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Abstract. In order to deal with ambiguous image appearances in cell
segmentation, high-level shape modeling has been introduced to delin-
eate cell boundaries. However, shape modeling usually requires sufficient
annotated training shapes, which are often labor intensive or unavailable.
Meanwhile, when applying the model to different datasets, it is neces-
sary to repeat the tedious annotation process to generate enough train-
ing data, and this will significantly limit the applicability of the model.
In this paper, we propose to transfer shape modeling learned from an
existing but different dataset (e.g. lung cancer) to assist cell segmen-
tation in a new target dataset (e.g. skeletal muscle) without expensive
manual annotations. Considering the intrinsic geometry structure of cell
shapes, we incorporate the shape transfer model into a sparse represen-
tation framework with a manifold embedding constraint, and provide
an efficient algorithm to solve the optimization problem. The proposed
algorithm is tested on multiple microscopy image datasets with different
tissue and staining preparations, and the experiments demonstrate its
effectiveness.

1 Introduction

Automatic cell segmentation is a critical step in microscopy image analysis,
and serves as a basis of many subsequent quantitative analyses [4], such as cel-
lular morphology calculation and individual cell classification. It is challeng-
ing to achieve robust cell segmentation due to ambiguous image appearance,
such as weak cell boundaries, inhomogeneous intracellular intensity, and partial
occlusion of cells, etc. Therefore, instead of purely relying on low-level image
appearances, high-level shape modeling has been introduced to improve object
boundary delineation [2,15,18,19].

c© Springer International Publishing AG 2016
S. Ourselin et al. (Eds.): MICCAI 2016, Part III, LNCS 9902, pp. 183–190, 2016.
DOI: 10.1007/978-3-319-46726-9 22



184 F. Xing et al.

Auxiliary Target

Shape Dictionary

Infer

Training Testing

Deform

Input

Model

Result

Fig. 1. The overview of the proposed shape transfer model. It aims at learning a cell
shape dictionary, which can produce data representations applicable to the target set.

Effective shape modeling usually requires a sufficient number of annotated
training data, which might be labor intensive or even unavailable in some appli-
cations. Meanwhile, it is necessary to repeat the tedious annotation process to
generate training shapes for different microscopy image datasets, thereby signif-
icantly limiting the generality of shape modeling. In this paper, we propose to
transfer shape modeling from an auxiliary dataset with sufficient training cell
shapes to a target dataset with a limited number of training samples for auto-
matic cell segmentation. In order to respect the intrinsic geometry structure of
cell shapes [16], we incorporate the shape transfer model into a sparse repre-
sentation framework with a manifold embedding constraint. Cell shape transfer
is modeled as learning a compact dictionary that can construct robust repre-
sentations for cells from different datasets, and model optimization is achieved
by using an efficient sparse encoding algorithm. In this scenario, we can signif-
icantly reduce the manual annotation efforts and improve the generality of the
shape modeling across multiple datasets so as to produce high-throughput cell
segmentation in microscopy image analysis.

2 Methodology

An overview of the proposed shape transfer modeling for cell segmentation is
shown in Fig. 1. In the training stage, the shape dictionary is learned by regular-
izing the distribution differences of cell training shapes between the auxiliary and
target datasets, and thus the dictionary can serve as a reference repository to
generate robust data representations across both datasets. Convolutional neural
networks (CNNs) [5,15] are learned to conduct pixel-wise classification for gen-
erating initial cell contours/shapes. In the testing stage, the framework moves
the contours towards cell boundaries until convergence in an alternate manner
[18]: deform shapes with an efficient active contour model [20] and infer shapes
with the transferred shape priors based on the learned dictionary. Due to page
limits, this paper only focuses on shape transfer modeling.
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2.1 Shape Transfer Modeling

Problem Definition: Denote auxiliary data by Da = {x1,x2, ...,xNa
} with

Na training cell shapes and target data by Dt = {xNa+1,xNa+2, ...,xNa+Nt
}

with Nt training shapes, where each shape is described by the concatenated 2D
coordinates of p evenly-sampled control points and aligned by removing global
transformation. Based on Da and Dt, our goal is to learn a compact shape
dictionary B = [b1, ..., bK ] ∈ R

2p×K such that for any cell shape x ∈ R
2p×1, a

solution to x = Bα, with sparse constraints on the coefficient α, is robust and
effective across both datasets. In this way, the cell shape information from the
auxiliary dataset would be transferred and thus assist the data representation
generation for cell segmentation in the target dataset.

