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Abstract. In this paper we present a new method of uncovering patients
with aortic valve diseases in large electronic health record systems through
learning with multimodal data. The method automatically extracts
clinically-relevant valvular disease features fromfive multimodal sources of
information including structured diagnosis, echocardiogram reports, and
echocardiogram imaging studies. It combines these partial evidence fea-
tures in a random forests learning framework to predict patients likely
to have the disease. Results of a retrospective clinical study from a 1000
patient dataset are presented that indicate that over 25 % new patients
with moderate to severe aortic stenosis can be automatically discovered
by our method that were previously missed from the records.

1 Introduction

With the growth of big data through large electronic health records (EHR), there
is an opportunity to leverage medical image analysis in combination with other
modality data in EHR to impact the quality of care to patients in a significant way.
In this paper, we present one such clinical study in uncovering patients likely to
have aortic stenosis. Aortic stenosis (AS) is a common heart disease that can result
in sudden death. It can be diagnosed through the Doppler patterns in echocardio-
gram studies as shown in Fig. 1b. Although the disease can be treated through
surgery or transcatheter aortic valve replacements (AVR), it often goes untreated
for several reasons. The absence of chest pain and other symptoms may make
the disease asymptomatic and not a candidate for detection in echocardiogra-
pher’s instructions. This together with echocardiographer’s skill errors can cause a
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Fig. 1. Illustration of missed diagnosis from echocardiogram (a) reports and (b) images

Doppler pattern depicting the disease to be missed entirely. Figure 1b (top) shows
one such case where the echocardiographer missed the evidence for moderate aor-
tic stenosis in the Doppler spectrum. When the relevant measurements are made
by the echocardiographer and inserted into the study screens, they may still fail to
make it into the overall report. Finally, even if the pattern is detected and makes
it into the echocardiogram report, pure data entry errors in EHR can leave out
the evidence of the disease from a patient record. With thousands of echocardiog-
raphy studies taken annually, manual peer review is costly and rarely performed,
with the result that many patients are going untreated.

The goal of this work is to develop an automated method for retrospectively
predicting patients likely to have aortic stenosis by combining medical image anal-
ysis of Doppler patterns with textual content analysis of imaging and reports in a
multimodal learning framework. Specifically, we extract evidence of aortic steno-
sis from 5 sources, namely, (a) billable diagnosis, (b) significant problems from
EHR, (c) echocardiogram reports, (d) measurements shown on echocardiography
video frames, and (e) CW Doppler patterns in echocardiography videos. Disease
concepts are identified in echocardiogram reports using a concept extraction algo-
rithm to detect UMLS concept vocabularies and their relevant associated mea-
surements. Measurements captured by echocardiographers are reliably extracted
through selective image processing and optical character recognition in tabular
regions on echocardiogram video frames. Finally, diagnostically relevant mea-
surements for aortic stenosis are automatically extracted from Doppler envelopes
using a three step process of relevant Doppler frame identification, envelope trac-
ing and measurement extraction. The frame identification involved classifica-
tion of convolutional neural network (CNN)-based learned features from Doppler
regions. The envelop extraction was made robust by incorporating echocardiog-
rapher’s tracings. Finally the disease-specific features extracted from each multi-
modal source of information are combined using a random forest learning formu-
lation to predict patients that are likely to have aortic valve disease.
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2 Related Work

To our knowledge, this is the first work on identifying patients at risk that com-
bines medical text and image analysis of echocardiogram studies. While previous
studies have argued for the use of multimodal information for cohort identifi-
cation [7], the primary information leveraged was either structured or textual
data. The work reported here, however, overlaps three inter-disciplinary fields of
text analysis, optical character recognition (OCR), and medical image analysis
each of which is rich in literature. Several algorithms for extraction of clinical
concepts from text have been reported in [9]. However, measurements must be
extracted in addition to disease name mentions for aortic stenosis detection,
which has not been addressed previously. Similarly, while there is considerable
work in OCR in general, extracting clinical measurements from text screens of
echocardiogram studies has not been well-addressed with the reported methods
relying on manual creation of templates for various manufacturer’s echo screens
[8]. Finally, reliable extraction of Doppler envelopes has proved to be notoriously
challenging particularly in the presence of electrocardiogram (ECG) fluctuations
during arrhythmia and overlay artifacts in Doppler spectra [3,5,9]. Lastly, the
automatic selection of Doppler frames depicting aortic valves has not been pre-
viously reported in literature.

