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Abstract. This paper addresses the efficient statistical modeling of multi-organ
structures, one of the most challenging scenarios in the medical imaging field
due to the frequently limited availability of data. Unlike typical approaches
where organs are considered either as single objects or as part of predefined
groups, we introduce a more general and natural approach in which all the
organs are inter-related inspired by the rhizome theory. Combining canonical
correlation analysis with a generalized version of principal component analysis,
we propose a new general and flexible framework for multi-organ shape mod-
eling to efficiently characterize the individual organ variability and the rela-
tionships between different organs. This new framework called SOMOS can be
easily parameterized to mimic a wide variety of alternative statistical shape
modeling approaches, including the classic point distribution model, and its
more recent multi-resolution variants. The significant superiority of SOMOS
over alternative approaches was successfully verified for two different
multi-organ databases: six subcortical structures of the brain, and seven
abdominal organs. Finally, the organ-prediction capability of the model also
significantly outperformed a partial least squared regression-based approach.

Keywords: Shape models � Generalized PCA � Multi-organ � Hierarchical
model

1 Introduction

Organ modeling and shape analysis are of crucial importance in the development of
robust diagnostic tools, treatment planning, and patient follow-up. However, most
statistical shape models have focused on single organ-based applications, proven
inefficient when dealing with the variability of the shape and position of some chal-
lenging anatomical structures (e.g. the pancreas). Shifting from organ-based to
organism-based approaches, there has been growing interest in the development of
comprehensive and holistic computational anatomical models in recent years [1–3].
However, as the complexity and detail of anatomical models increase, there are new
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technical challenges that hinder the use of traditional shape modeling methods, such as
the limited availability of data. While a limited number of examples may be sufficient
to model relatively simple organs, such as the kidneys, an adequately large training set
is not always available as the dimensionality and complexity of the structures increase.
This issue is known as the high-dimension-low-sample-size (HDLSS) problem.

One of the most popular shape modeling techniques is the Point Distribution Model
(PDM) proposed by Cootes et al. [4]. Despite the inherent capability of PDMs to model
multi-organ structures by performing global statistics on all the objects (see Fig. 1(a)),
these models are particularly sensitive to the HDLSS issue. Moreover, PDMs do not
represent object-based scale level, which limits their ability to describe the local
geometry information of organs. More recently, Cerrolaza et al. [1] proposed a new
generalized multi-resolution hierarchical variant of PDM (GEM-PDM). Based on a
multi-resolution decomposition of the shapes, GEM-PDM defines clusters of organs
that are modeled together at each resolution (see Fig. 1(b)), providing an efficient
characterization of the inter-organs relations, as well as the particular locality of each
organ. Although GEM-PDM is robust for general multi-organ modeling, the hierar-
chical configuration may be affected by some design parameters of the model. The
inter-organ relations were also explored by Okada et al. [2], presenting an automated
framework for the modeling and segmentation of multiple abdominal organs in CT
images (Fig. 1(c)). Based on a predefined ranking of organ stability, the authors defined
a sequential modeling of the organs designed to improve the analysis of challenging
structures, such as the pancreas, using information from neighboring stable organs,
such as the liver and spleen.

Unlike the classic rigid organization of the information as a unified structure ruled
by hierarchy [1] or linearity [2], the rhizomatic structure developed by Deleuzed and
Guattari [5] proposes an alternative organization of the information units (e.g., organs)
as an interconnected, non-linear network. Inspired by this new concept, we propose a
new general framework for SOft Multi-Organ Shape models (SOMOS). In SOMOS, a
multi-organ structure is modeled by a graph (see Fig. 1(d)), whose nodes and edges
represent the organs and the relationships between them, respectively. Based on gen-
eralized principal component analysis (G-PCA), the flexibility of the SOMOS also

Fig. 1. Multi-organ shape modeling strategies. (a) Classic PDM: all the organs (Or.) are
modeled together as a single object. (b) Multi-resolution hierarchical model [1]: all the organs are
modeled together at coarser resolutions, modeling smaller groups as we move toward finer
resolutions. In the picture, square, octagons, and circles, represent low, intermediate, and high
resolution of the organs, respectively. (c) Sequential organ modeling [2]: Or.1 is used to estimate
Or.2 and Or.3. Or.1, Or.2, and Or.3 will be used to estimate Or.4. (d) Rhizomatic structure: all the
inter-organ relationships are considered in the model.
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allows to replicate previous approaches (e.g. PDM, GEM-PDM) by defining particular
parameterizations of the model (i.e., imposing hard inter-organ constraints). However,
the rhizomatic nature of SOMOS assumes the general scenario where all the inter-organ
relationships are considered in the model, bringing together the advantages of all those
alternative approaches in a common flexible framework.

