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Abstract. We address the problem of multimodal image registration
using a supervised learning approach. We pose the problem as a regres-
sion task, whose goal is to estimate the unknown geometric transfor-
mation from the joint appearance of the fixed and moving images. Our
method is based on (i) context-aware features, which allow us to guide
the registration using not only local, but also global structural informa-
tion, and (ii) regression forests to map the very large contextual feature
space to transformation parameters. Our approach improves the capture
range, as we demonstrate on the publicly available IXI dataset. Further-
more, it can also handle difficult settings where other similarity metrics
tend to fail; for instance, we show results on the deformable registration
of Intravascular Ultrasound (IVUS) and Histology images.

1 Introduction

A core difficulty in multimodal registration is the lack of a general law to measure
the alignment between images of the same organ acquired with different physical
principles. The unknown relationship between the image intensities is in general
neither linear nor bijective. Following Sotiras et al. [15], there have been three
main approaches to address the problem: (i) information theoretic methods [13],
(ii) mapping of the modalities to a common representation [3,4], and (iii) learning
multimodal similarity measures [10,11]. This paper relates to the latter category,
whose main assumption is that prior knowledge (in the form of examples of
aligned images) can be afforded. This extra effort can be justified both, in cases
where large-scale databases need to be registered, or when the two modalities
are so different that general multi-modal similarity measures do not suffice.

Up to now, the focus of learning based approaches has been on approximating
multimodal similarity measures, independent of the optimization scheme used
during the registration task itself. However, due to the usually complex map-
ping between the intensities of the two modalities, non-linearities and ambigui-
ties tend to shape local-optima and plateaus in the energy landscape. Thereby,
the optimizer plays an important role in the success of the registration. In this
work we explore a combined view of the problem, where we take the optimizer
into account. In particular, we restrict ourselves to gradient-based methods, and
focus on directly inferring the motion parameters from changes in the joint visual
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content of the images. We model the problem as a regression approach, where
for a given pair of misaligned images the goal is to retrieve the global direction
towards which the motion parameters should be updated for correct alignment.
In order to ensure that the direction of the update points towards a globally
optimal solution, we describe the images taking into account both their local
appearance and their long-range context, by means of Haar-like features [2]. In
order to efficiency handle the resultant very high-dimensional feature space, we
use regression forests [2], also known for their fast training and testing. The main
contribution of our work is twofold: (1) this is the first time a regression method
is used to predict registration updates in the multimodal setting; (2) the use
of long-range context-aware features instead of local structural features is novel
for the problem of multimodal registration. We demonstrate the advantages of
our method in the difficult case of 2-D deformable registration of histological to
intravascular ultrasound images (IVUS). We also perform a quantitative eval-
uation for the 3-D registration of T1-T2 MR images showing an advantageous
increase in the capture range.

1.1 Related Work

There have been two trends in learning based methods for multimodal regis-
tration. Generative approaches [14], approximate the joint intensity distribution
between the images to be registered and minimize the difference of a new test pair
of images to the learned distribution. Discriminative methods, on the other hand,
model the similarity learning problem as the classification of positive (aligned)
and negative (misaligned) examples, typically at patch level [5,10,11]. Different
learning strategies have been explored to approximate such patch-wise similar-
ities, including margin-based approaches [10] and boosting [11]. In contrast to
the discriminative approaches above, which aim at discerning between aligned
and misaligned patches, we focus on learning a motion predictor that guides the
registration process towards alignment.

There have been prior attempts of using motion prediction for monomodal
tracking and registration. For instance, Jurie et al. [6] proposed a linear predictor
for template tracking, which related the difference between the compared images
to variations in template position. In the medical domain, Chou et al. [1] present
an approach to learn updates of the transformation parameters in the context
of 2D-3D registration. Similarly, in [9], Kim et al. proposed the prediction of a
deformation-field for registration initialization, achieved by modeling the statis-
tical correlation between image appearances and deformation fields with Support
Vector Regression. The work presented here is, to the best of our knowledge, the
first approach for motion prediction in the multimodal case.

2 Method

Multimodal registration aims to find the transformation W(p) that optimally
aligns two images of different modalities, namely, a fixed image I : Ω ⊂ R

3 → R
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Fig. 1. Left: Learned displacement under a given transformation. Right: long-range
Haar-like features to encode local and long range context.

and a moving image I′ : Ω′ ⊂ R
3 → R. A common method to find the optimal

parameters p ∈ R
Np that define W is by maximizing a similarity function S(I, I′)

between the two images. Denoting by I′
p the moving image resampled in the fix

domain Ω according to parameters p, we have:

p∗ = max
p

S(I, I′
p). (1)

The maximization of Eq. 1 can be done either by gradient-free (usually pre-
ferred for discriminatively learned implicit similarities) or gradient-based opti-
mization approaches. In the latter, the gradient of S is computed to iteratively
estimate the parameter update Δk ∈ R

Np , such that pk = pk−1 + Δk, where
k is the iteration index. In a typical steepest-ascent-like strategy, the update
direction is determined in terms of the similarity gradient as Δk = − ∂S/∂p

‖∂S/∂p‖ ,
which is in turn obtained based on the local approximation of this gradient.
Depending on the similarity such local approximations may be poor and lead to
local optima or slow convergence rates.