3 Disease Evidence Extraction from Multimodal Data

Disease Extraction from Reports. To extract evidence of aortic stenosis from
echocardiogram reports, we generated a large knowledge graph of over 5.6 million
concept terms by combining over 70 reference vocabularies such as SNOMED
CT, ICD9, ICD10, RadLex, RxNorm, and LOINC and used its concept nodes as
vocabulary phrases. The occurrences of clinical concepts within sentences of the
clinical reports uses the longest common subfix (LCF) algorithm as described in
[9]. To detect evidence of stenosis, we find tuples of < Di, Sj , Ak, Vl >, where Di

are disease name indicators (e.g. “aortic valve disorders”, “aortic valve stenosis”,
etc.), Sj are specific symptoms associated with the disease such as “chest pain”,
Ak are anatomical abnormalities such as “thickened”, “calcified”, and Vl are
qualifiers such as “mild, moderate, severe”. These detections are done within
neighboring sentences in selected paragraphs where the aortic valve is described
in echocardiogram reports.

Next, we selected key measurement names indicating aortic stenosis as per
AHA guidelines, namely, peak velocity, mean pressure gradient, and aortic valve
area. Using their values ranges and units, as per guidelines, we developed a mea-
surement name-value pair detector. As the spoken utterances of these names vary
in echocardiograms, we did a n-gram analysis of a corpus of over 50,000 reports
in our data collection to identify all such significant variants of the measurement
names. To detect occurrences of measurement names and their associated val-
ues within the context of a detected sentence, we analyze the pattern of their
occurrences in a sentence using part-of-speech (POS) tagging, and dependency
graph parsing [4]. For each root concept (e.g. ‘gradient’), a chain of its modifiers
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Table 1. False discovery rate (FDR) of disease (AS) and measurement (peak velocity
and mean gradient) detection.

FDR False positives

AS 2/191 Indication/Hx: EVAL FOR MS/MR, AS/AI

De-Identified AS SMOKER

Peak velocity 1/364 aortic stenosis is present. The aortic valve peak velocity
is 2.6 ←↩ 9m/s, the peak gradient is 28.9 mmHg,

Mean gradient 0/410 -

Fig. 2. Illustration of measurement extraction from echocardiography screens.

(in the form of nouns or adjectives, e.g. ‘mean trans aortic’) were automatically
identified from a sentence using the Stanford POS tagger [4]. By analyzing thou-
sands of sentences containing the occurrences of measurement vocabulary terms
in connection with measurement values and units, we formed regular expression
patterns, such a pattern “< A >< B >< C >” where “A” is any disease indicat-
ing phrase A: {aorta, aortic, AV, AS}, “B” is any measurement term {gradient,
velocity, area}, and C is no negation terms of the kind {no, not, without, neither,
none}. Once the pattern was matched, we looked for numeric values following
the measurement names in the same sentence that were juxtaposed with names
of relevant units. An example of aortic stenosis measurement extraction is illus-
trated below in bold.

Aortic Valve: The aortic valve is thickened and calcified. Severe aortic
stenosis is present. The aortic valve peak velocity is 6.18m/s, the
peak gradient is 152.8 mmHg, and the mean gradient is 84.9mmHg.
The aortic valve area is estimated to be 0.28 cm2.

In general, the text-based aortic stenosis detection is fairly stable with very
few false positives as indicated in Table 1. Only 3 errors were observed after a
thorough analysis of the detected cases, as listed in the third column.
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Table 2. Accuracy of Doppler envelop extraction and measurement calculation.

