous versus homogeneous clusters in
tissue properties. Intuitively, if a cluster is homogeneous, its split is expected to
yield children clusters with similar parameter values; i.e., there will be minimal
gain in the objective function (2). The contrary is true for heterogeneous clusters.
Therefore, we propose a criterion based on gains in the objective function value.

Specifically, after obtaining an optimal solution θθθk at level k, we examine
two types of leaf nodes. First, we examine each pair of sibling nodes (θki,c1, θ

k
i,c2)

that share same parent node θθθk−1
i . For each pair of (θki,c1, θ

k
i,c2), we evaluate the

gain of splitting them from their parent as the difference in objective function
evaluated on θθθk versus replacing (θki,c1, θ

k
i,c2) with their parent θk−1

i :

rk,i = G(θθθk) − G(sk), where sk = (θθθk \ (θki,c1, θ
k
i,c2), θθθ

k−1
i ) (3)

Second, for leaf nodes that do not any sibling, no resolution change has occurred
but their values may have been changed as a result of resolution change else-
where. For such a node θθθki , the gain rk,i equals the change in the objective
function due to the change in θθθki before and after the optimization.

Based on rk,i, we take two actions on tree structure before the next level
of optimization: (1) for a leaf node or a pair of leaf nodes with maximum gain
rk,i, we consider them to be most heterogeneous and warrant a higher-resolution
representation (i.e., a split); and (2) for those that bring negligible or negative
gain (rk,i < δ, δ is the same tolerance in the improvement of global optimum used
for the convergence of overall framework), the split suggested by the previous
level was not beneficial and retract it. The rest of nodes are unchanged.
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3.3 Optimization via Surrogate Models

The proposed framework can be used in combination with any optimization
method suitable for handling a complex objective function like (2). In this
paper, a GP surrogate model based method is used [7]. In brief, the optimization
assumes a prior distribution, in the form of a GP ∼ N (μ(θθθ), σ(θθθ)), to denote the
belief over the objective function (2) and sequentially updates the prior based on
new data to better approximate the objective function, especially in the region
of global optimum. Here, we elaborate the three main steps of the optimization
at each level of resolution:

1. Initialize the GP: We start with a GP with zero mean and “Matern 5/2”
covariance function [7] to impose a minimal assumption of smoothness over
the objective function (2). While the GP-based optimization is gaining increas-
ing attention for optimizing highly expensive cost functions, it suffers from
an inability to scale in high dimension (≤15) [7]. Here, we utilize the low-
resolution optimum to facilitate the higher-resolution GP optimization. In the
proposed framework, a set of higher-resolution points are generated from the
previous lower-resolution optimum through a convolution operator and parame-
ter bounds. These points serve to quickly obtain an initial higher-resolution GP
surrogate.

2. Determine the next query point: To update the GP, the best point to query
should both exploit the solution space of the current GP where the predictive
mean μ(θθθ) is high and explore the solution space where the predictive uncer-
tainty σ(θθθ) is high. This is done by finding the point that maximizes the upper
confidence bound μ(θθθ) + κσ(θθθ) of the current GP [7], using the BOBYQA [6]
optimization. The parameter κ balances the exploitation and exploration.

3. Update the GP: On the new query point obtained from step 2, the objective
function (2) is evaluated and the posterior distribution of the GP is updated [7].
Steps 2 and 3 run in iteration until convergence of the GP based optimization.

4 Experiments

Synthetic Experiments: In a set of 22 synthetic experiments conducted on 3
image-derived realistic human heart-torso models, we test the proposed method
in estimating the excitability of cardiac tissue in presence of infarct of varying
locations and sizes. The parameter “a” of the AP model (1) is set to be 0.15±0.01
and 0.45 ± 0.01, respectively, for normal and infarction tissues. 120-lead ECG
are simulated and corrupted with 20 dB Gaussian noise. Infarct covering 1% to
40% of the LV/RV is set at different locations using various combinations of the
AHA segments and random initializations with sizes smaller than one segment.

The presented method is compared with the BOBYQA method [6] carried out
on a fixed 18-segment model (17 LV AHA segments + 1 RV segment) [9]. Because
GP-based optimization did not scale well to 18-dimensional optimization in our
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Fig. 1. Examples of the progression of the multi-scale optimization. Left: true parame-
ter settings vs. estimation results over 3 successive stages of the optimization. Right: the
corresponding growth of the tree at each stage. The gray, dotted structure shows the
full hierarchy, whereas the colored line show the path taken by the presented method.
(Color figure online)

Fig. 2. Comparison of the presented method with BOBYQA on a 18-segment model.
Left: examples of different infarcts. Right: quantitative comparison in DC and RMSE.

experiments, it is not included in this paper. We evaluate the estimated parame-
ters using two metrics: (1) root mean square error (RMSE) between the true and
estimated parameters; and (2) dice coefficient DC = 2(S1∩S2)

S1∪S2
, where S1 and S2

are the sets of cardiac nodes in the true and estimated regions of infarct; these
regions are defined from the final tree in the presented method, and by thresh-
olding parameter values in the BOBYQA method. Both metrics are evaluated
at the resolution of the cardiac mesh.