2 Shape Models

Let x1; . . .; xMf g be the set of M 2 N organs in a d-dimensional (d ¼ 2 or 3) space.
Each xj 1� j�Mð Þ represents the vector form of a single-object structure defined by
the concatenation of the Kj 2 N landmarks that define each organ (i.e., xj ¼ ðxj 1ð Þ; . . .;
xj d�Kjð ÞÞ

T ). In the same way, x is defined as the d � K � 1ð Þ vector resulting from the

concatenation of the M organs, x ¼ x1; . . .; xMð ÞT , and K ¼ P
Kj. Unlike the classic

PDM, where a single global shape model is built for x, SOMOS creates M individual
models, one for each organ of interest. The goal of each individual model is, not only to
characterize the particular anatomical variability of a particular organ (i.e. a node in the
graph), but also its relationships with any other structure in the model. The creation of
these individual shape models is detailed below.

2.1 Organ-Based Shape Models via Generalized PCA

Consider the creation of the statistical model for the i-th organ, xi. The relationship
between xi and the remaining organs is defined by means of the M � 1ð Þ vector, wi,
whose j-th component, wij 2 0; 1½ �, represents the correlation between xi and xj.
A factor of 1 means perfect correlation (e.g. wii ¼ 1), while 0 represents the absence of
relationship between both organs. An efficient statistical model should be able to model
the variability of the organ of interest, xi, as well as those significant inter-organ
relationships (i.e. with high values of wijÞ. Based on the G-PCA formulation proposed
by Greenancre [6] we formulate the problem as a weighted variant of PCA.

Let X represents the N � d � Kð Þ centered data matrix (i.e. zero mean) containing
the vector form of the N 2 N training cases. Using the generalized singular value
decomposition (G-SVD) [6] of X, this matrix can be de written as X ¼ VDBT , where V
and B are N � rð Þ and d � K � rð Þ matrices respectively (r is the rank of X), and D is a
r � rð Þ diagonal matrix. However, unlike classic SVD, V and B are not necessarily
orthonormal. In G-SVD, V and B satisfy VTUV ¼ Ir, and BTXB ¼ Ir, with U and X
being specified positive-definite symmetric matrices, and Ir the identity matrix of order
r. G-SVD finds the ordinary SVD of ~X ¼ U1=2XX1=2. In the particular case in whichU
and X are diagonal, ~X can be considered as a weighted version of X, where different
observations and variables can have different weights. Assuming all the observations
are treated identically, we can define /11 ¼ . . . ¼ /NN ¼ 1. SVD of ~X can be written
as ~X ¼ UECT , where E is a diagonal matrix and UTU ¼ CTC ¼ Ir: Then,
X ¼ ~XX�1=2 ¼ UECTX�1=2, and thus V ¼ U, D ¼ E, and B ¼ X�1=2C.
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G-PCA is defined by P, the d � K � mð Þ matrix formed by the first m� r columns of
B. Like in the classic PCA-based PDM [4], each shape can be now modeled as
x � ~x ¼ �xþP � b, where b is the m� 1ð Þ coordinate vector of x in the space defined by
P. It can be demonstrated that among all possible rank m approximations, ~x minimizesPK

k¼1 xk ~xðkÞ � xðkÞ
� �2. That is, the shape model provides a weighted least square

approximation where the contribution of each variable is weighted by xk 2 R
þ , the

diagonal components of X. In SOMOS, X is defined by wi as follow: xk ¼ wij s.t.
xðkÞ 2 xj. Therefore, the resulting shape model for organ xi not only prioritizes the
variability of that organ (which reduces the HDLSS effect in xi), but also considers the
context of the organ thanks to its inherent rhizomatic structure.