Measurement made Images tested Error

Vmax 1054 0.29 ± 0.78 m/s

Mg 785 0.08 ± 10.05 mmHg
+

Extracting Echocardiographer Measurements. The evidence for aortic
stenosis can be extracted from the measurements made by the echocardiographer
captured as text-only screens such as the one shown in Fig. 2a. To extract the mea-
surements, we select the frames depicting the measurements and apply relevant
tabular template to identify the semantic names of the measurements. An optical
character recognition algorithm is then used to extract text. Unlike the approach
in [8], we use a different OCR engine (DataCap) and learn the document layout
templates of device manufacturer’s screens automatically. The template learning
is focused per anatomical region and exploits the invariance in topological layout
of the measurement name value pairs in the tabular regions. Once the templates
are learned, they are matched to any given text only screen to read off the expected
measurement names. Following the approach in [8], we process the images within
the text regions through an image enhancement process to increase the robustness
of OCR. Figure 2c shows the text extracted from measurement screen of Fig. 2a
using our video text detection algorithm. The OCR-based measurement extrac-
tion module was tested on 114 text-only frames across 114 patients, and a total
of 1719 measurements were verified. For this validation set, our system extracted
99.7 % of the measurements correctly, with the remaining errors caused by the
numeric values being split by the OCR engine.

Disease Extraction from Doppler Image Analysis. In Doppler echocardio-
graphy images, the clinically relevant region is known to be within the Doppler
spectrum, contained in a rectangular region of interest as shown in Fig. 1b. To
ensure the measurement extraction is attempted on relevant frames depicting
the aortic valve, we developed a classifier using features derived from the region
depicting Doppler patterns in images. This image region was fed to a pre-trained
convolutional neural network (CNN) consisting of 5 convolution layers, two fully
connected layers and a SoftMax layer with 1000 output nodes [2]. The CNN is
being used as a feature generator here as has been reported in other literature
[6]. Even though the CNN was trained in another imaging domain, the earlier
layers of the neural network capture generic features such as edges which are
also applicable in our domain. For our task of feature generation, we harvest a
feature vector of size 4096 at the output of the first fully connected layer of the
network and classify the images using a support vector machine (SVM) classifier.
To train the SVM, we created an expert reviewed dataset of 496 CW Doppler
patterns, each labeled with one of the four valve types. A set consisting of 100
of these images was randomly isolated as a test set. The SVM was optimized for
kernel type and slack and kernel variables on the remaining 396 images using
five-fold cross validation. Using the CNN derived features, the SVM achieved an
accuracy of 92 % across all valves with all aortic valve CW Doppler frames being
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labeled correctly. The tricuspid stenosis valve pattern accounted for nearly half
the errors as it is similar to the aortic stenosis valve pattern.

Extraction of Doppler Patterns. Our method of extracting Doppler spec-
trum uses similar pre-processing steps of region of interest detection, ECG
extraction, and periodicity detection as described in [9], but adds a major
enhancement exploiting the tracings of echocardiographers as shown in Fig. 3.
To extract echocardiographer’s envelope annotation, we exclude the calculated
Doppler velocity profile from the ROI and apply Otsu’s thresholding algorithm
on the remaining image to highlight the manual delineation which is connected
to the baseline. Then, we add the extracted annotation to the filled up largest
region, as shown in Fig. 3 and trace the boundary pixels. The Doppler envelop
extraction was tested on over 7000 images during training, and the results of the
various stages of processing are indicated in Table 2.

Measurement Extraction from Doppler Patterns. Using the AHA guide-
lines, the maximum jet velocity (Vmax) is defined as the peak velocity in the
negative direction for the Doppler pattern for aortic stenosis. Since the Doppler
envelope traces are available, the pixel value of the negative peak in the Doppler
spectra can be easily noted. To convert the imaging-based measurement to a
physical velocity value, we analyze the text calibration markers on the vertical
axis in the ROI using OCR engine to read off the velocity value. The maximum
value of velocity during systole within each cycle is a candidate for the Vmax.
The second measurement indicative of aortic stenosis is mean pressure gradient
(MPG). MPG is calculated from velocity information following the estimation
reported in [1] as Mg ≈ ∑

V
4V 2

N where N is the number of pixels within the QT
interval of ECG, and V is the velocity.