Here, we reformulate the multimodal registration problem as that of learning
a motion predictor, i.e.a function that directly maps the intensity configuration
of the two images in the fixed space to the corresponding motion update:

̂Δk = F (I, I′
p). (2)

We learn F from labeled examples (images with a known misalignment), which
allows us to enforce desirable properties for the optimization, namely: a para-
meter update pointing in the direction of the global maximum and a smooth
gradient. In analogy to the steepest ascent approach, our update may be seen as
a global approximation of the gradient ∂S

∂p . We explain next how to approximate
F from a training set of images by means of regression.

2.1 Learning Multimodal Motion Predictors

We choose to model the motion predictor at the image level, F , as the aggre-
gation of local motion predictors f . We consider that the input to these local
predictors are not patch intensities but rather a joint feature representation
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Θ(z, I, I′
p) ∈ R

H , which describes the local appearance of I and I′
p relative to a

point z ∈ R
3. Hereafter, we denote the feature vector Θ(z) for simplicity. Given a

number Nim of aligned multimodal images {Ii, I′
i}Nim

i=1 our aim is to approximate
a function f(z) : Θ(z) �→ δ capable of predicting a local displacement δ ∈ R

3

towards alignment. The approximation of f is done by means of a learning-based
regression approach. In the following, we describe the details of our method.

Generating a Set of Training Labels. To generate examples with known
misalignment, we apply multiple known transformations {Wj ,W ′

j}Ntransfo
j=1 to the

initially aligned images, mapping the coordinates of two originally correspond-
ing points x ∈ Ω and x′ ∈ Ω′ to distinct locations in a common image domain
z, z′ ∈ Z ⊂ R

3 (see Fig. 1). Because the applied transformations are known,
we can determine the ground truth displacement δn ∈ R

3 needed to find the
originally corresponding point z′

n in the moving image, and bring it into align-
ment with z, i.e.δn = z′

n − zn. With this information we build the training set
X = {Θ(zn), δn}Npoints

n=1 . Notice that we have chosen to use δn as the regression
targets instead of the transformation parameters. In this way the learning stage
is independent of the motion parametrization. In fact, these displacements play
the role of the similarity gradients ∂S

∂z , which can be then related to a given para-
metrization using the chain rule ∂S

∂p = ∂S
∂z J , by means of the Jacobian J = ∂z

∂p .

Context Aware Features. We characterize the cross-modal appearance of
each point zn in the training set, by a variation of the context-aware Haar-like
features [2]. These features effectively capture how the joint-appearance vari-
ations in the vicinity of each point relate to different transformation parame-
ters. The feature vector Θ(zn) is a collection of H features [θ1, . . . , θh, . . . , θH ]�;
where each θh is computed as a simple operation on a pair of boxes located at
given offsets locations relative to point zn. More formally, θh is characterized
by two boxes b1,b2 (c.f. Fig. 1), parametrized by their location (v1,v2 ∈ R

3),
size (w1, h1, w2, h2, d1, d2 ∈ R), modality m1 = {0, 1} and an operation between
boxes: { b1, b2, b1+b2, b1−b2, |b1−b2|,b1 > b2}, where the overline denotes the
mean over the box intensities. These operations are efficiently calculated with
precomputed integral volumes [2]. The binary modality parameters m1 and m2

determine whether the two boxes are taken from the same modality or across
modalities, thereby modeling the spatial context of each image as well as the
functional relation between the two modalities. Using different offsets and box
sizes enables capturing the visual context of each point without explicitly deter-
mining the scale. If we consider the combinatorial nature of the box parameters
we face a very-large feature space R

H . To deal with it, we use regression forests,
which among other advantages do not require the pre-computation of features.

Regression Forest. Using the features described above, we characterize each
point zi in the training set X by its corresponding feature vector Θi(zn). We
then use regression forests to approximate the function f : Θ(zn) �→ δn mapping
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Fig. 2. Left side: parameter updates obtained using our motion estimation method.
Right side: parameter updates obtained using the gradient of normalized mutual infor-
mation. Our estimated parameter updates are smoother over a larger range.

these feature vectors to an estimation of the target displacements. We train our
regression forest in a standard setting, using as splitting criteria the reduction of
the covariance trace associated to the target values in a particular node. Once the
forest has grown, we store the Gaussian distribution (mean μt(l) and covariance
Σt(l)) of the target displacements vectors falling in each leaf l. At test time, a
new feature vector θ(ztest) is passed down through the forest. Every tree assigns
an estimate of the predicted motion δ̂t (given by the mean vector μt(l) stored
in the leaf) along with its covariance Σt(l). We then rank and select the Ñtrees

with the smaller values of covariance trace. The predicted displacement at point
ztest is obtained as the average over the prediction of the selected trees.