Shape Transfer Model: Let X = [x1,x2, ...,xN ] ∈ R
2p×N with N = Na +

Nt be the input data matrix consisting of Da and Dt, sparse shape modeling
aims to learn a dictionary by minimizing the reconstruction error with specific
constraints on the coefficients [18,19]. In this paper, we model dictionary learning
as a subsect selection problem which seeks a small set of representatives to
summarize and describe the whole dataset X, thereby removing outliers that
are not true representatives and improving the runtime computational efficiency.
A straightforward way to conduct sparse subsect selection is to regularize the
coefficient matrix with an �2,1 or �∞,1 norm [6]. Meanwhile, since the number
of constraints for shape control is limited, cell shapes actually lie on a low-
dimensional manifold [16]. Therefore, we can formulate the subset selection as a
graph and row-sparsity regularized optimization problem

min
A

||X − XA||2F + γTr(ALAT ) + λ||A||2,1, s.t. 1T
NA = 1N , (1)

where A ∈ R
N×N is the sparse coefficient matrix. L = D − W is the graph

Laplacian, where W is a n-nearest neighbor graph (n = 5) with nodes repre-
senting the training shapes: Wij = 1 if xi is among the n-nearest neighbors of
xj , otherwise 0; D is a diagonal matrix with Dii =

∑N
j=1 Wij . Tr(·) denotes

the trace operation, and it encourages those adjacent shapes in the intrinsic
geometry to be represented with similar codes. ||A||2,1 =

∑N
i=1 ||αi||2 (αi repre-

senting the i-th row of A) is the sum of the �2 norms of the rows and is a convex
relaxation for counting the number of nonzero rows of A. The affine constraint
ensures shift invariance, and 1N ∈ R

N×1 is a vector with all elements equal to
one. Since each row αi corresponds to one input cell shape xi, after solving (1)
we can simply form the dictionary B = [xb1 , ...,xbK ] by selecting the representa-
tives corresponding to the nonzero rows of A and apply it to cell shape encoding
based on sparse reconstruction in the testing stage.

In order to transfer the shape prior knowledge from the auxiliary to tar-
get dataset, the sparse encoding needs to be robust across both datasets. An
intuitive strategy is to enable the selected representatives or the dictionary to
capture the common composition of the two datasets instead of only the individ-
ual characteristics of the auxiliary shapes, and this can be realized by reducing
the distribution differences of the representations between two datasets. Inspired
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by [8,11], we propose to penalize the distance in Maximum Mean Discrepancy
(MMD), which is a nonparametric criterion to measure the distribution difference
between the means of samples from two datasets in a transformed representa-
tion space. In our model, cell shapes are mapped into a representation space via
the learned dictionary, and thus we need to penalize the distance between the
auxiliary and target datasets in the sparse coefficients

∥
∥
∥
∥
∥
∥

1
Na

Na∑

i=1

αi − 1
Nt

Na+Nt∑

j=Na+1

αj

∥
∥
∥
∥
∥
∥

2

=
Na+Nt∑

i,j=1

αT
i αjMij = Tr(AMAT ), (2)

where αi ∈ R
N×1 is the i-th column of A, and M ∈ R

N×N is the MMD matrix
with the ij-th element computed as Mij = 1

N2
a

when xi,xj ∈ Da; Mij = 1
N2

t

when xi,xj ∈ Dt and Mij = −1
NaNt

otherwise.
One of significant benefits for choosing the MMD criterion is that it does

not require an intermediate density estimate, which is usually a non-trivial task.
By incorporating (2) into (1), we obtain the proposed objective function for cell
shape knowledge transfer

min
A

||X−XA||2F+γTr(ALAT )+μTr(AMAT )+λ||A||2,1, s.t. 1T
NA = 1N , (3)

where μ > 0 is a weight parameter controlling the MMD regularization. MMD
asymptotically approaches to zero if the auxiliary and target datasets exhibit
the same distribution [8]. By mapping cell shapes into a common representation
space, solving (3) can refine the subset selection of representatives and transfer
the shape knowledge of the auxiliary dataset, thereby producing representations
that are applicable to the target dataset.