To define wij, the correlation factor between two organs, xi and xj, we use canonical
correlation analysis (CCA) between these two sets of variables. CCA determines the
linear combinations of the components in xi that are maximally correlated with linear
combinations of the components in xj. The strength of these correlations is described
by the corresponding correlation coefficients with values between 0 and 1 (see Fig. 2).
The capacity of CCA was previously studied by Rao et al. [7] and Okada et al. [2] to
define inter-organ relationships of sub-cortical brain structures. In SOMOS, the overall
inter-organ correlation factor, wij, is defined automatically as the average correlation
coefficient over all calculated canonical modes of CCA(xi, xj).

2.2 Shape Modeling Using SOMOS

Let y ¼ y1; . . .; yMð ÞT be the vector form of any d-dimensional multi-organ structure we
want to model using the new SOMOS framework, i.e. finding ~y ¼ ~y1; . . .; ~yMð ÞT , the
best approximation of y in the subspace of valid shapes defined by the set of M
statistical models created in Sect. 2.1. For each of these models, y can be approximated

as ~yj; . . .; ~yjM
� �T¼ �xþPj � bj, where the vector of coefficients bj is obtained as

bj ¼ PT
j X

1=2
j ðy� �xÞ. Thus, the j-th organ in ~y, ~yj, is modeled by ~yjj.

3 SOMOS: General Framework for Shape Modeling

SOMOS can be considered as a generalization of the traditional shape models able to
integrate alternative methods in a common framework. In the particular case in which
X ¼ I (i.e., wij ¼ 1, 8i; j) SOMOS becomes equivalent to the original PDM [4] (and
thus, suffering from HDLSS). On the other hand, defining wij ¼ dij, where dij is the
Kronecker delta function, the model becomes equivalent to an independent modeling of
each organ (and thus, not integrating into the model relevant inter-organ relationships).
Other interesting applications of the SOMOS framework are presented below.
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3.1 Multi-resolution Hierarchical Multi-organ Shape Modeling

Suppose now xrf gr¼0;...;R represents the multi-resolution (MR) decomposition of the

shape x, where x0 and xR represent the finest and the coarsest level of resolution,
respectively. The detail information missed from xr to xr�1 is represented by the
corresponding high-frequency vector zr. From x0, xrf gr¼0;...;R and zrf gr¼1;...;R can be

obtained using the corresponding analysis equations: xr ¼ Arxr�1, and zr ¼ Hrxr�1,
respectively, where A and H are the analysis filters (see [8] for details). Similarly to the
work proposed by Cerrolaza et al. [1], SOMOS can incorporate MR shape analysis as
follows. Imposing the initial condition that XR ¼ I (i.e. a global model of the entire
multi-organ structure is built at the coarsest resolution to guarantee the coherent dis-
position of the elements), G-PCA is used at each level of resolution obtaining

�xr;Pr
j ;X

r
j

n o
j¼1;...;M;r¼0;...R

. However, unlike the original framework proposed in [1]

where a hard separation of organs was required at each resolution (i.e., wr
ij ¼ 0 or 1)

(see Fig. 1(b)), we propose the use of new inter-organ correlation factors defined as

X̂
r
j ¼

QR
k¼r

Xk
j , where X

k
j are the correlation factors at resolution k obtained via CCA, as

described in Sect. 2.1. Since wr
ij 2 0; 1ð Þ, the inter-organ information incorporated by

the model, X̂
r
j , decreases as we move towards finer level or resolution, and thus,

reducing the HDLSS effect. Starting from the finest resolution, the fitting of a new
shape y is obtained by applying the modeling process described in Sect. 2.2 at each
resolution, yrf gr¼0;...;R. The high frequency component of the new constrained shape ~yr,
~zr, is used to recover the original resolution at the end of the process using the
corresponding synthesis filters: ~yr�1 ¼ Fr~yr þGr~zr (see [8]).