Figure 1 demonstrates how the presented adaptive coarse-to-fine optimization
progresses: the left panel shows the improvement in estimation at 3 successive
stages, with the corresponding growth of the tree in the right panel. Figure 1a
shows an example on a small infarct (3%). The tree shows that since stage
1, the optimization split only along the heterogeneous region that contains the
abnormality. It continued narrowing down the infarct with higher resolution,
generating a narrow yet deep tree. The estimation shown in stage 3 of Fig. 1b
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Fig. 3. Real-data experiment: comparison with in-vivo voltage maps of scar. (Color
figure online)

was achieved with only 13 unknowns. In comparison, if a uniform resolution is
used, a dimension of 128 is needed to achieve estimation at the same resolution.
Figure 1b shows an example with a larger infarct (29%). Because abnormal tis-
sues span a larger number of clusters compared to a small infarct, it is not until
stage 2 before the tree can be split along major branch. In addition, because
both normal and abnormal tissues are large enough to be represented by low-
resolution, homogeneous regions, an overall lower-resolution solution is obtained
with a wider yet shallow tree. Similarly, in this case the presented method con-
verged at a dimension of 7 whereas a uniform resolution of 16 is required.

Figure 2 summarizes the comparison between the presented method and the
BOBYQA method directly on the fixed 18-segment. The improvement of the
presented method is statistically significant in both DC and RMSE (paired-t
tests, p < 0.001). More specifically, the performance of the presented method
is much more robust to the size and shape of the infarct. While optimization
on fixed segments has trouble handling infarcts of size equal to a single AHA
segment, the presented method could provide an accurate estimation using only
12–14 unknowns. Furthermore, optimization on fixed segments tends to show
false-positives across multiple segments, falling short to reveal the spatial distri-
bution of an infarct. The presented method improves this accuracy by adaptively
allocating higher-resolution on the heterogeneous regions. Depending on the type
of the infarct, the computational cost of the presented method is comparable
or higher than direct optimization on 18 uniform divisions. For medium sized
infarcts (5–25 % of LV), the tree is shallower (Fig. 1b) and requires fewer coarse
to fine optimizations. For small infarcts (≤5 % of LV), the tree is deeper with
many leaf nodes (Fig. 1a) and requires larger coarse to fine optimizations. In such
cases, the number of model evaluations for presented method was at most 1.5
times that needed for direct optimization on 18 segments. Although for such size,
direct optimization has trouble in estimation mainly due to un-identifiability.

Real-Data Experiment: As a feasibility test, we conducted a case study on a
patient who underwent catheter ablation of ventricular tachycardia due to prior
tissue infarction. Tissue excitability was estimated from 120-lead ECG on the
patient-specific heart-torso geometry obtained from CT images. Bipolar voltage
data from in-vivo CARTO mapping were used as reference: as illustrated in
Fig. 3, they reveal low-voltage regions at both lateral LV and RV (red: dense scar
≤0.5 mV; green: scar border = 0.5–1.5 mV; blue: normal >1.5 mV). Excitability
estimated from the presented framework successfully captured abnormal tissues
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at both locations whereas estimation from direct BOBYQA optimization using
pre-defined 23 segments (17-LV, 6-RV) captured the abnormal tissue located on
RV only. Interestingly, during post-processing of CARTO, the clinician marked
that the low-voltage region at middle-apical lateral RV was caused by poor
catheter contact rather than scar tissue. The estimated excitability values on RV,
reflected this tissue property on RV. Overall, the core and border of abnormal
tissues as revealed by the estimated excitability appear to co-locate with CARTO
maps. It should be noted that, because CARTO maps show voltage data whereas
the estimated parameter map shows tissue excitability, they are not expected to
appear identical; further caution is needed in interpreting the results.

5 Conclusion

This paper presents a novel framework to achieve a higher-resolution local para-
meter estimation using a small number of unknowns. This is enabled by a multi-
scale optimization, and a spatially-adaptive scheme that allocates higher resolu-
tion only at heterogeneous regions. Theoretically, the proposed method has the
potential to reach the resolution of mesh. Experiments show that at the current
stage, the accuracy is limited around the infarct border. One main future work is
to improve the ability to go deeper along the tree, overcoming the issues of com-
putation and observability. Additionally, it is desired to incorporate probabilistic
estimation to handle the uncertainties in real data.
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