2.2 Efficient Local Encoding

The model in (3) can be solved by the Alternating Direction Method of Mul-
tipliers (ADMM) framework [3]. However, ADMM might introduce additional
parameters in the optimization procedure. Note that the graph regularization
in (3) respects the intrinsic Riemannian structure of cell shapes by obeying the
manifold assumption: if xi and xj are adjacent in the manifold, then their rep-
resentations, αi and αj , with respect to the learned dictionary should be close
to each other. Actually this can be approximated in a more efficient way: using a
globally linear function with respect to a set of learned local coordinates [17] and
solving a much smaller linear system. Therefore, instead of directly penalizing
the differences of the representations between neighboring shapes, during the
sparse coding we can weight the codes with the similarity between the shapes
and the dictionary bases. More importantly, the time complexity can be sig-
nificantly reduced. Therefore, we can revise the model in (3) by replacing the
graph regularization with a locality-constrained term and explicitly modeling
the dictionary B

min
B,Ã

J = ||X − BÃ||2F + γ

N∑

i=1

α̃T
i Qiα̃i + μTr(ÃMÃ

T
), s.t. 1T

KÃ = 1K , (4)
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where Qi ∈ R
K×K is a diagonal matrix with Qi

kk = ||xi − bk||2 representing
the distance between shape xi and dictionary basis bk. The introduced locality
constraint encourages each shape to be represented with its neighbors in B.
Ã ∈ R

K×N is the coefficient matrix. We remove the sparsity regularization in
(4) since locality guarantees sparsity but not necessary vice versa [14,17].

It is difficult to simultaneously compute the two unknown variables in (4),
and thus we solve it in an alternate way: calculate coefficients Ã with dictionary
B fixed and learn dictionary B with coefficients Ã fixed. We can derive the i-th
coefficient analytically with a fixed dictionary as

α̃i = (Y + μ(MiiIK + 1KrT
i + ri1T

K) + γQi)−11K , (5)

where Y = (1KxT
i −BT )(xi1T

K −B) and ri =
∑

j �=i Mijα̃j . In order to preserve
the affine constraint, we further normalize α̃i such that 1T

Kα̃i = 1. In our imple-
mentation, we anchor each shape in its local coordinate system for fast encoding.

With coefficients Ã fixed, dictionary B is updated by gradient decent [10].
The derivative of the objective function with respect to the k-th basis bk is
derived in (6). To ensure that the dictionary bases coincide with a subset of
actual cell shapes, in each iteration we update the basis bk by selecting the
shape xl that exhibits the largest correlation between the displacement and the
negative gradient in (7)

∇Jbk
= −2

N∑

i=1

(xi − Bα̃i)α̃ik + (xi − bk)α̃2
ik, (6)

bk = arg max
xl∈X

(xl − bk)T (−∇J)
||xl − bk||2|| − ∇J ||2 . (7)

The dictionary basis update and the coefficient computation are alternately
conducted until convergence. In the testing stage, a new cell shape x from the
target dataset can be encoded by solving (4) with a fixed B and without the
MMD term.

3 Experiments

Datasets and Experimental Setup: The proposed shape transfer model is
extensively tested on multiple microscopy image datasets: lung cancer, pancre-
atic neuroendocrine tumor (NET), and skeletal muscle. The gold standards of
cell boundaries are manually annotated. Lung cancer has over 20000 annotated
cell shapes, and thus it is used as the auxiliary dataset with randomly selected
about one-tenth for training. The target datasets include 45 NET images with
half for training (the left for testing) and 41 skeletal muscle images with about
three-fourths for training. The parameters in (4) are chosen as γ = 0.001 and
μ = 10. The dictionary size is chosen as one-tenth of the training data. Many
metrics [9,13] can be applied to quantitative analysis, and we choose three
generic segmentation-based criteria [15]: Dice similarly coefficient (DSC), Haus-
dorff distance (HD), and mean absolute distance (MAD).
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Fig. 2. Comparative segmentation accuracy (DSC) between the shape transfer model,
SSTM, and the model trained with only target shapes, SSTMt, on the NET (left) and
muscle (right) datasets.