Disease Prediction using Multimodal Learning. Collecting all the mea-
surements derived from each modality processing, we form a feature vector as
follows.

Fp = {V1b, V2s, V3t, V4t, V5t, V6o, V7o, V8i, V9i} (1)

where the ‘b’ is for billable diagnosis, ‘s’ for significant problems, ‘t’ for textual
reports, ‘o’ for video text, and ‘i’ for image analysis features. The first 3 features
are binary while the rest are actual measurements made in the respective modal-
ities. To train the predictor, we use a set of patients with known aortic stenosis
(confirmed diagnosis in EHR), and learn the correlation between feature values
and the disease label (aortic stenosis) using a random forests learner. The ran-
dom forests were constructed with 100 trees, with each tree having a minimum
node size of 10, and maximum depth of 10.

4 Clinical Study Results

We conducted a retrospective clinical study on a large patient data set acquired
from a nearby hospital. The experimental context was to evaluate if there were
missed diagnosis of aortic stenosis in their records when in fact evidence could be
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Fig. 3. Illustration of Doppler envelop extraction using echocardiographer annotations.

Table 3. Comparative performance of rule-based baseline and random forest with fea-
tures extracted from structured information, reports, images, and OCR text. min(I,O)
refers to the fusion of image and OCR features by taking the minimum of the two for
each individual feature/parameter.

Features Performance

Structured Report Image OCR min(I,O) Precision Recall F-score Accuracy

Baseline x x x x 0.84 1.00 0.93 0.92

x 1.00 0.53 0.70 0.81

x 0.96 0.55 0.70 0.81

x 0.80 0.50 0.62 0.75

x 0.94 0.50 0.66 0.79

Random x 0.94 0.56 0.70 0.81

Forest x x 0.78 0.59 0.67 0.77

x x 0.93 0.73 0.82 0.87

x x x 0.82 0.71 0.77 0.83

x x x 0.96 0.89 0.92 0.94

x x x x 0.87 0.89 0.88 0.90

found from the underlying clinical data. Specifically, we restricted the analysis to
patients for which all 4 modalities of information were available, namely, billable
diagnosis, significant problems, and echocardiogram reports and imaging studies
giving rise to a total of 991 patients with 1,226 reports and 121,811 Doppler
images. These studies were independently validated clinically and 395 patients
were found to have aortic stenosis serving as the ground truth.

A 10 fold cross-validation was done by randomly splitting the data into 10
folds, 9 for training and 1 for testing. Table 3 shows the precision, recall, F-score,
and overall accuracy of the baseline and random forests with different combina-
tions of features, including a fusion of image and OCR features – referred to as
min(I,O). Selecting the minimum of these two values gave a more conservative
estimate of the severity of the disease. Out of the 395 patients manually identi-
fied by experts, 99 were newly discovered patients from our multimodal analysis
giving rise to over 25 % new discoveries.

Comparison Against Baseline. Our baseline was a rule-based model, which
returned all patients with at least one piece of evidence from any of the five
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sources. Here the evidence was either the presence of disease mentions or exceed-
ing the normal ranges for Vmax and Mg according to the AHA guidelines. The
best-performing model was a random forest with features from all the different
sources, achieving 96 % precision that is 12 % higher than the baseline. Combin-
ing features using random forests compensates for potential errors in individual
modality detections, making its precision higher than the baseline method. The
higher precision will reduce unnecessarily flagging of patients which would have
otherwise have lowered the confidence in such prediction system for practical uses.

5 Conclusions

In this paper we have presented a new use of medical image analysis in combina-
tion with textual and other multimodal data analysis for purposes of identifying
patient cohorts at risk for serious diseases such as aortic stenosis. While the tex-
tual detection method can be easily generalized for other diseases, future work
will focus on developing disease detectors in imaging modalities to augment the
decision making.
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