3.2 Sequential Multi-organ Shape Modeling

Suppose now x1; x2; x3; x4f g represents an ordered sequence of organs from highest to
lowest stability, as the one depicted in Fig. 1(c) and presented by Okada et al. [2] for
the segmentation of abdominal organs (in this example x1: liver, x2: spleen, x3: left
kidney and x4: pancreas; the extension to a more general scenario with K organs is
straighforward). In their original work, Okada et al. used partial least square regression
(PLSR) to obtain an initial estimation of the organs using the previous ones (i.e., the
more stable organs) as predictors (see Fig. 1(c)). This initial segmentation was further
refined via probability atlas and a shape model of the residuals. This sequential
modeling of organs can be easily modeled in SOMOS as follows. Starting with the
most stable organ, x1, the elements of X1 are defined as wij ¼ d1j, thereby preventing
the propagation of errors from less table organs. Having modeled x1, X2 and X3 are
defined as wij ¼ d 1;2f gj and wij ¼ d 1;3f gj, respectively, where d i;kf gj = 1 if j 2 i; kf g, and
0 otherwise. Similarly, X4 is defined as wij ¼ d 1;2;3f gj, i.e. all the previous organs will
be used to model the least stable organ, the pancreas. When modeling the less stable
structures in a new shape y ¼ y1; y2; y3; y4ð ÞT , the influence of these organs estimating
bj can be controlled by means of the classic weighted PDM formulation [9]
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bj ¼ PT
j WjPj

� ��1
PT
j X

1=2
j ðy� �xÞ. In particular, Wj is a d � K � d � Kð Þ diagonal matrix

with corresponding weight value (i.e., reliability) for each landmark. Thus, diag W1ð Þ ¼
1K1 ; 0K2 ; 0K3 ; 0K4ð Þ, diag W2ð Þ ¼ 1K1 ;w2 � 1K2 ; 0K3 ; 0K4ð Þ, diag W3ð Þ ¼ 1K1 ; 0K2 ;w3�ð
1K3 ; 0K4Þ, and diag W2ð Þ ¼ 1K1 ;w2; 1K2 ;w3 � 1K3 ;w4; 1K4ð Þ, where 1k and 0k represent
ð1� d � KÞ vectors of 1’s and 0’s respectively, and wj 2 ½0; 1� are constants indicating
the stability of each organ (and thus, 1 ¼ w1 [w2 �w3 [w4). Similarly to the method
proposed by Okada et al. [2], this SOMOS-based sequential shape model can turn into
a predictive model for the particular case in which w2 = w3 = w4 = 0 (i.e., x2, x3, and
x4 are estimated by x1).

4 Results and Discussion

We use two different datasets to evaluate the ability of SOMOS to model multi-organ
structures: a database of 18 CT abdominal studies (voxel resolution: 0.58 � 0.58
1.00 mm; volume: 512 � 512 � 360) including seven organs (see Fig. 2(a)), and a
public database of 18 T1-weighted brain MRI volumes [10] (voxel resolution:
0.94 � 0.94 � 1.50 mm; volume: 256 � 256 � 256 with six subcortical structures
(see Fig. 2 (b)).

The most general multi-resolution version of SOMOS (MR-SOMOS) described in
Sect. 3.1 is compared with two alternative approaches: GEM-PDM [1], and PDM [4].
Thanks to the flexibility of SOMOS, both approaches, PDM and GEM-PDM, were
implemented using the same common framework, to which we refer to as SOMOS-
PDM and SOMOS-GEM, respectively. Thus, we define R ¼ 0 and X0 ¼ I to generate
SOMOS-PDM. In SOMOS-GEM we define hard separations between groups of organs
at each level of resolution (i.e., wr

ij ¼ 0 or 1), following the configuration detailed in
[1]. The number of resolution levels is set to 5 (i.e., R = 4) for both, MR-SOMOS and
SOMOS-GEM. To characterize the accuracy of the three methods to model new
instances we compute the symmetric landmark-to-surface distance (L2S) and Dice
coefficient (DC), using leave-one-out cross-validation.

Fig. 2. Canonical Correlation Analysis (CCA) of the organs. (a) CCA of 7 abdominal organs:
Spleen (Spl.), pancreas (Pan.), liver (Liv.), left kidney (LKid), right kidney (RKid), gallblader
(Gall.) and stomach (Stom.). (b) CCA of 6 subcortical structures: left and right lateral ventricles
(LV, RV), left and right caudate nuclei (LC, RC), and left and right putamens (LP,RP).
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The results obtained for the abdominal database are shown in Table 1. The new
MR-SOMOS (avg. DC: 0.82 ± 0.08; avg. L2S: 3.10 ± 1.20 mm) provides statisti-
cally significant improvement (Wilcoxon signed rank test with p-value < 0.01) over
both, SOMOS-GEM (avg. DC: 0.80 ± 0.09; avg. L2S: 3.35 ± 1.19 mm) and
SOMOS-PDM (avg. DC: 0.73 ± 0.12; avg. L2S: 4.77 ± 1.59 mm). The superiority of
the new framework is also proven in the brain database (Table 2). The average DC are
0.93 ± 0.05, 0.87 ± 0.04 and 0.85 ± 0.05, and the average L2S are 0.61 ± 0.13,
0.68 ± 0.11 and 0.78 ± 0.25 mm, for MR-SOMOS, SOMOS-PDM, and
SOMOS-GEM, respectively.