Fig. 3. Cell segmentation results on two sample images from the NET (left two) and
muscle (right two) datasets. Cells touching image boundaries are ignored.

We train the CNN models by following [15] on the NET and [5] on the
skeletal muscle images. For the former, the CNN model is trained with over
6 × 105 positive and 9 × 105 negative image patches. The parameters are with:
total iterations of 2.5 × 105, learning rate of 0.001, momentum of 0.8, and batch
size of 128. For the latter, the model is trained with one million patches with
half positives and half negatives. The parameters are with: total iterations of
2×105, learning rate of 0.01, momentum of 0.9, weight decay of 0.1 (every 50000
iterations), and batch size of 256. CNN models provide coarse segmentation for
subsequent contour deformation and refinement.

Shape Transfer Model Evaluation: Figure 2 shows the segmentation accu-
racy of the proposed model, SSTM, with respect to the number of target cell
shapes and two hundred auxiliary data samples. The model learned using only
target cell shapes (denoted by SSTMt) is also provided for comparison. It
is clear that when there exist limited target training samples, shape transfer
modeling improves the segmentation accuracy and outperforms SSTMt. When
sufficient target shapes are applied to training, there exist no significant per-
formance improvement using transfer shapes. Since muscle cells exhibit more
significant shape variations than NET cells, SSTMt requires much more target
shapes to produce competitive performance to SSTM. We can see that when
fixing a desired segmentation accuracy, transfer models require less target data.
Figure 3 shows qualitative segmentation results on the two datasets, where many
cells with weak boundaries are segmented.

Comparison with State of the Arts: We compare SSTM with four state of
the arts: isoperimetric graph partition (IGP) [7], superpixel-based segmentation
(SUP) [12], graph cut and coloring (GCC) [1], and repulsive level set (RLS) [13].
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Table 1. Comparative pixel-wise segmentation accuracy on NET and muscle datasets.
For each metric (DSC, HD, and MAD), the mean and standard deviation are listed.

NET Muscle

DSC HD MAD DSC HD MAD

IGP [7] 0.49± 0.21 10.58± 14.07 8.16± 7.15 0.63± 0.24 12.81± 11.22 7.73± 5.62

SUP [12] 0.74± 0.18 7.30± 7.69 4.08± 3.76 0.63± 0.16 16.71± 9.52 8.86± 4.99

GCC [1] 0.60± 0.22 6.57± 4.38 5.18± 2.85 0.70± 0.22 12.47± 16.11 7.48± 9.13

RLS [13] 0.84± 0.09 4.25± 3.48 2.35± 2.11 0.84± 0.12 8.64± 10.53 4.97± 6.72

SSTM 0.89± 0.12 2.98± 3.14 2.01± 2.11 0.85± 0.13 4.88± 4.80 3.11± 2.63
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Fig. 4. Convergence study (left and middle) and parameter sensitivity analysis (right).

Table 1 lists the comparative performance on the two target datasets. As we can
see, SSTM outperforms the others in terms of three segmentation criteria, espe-
cially in HD that measures the largest error for each segmentation. In addition,
the lowest standard deviations in the metrics (for almost all cases) indicate the
strong stability of the proposed approaches.

Convergence and Parameter Sensitivity Analysis: The reconstruction
errors for model training with respect to the number of iterations are shown
in Fig. 4, which indicates that the algorithm can converge in a limited number
of iterations. We set μ = {10, 100, 1000} and find that there exist no statistically
significant variations on the accuracy. The effects of parameter γ on the perfor-
mance is provided in the right panel of Fig. 4, which shows our algorithm can
achieve stable performance within a wide range of values.

4 Conclusion

In this paper, we propose a shape transfer model for cell segmentation in
microscopy images. By learning a compact shape dictionary using an auxiliary
dataset, it can generate shape representations that are applicable to the target
dataset. In this scenario, it can significantly reduce expensive manual anno-
tations of target training data. Extensive experiments on multiple microscopy
image datasets demonstrate the effectiveness of the proposed method.
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