2.2 Using Multimodal Motion Predictors for Registration

To register a pair of images I and I′ we define a set of testing points on a
grid {zm}Ntest

m=1 ∈ Z, extract their feature vectors {Θ(zm)}Ntest
m=1 , and pass them

through the forest to obtain the local displacement estimates {δ̂m}Ntest
m=1 . We

then compute the global update (c.f. Eq. 2) by adding the contributions of each
local displacement to the transformation parameters: Δ̂ =

∑Ntest
m=1 δ̂mJ where J

corresponds to the Jacobian of the transformation.

3 Experiments and Results

To evaluate the performance of our method in comparison to previous registra-
tion approaches we performed two series of experiments. In the first we evaluate
the performance of our method in a challenging multimodal setting: the reg-
istration of IVUS-Histology images, using the dataset from [7]. In the second,
we use T1-T2 images from the IXI Dataset1 to evaluate the capture range of
our method, where we measure the registration accuracy for varying initial dis-
placements between the fixed and moving image. This experiment shows the
robustness of our method to different initial conditions.

1 Available at: http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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Fig. 3. Top left: registration results on an IVUS-Histology pair. The initial unregistered
images are shown as well as the overlay between the images before and after registration.
Bottom left: DICE scores on the overlap between stenosis regions before and after
registration. Right: final registration error given different starting initial conditions on
the T1-T2 image pairs of the IXI dataset.

In both cases, we compare our method to the widely used Normalized Mutual
Information (NMI) [16] optimized using a gradient descent optimizer and with
the Modality Independent Neighborhood Descriptor (MIND) [3] coupled with
the Gauss-Newton optimization suggested by the authors.

In all the experiments we used forests consisting of 40 trees, keeping the top
10 best trees during testing. We evaluated 1000 possible splits per node and
grew the trees to a maximum depth of 15, stopping earlier if not enough samples
reached one of the child nodes. We limited the size of the offsets and the boxes in
the feature space to half of the image size. To optimise the scale of these features
we used the scale adaptive forest training approach presented in [12].

3.1 IVUS-Histology Deformable Registration

In this experiment we tackled the registration between 10 Intravascular Ultra-
sound images (IVUS) and histological slices. We used the method in [7] [8] to
obtain the initial set of aligned images needed for training. For evaluation we
performed deformable registrations using our method and we compare to MI
and MIND by measuring the overlap (DICE) of segmented stenosis regions both
in IVUS and the histology images. For all methods we use the same 3rd-order
b-spline parametrization with 5 nodes per dimension.

During training we split the dataset in 2 groups of 5 images and perform
cross validation. The final registration results are shown in Fig. 3. This dataset
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is particularly challenging because the underlying assumptions of most similarity
metrics, like local structural similarities or relationships between statistics on the
intensities of the images, are not verified. The methods we used for comparison
therefore presented high registration errors for the IVUS-Histology pairs. Our
supervised approach, on the other hand, was capable to register the images
thanks to prior knowledge and the non-local context of each point.

3.2 Capture Range

To test the capture range, we take a set of 10 prealigned T1-T2 image pairs
from the IXI dataset splitting them in 2 groups of 5 images for cross validation.
For each image pair we apply a rigid transformation to one of the images and
then we find the transformation that brings it back into alignment. The applied
transformations were in the range of ±100 mm for translations along each axis
and ±π/2 radians for rotations. We repeat this procedure 20 times per image
with different transformations for a total of 200 registration evaluations.

The results of this experiment can be seen in Fig. 3. Each point in the plot
corresponds to the registration of a pair of images. We can clearly observe that
our method presents a larger capture range than the metrics we compared with.
Note that there is a breaking point where MIND and MI start to fail, as these
metrics tend to underperform when the overlap between images is small and
no local structure can be used to evaluate the metrics reliably. Our method
on the other hand, was able to register the images even when they had no
overlap, thanks to the prior knowledge and the use of context aware features
which together to pull the optimizer in the right direction. Additionally, our
method was able to converge in a smaller number of iterations (5) compared
to NMI (∼ 250 gradient ascent iterations) and MIND (16 iterations). In terms
of computational time our method performed each registration in an average of
∼10 s compared to ∼200 s for NMI and ∼35 s for MIND. The faster convergence
can be attributed to the smoothness of our parameter updates in comparison to
the updates estimated using the derivative of NMI (see Fig. 2). In this way, we
are entitled to use a more aggressive step size without a decrease on the final
registration error and depend less on the initial misalignment between images.

4 Conclusions

We present a novel approach to the problem of multimodal registration, which
combines supervised regression with simple gradient-based optimizers. Super-
vised regression let us infer motion from changes in the visual appearance of the
images to be registered. In this way, it is no longer necessary to rely on prior
assumptions about local appearance correlations. Although our method requires
the use of aligned images for training, we have observed that the required amount
of training images to achieve good results is reasonably small (not more than 5
images in each case). Building datasets with aligned multimodal images requires
additional effort, but this extra effort can be justified in cases where other metrics
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are not sufficient or when a large dataset of similar images has to be registered.
For more common scenarios (such as multimodal MR registration), our method
produces registrations with comparable accuracy to other similarities but with
faster convergence and a larger capture range.
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