Next, we also evaluate the predictive capability of the new framework to estimate a
sequence of organs. In particular, we use the four-organ sequence proposed by Okada
et al. [2]. Starting with an initial model of the liver, the authors of [2] estimated the
spleen and the left kidney via PLSR. The pancreas was finally estimated using the
previous three organs as predictors. This PLSR-based approach is compared with the
SOMOS predictive model (Sect. 3.2); results are shown in Table 3. The shape of the
liver obtained in the previous experiment is used in both cases. It can be observed how
the G-PCA-based estimation provided by SOMOS significantly outperforms
PLSR-based models (p < 0.01) in terms of DC and L2S metric for all the analyzed
organs. The ultimate goal is not to provide a final shape, but to generate a shape
model-based initial estimation of challenging organs, such as the pancreas, from more
stable organs, that will be refined later by other methods (e.g., probabilistic atlas or
texture models). Therefore, the metrics shown in Table 1 are better than those shown in
Table 3, where only the liver is used to estimate the spleen, left kidney, and spleen.

The computational cost of SOMOS (* 2 min.) is slightly higher than alternative
approaches (PDM: * 30 s.; GEM: * 1 min.) due to the iterative modeling over each
organ (Matlab® R2015a, 64-bits 2.80 GHz Intel® Xeon® with 16 GB or RAM).

Table 2. Brain database – shape modeling accuracy of 6 subcortical structures.

DC LV RV LC RC LP RP Avg.

SOMOS *0.86
±0.06

●0.92
±0.04

●0.92
±0.03

●0.93
±0.01

*0.93
±0.01

●0.97
±0.02

●0.93
±0.05

SOMOS-GEM 0.84
±0.05

0.84
±0.04

0.88
±0.02

0.87
±0.03

0.90
±0.01

0.91
±0.01

0.87
±0.04

SOMOS-PDM 0.81
±0.05

0.80
±0.05

0.87
±0.03

0.86
±0.03

0.89
±0.03

0.98
±0.02

0.85
±0.05

L2S(mm) LV RV LC RC LP RP Avg.

SOMOS ●0.77
±0.18

●0.76
±0.20

●0.51
±0.15

●0.56
±0.14

●0.55
±0.08

●0.50
±0.14

●0.61
±0.13

SOMOS-GEM 0.82
±0.19

0.81
±0.20

0.60
±0.09

0.68
±0.14

0.60
±0.0.09

0.59
±0.0.06

0.68
±0.11

SOMOS-PDM 0.99
±0.21

1.04
±0.32

0.66
±0.14

0.70
±0.14

0.66
±0.15

0.66
±0.11

0.78
±0.25
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5 Conclusions

We presented SOMOS, a new general framework for multi-organ shape modeling.
Unlike typical multi-organ approaches where hard divisions between organs are
defined, we adopt a more flexible and natural model: a rhizomatic structure in which all
the objects are inter-connected. Using CCA to parameterize the model automatically,
we propose a new set of weighted statistical shape models able to characterize effi-
ciently the relationships of each organ with the surrounding structures, as well as its
own individual variability. Based on a generalization of PCA, the formulation proposed
here integrates easily and naturally not only the SOMOS framework, but also previous
approaches in the literature, such as the classic PDM, or the most recent GEM-PDM.
Experiments with two different databases (abdomen and brain) demonstrate that the
new method significantly outperforms alternative approaches in terms of model
accuracy, and organ estimation capabilities. Finally, we also evaluated the prediction
capability of SOMOS showing a significant improvement over the alternative
PLSR-based approach. In the near future we plan to continue expanding the new
framework to integrate temporal variability of organs, and non-linear PDM.
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